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Abstract. Presently, precision agriculture uses remote sensing for the mapping of crop 
biophysical parameters with vegetation indices in order to detect problematic areas, and then 
send a human specialist for a targeted field investigation. The same principle is applied for the 
use of UAVs in precision agriculture, but with finer spatial resolutions. Vegetation mapping with 
UAVs requires the mosaicking of several images, which results in significant geometric and 
radiometric problems. Furthermore, even at such resolutions, it is still not possible to precisely 
identify the nature of the detected stresses. The concept proposed here aims to use UAVs for 
precise and automated pest detection and identification with images acquired a few meters 
above the crop canopy, at millimetric resolution.  
The image processing is based on artificial intelligence (deep learning) computer vision 
methods. These methods are trained with images collected for different crops and symptoms. 
The UAV image acquisitions calendar is optimized using a bioclimatic model that evaluates 
disease risk. The spatial acquisition plan prioritizes areas with persistent moisture, where the 
probability of pest presence is higher. These areas could be determined using optical or SAR 
satellite imagery. 
This approach was applied to detect diseases in a vineyard (mildew), potato beetles and weeds 
(in lettuce, carrot and onion fields). All experimental fields were located in Quebec, Canada. 
Results show that the application of the deep learning technique to crop canopy UAV images 
can reach a success rate above 90%, which demonstrates the potential of this approach. Thus, 
the proposed concept is a major innovation in the application of UAVs in agriculture. It will allow 
the effective control of pests by optimizing pesticide use while reducing the waste of resources 
and the harmful effects of chemical products. 
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Introduction 

Precision agriculture is based on plot management according to intra-field variability by 
modulating interventions and treatments as needed in order to reconcile the principle of 
sustainable agriculture with the objective of economic profitability. In order to adapt farming 
practices to the spatial variability of plots, satellite remote sensing is an excellent way to map 
soils and crop growth on a scale suitable for examining plot conditions, detecting stresses, or 
applying inputs in "management zones" or "variable rates" modes. At this scale (resolution of 
5 m to 2 m) it is possible to detect stresses, but not to identify them. Indeed, a weak growth 
detected on a satellite image can be due to a nutrient deficiency, a pathology, insects, problems 
of compaction or drainage, an extreme soil texture, etc. Products derived from satellite images, 
although very useful, do not allow to know the exact nature of the detected stresses. 

Drone images have already been used to detect phytosanitary problems using traditional 
approaches such as classification. However, these methods have not been very successful due 
to the high confusion rates in the detection of biophysical and phytosanitary problems, 
especially during different phenological stages (Albetis et al., 2017, Malhein et al., 2012). In 
recent years, the use of deep learning has led to incredible advances in image recognition that 
can be used to identify objects of all kinds, even if they feature different colours, sizes or shapes 
(Russakovsky et al. al., 2015). These methods have recently been applied to the fields of 
agriculture. Although the number of studies conducted thus far on the subject are still small, 
their results are very promising. They include those on the identification of diseases (Sladojevic 
et al., 2017, Durmus et al., 2017, Hanson et al., 2017). Deep learning reveals resistance to the 
conditions of acquisition, but also to the variations that the same category of objects can exhibit 
(shape, colour, etc.). This performance fills the gaps of the traditional approaches developed in 
remote sensing. 

The concept presented in this paper is to "send drones to take images with sufficient resolution 
to make accurate identification automatically". The application of this concept is based on the 
following principles: (1) drone images must be acquired at sufficient resolutions (of the order of 
one millimeter) to "see" the nature of the problem; (2) the image processing system, based on a 
deep convolutional neural network CNN, must be powerful enough to "see" the problem and 
sufficiently well-trained to "recognize" its nature; (3) the system must be optimized to avoid 
unnecessary operations (acquisition and processing) by evaluating the spatio-temporal 
distribution of the risk of developing disease and pests by combining a bioclimatic model 
(CIPRA, Beaudry et al., 2013) and surface moisture maps derived from optical or SAR satellite 
images. 

This automated screening system has been tested for three different applications: detection of 
mildew and signs of grazing in the vineyard; detection of potato beetles; and detection of weeds 
in lettuce, carrot and onion plots. 

Study Area and Data Acquisition 
Applying automated screening for diseases and damages in the vineyards was conducted in the 
summer of 2017 on the Experimental Farm of Agriculture and Agri-Food Canada (AAFC) in 
Frelighsburg, Quebec, Canada. The vineyard at the Frelighsburg Experimental Farm consists of 
two plots of the same variety (Chancellor), the first of which is kept healthy using a combination 
of preventive treatments, and the second is heavily contaminated by the inoculum of mildew. 



Proceedings of the 14th International Conference on Precision Agriculture 
June 24th – 27th, 2018, Montreal, Quebec, Canada Page 4 

The tests presented here were performed on more than 600 images acquired by a DJI 
Phantom-3 drone on September 22, 2017, at three height levels above the canopy 
(approximately 2 m, 4 m and 6 m) and at three speeds (about 1 m/s and 2.5 m/s). 
The application for the potato beetle was conducted at the AAFC Experimental Farm in Ste-
Clotilde, Quebec, Canada. The potato plot (Hilite Russet) was established at the end of May 
2017 and consisted of 14 rows, 17 metres in length. Weekly screening was conducted to track 
potato beetle populations in both time and space. No insecticide treatment was applied for 
experimental purposes. The images used in this paper were acquired by a DJI Phantom 3 on 
July 6, 2017. 
The images used to test for weed screening are photographs taken in lettuce, carrot, and onion 
plots at the beginning of the growing season at the time of weed emergence and herbicide 
application. These images come from the database of images acquired in the region of 
Napierville, Quebec, and described in the article by Panneton and Brouillard (2009). 
Surface moisture estimation using Sentinel-1 and Landsat-8 imagery was performed on 
relatively larger areas including some commercial vineyards near the Frelighsburg, Quebec 
area. Figure 1 shows the location of all sites of interest in this study. 
 

 
Figure 1. Location of study areas: vineyards at Freligshburg, potato and other vegetable fields at Ste-Clotilde. All study 

areas are in Quebec, Canada. 

Methods 

Convolutional Neural Networks for Pest Detection on UAV Images 
  
In recent years, deep learning has revolutionized the field of image recognition (LeCun et al., 
2015, Russakovsky et al., 2015). The deep learning algorithms most used in image processing 
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are convolutional neural networks (CNN) consisting of three processing blocks: (i) a first block 
extracts, through multi-scale convolutions, information at several levels of resolution; (ii) the 
second block is a deep neural network that "learns", through training on a set of annotated 
images, to characterize the images and to identify their content; (iii) the third block is a classifier. 
There are currently several pre-trained CNNs that can be used according to this principle.  
 
In our applications, we have used CNN CaffeNet (Jia et al., 2014) as illustrated in Figure 2. The 
UAV image is scanned systematically (via convolution) or on a targeted basis (following a 
segmentation) in order to extract the windows that will be analyzed by the CNN. The "deep 
signatures" (4096 deep features) are compared with those of the windows containing the 
searched for symptom classes (diseases, insects, grazing, weeds, etc.) by an SVM classifier. 
Note that the training windows underwent a number of rotations and translations to take into 
account the possible variation in the angle of view of the symptoms. The next section presents 
different image acquisition and analysis options that have been tested to identify the optimal 
conditions for applying CNN to our problem. 
 

 
Figure 2. The use of CaffeNet CNN for disease identification on UAV images  

 

Optimizing Imagery Acquisition and Analysis Parameters 
UAV Image Resolution 

Images acquired by a RGB camera with a resolution of 0.2 mm were degraded (by spatial 
rescaling) to resolutions of 0.4 mm, 0.6 mm, ..., up to 2.4 mm in order to identify the lowest 
resolution (and therefore the greater spatial coverage) that still allows for the detection of the 
looked for symptoms. This exercise (carried out only for vines) allowed evaluating the influence 
of the resolution of the image on the success of detection of the various symptoms. 
Extraction of the Analysis Windows 

As mentioned before, we have tried two techniques to extract the windows of analysis used as 
inputs of the CNN for the detection of the symptoms of disease or devastation. The first 
technique uses a regular grid defined by convolution, while applying a threshold on the 
"green/red" index in order to keep only the vegetated windows; and the second technique was 
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based on the segmentation of the image and the application of the CNN to windows centered on 
the centroids of the objects resulting from the segmentation. 
Size of the Analysis Windows 

Symptom detection was tested by choosing different sizes of the analysis window, which can be 
focused on the symptom itself, on an affected leaf, or on a group of leaves. We therefore 
analyzed the same images with windows of different sizes: 24 x 24 pixels, 50 x 50 pixels, 
100 x 100 pixels, 150 x 150 pixels, 200 x 200 pixels, 250 x 250 pixels and 500 x 500 pixels. 
Size of the Training Datasets 

In order to evaluate the influence of the number of reference signatures used on the results of 
the detection analyses, we carried out analyses with 100, 500, 1,000 and 2,000 reference 
signatures per symptom class. The reference signature bank also contains signatures for 
healthy plants and the background. This “other” class is usually much more common and 
represents a greater variety of situations than symptom classes. We therefore performed 
detection tests with different ratios (1:1, 1:10, 1:25 and 1:50) of “symptoms” class size to “other” 
class size in the training bank. 

Spatio-Temporal Optimization of Imagery Acquisition 
The systematic detection of diseases and infestations (at regular intervals in space and time) 
requires significant investments in terms of work and time. The targeting of time periods and 
screening areas optimizes UAV screening by selecting the right place (the wettest areas) at the 
right time (the weather conditions most conducive to the development of diseases and pests). 
Weather conditions have a considerable influence on the risks of the development and spread 
of pests. The CIPRA (Beaudry et al., 2013) software developed by AAFC brings together 
several models for predicting the development of crop pests. These models rely primarily on 
weather observations and predictions. We compared the forecasts provided by CIPRA for vines 
mildew to field observations at the Frelighsburg experimental farm. 
Mapping of soil moisture and vegetation would allow us to identify areas with a higher risk of 
developing this infection. The tests presented in this paper concern a wine-production sector 
near Frelighsburg (commercial plots). We compared SAR Sentinel-1 (VV intensity) images 
acquired during the 2017 season, on the one hand, and the NDMI index = (NIR - SWIR1)/(NIR + 
SWIR1) from Landsat-8 on the other hand, with the prevailing weather conditions a few days 
before the acquisition of the images. This exercise allowed to pattern out the moisture variations 
in the vineyards during the growing season. 

Results 

Optimal Parameters for UAV Image Acquisition and Analysis 
Regarding the resolution of the images, the results of the same analysis performed on 
resampled images show that the initial resolution of 0.2 mm has the best success rate. In 
general, the success rate decreases as the resolution of the image decreases. However, it is 
relatively stable at resolutions of 0.6 mm to 1 mm. It is therefore recommended to aim for UAV 
acquisitions with a resolution of about 1 mm at the leaf level.  
For the location of the analysis windows, the use of a regular grid (a convolution) associated 
with a selection of vegetated windows (green/red > threshold) provides results that are often 
better compared with the use of segmentation. Moreover, the addition of a segmentation phase 
significantly increases the processing time (3 minutes with segmentation versus 30 seconds 
without segmentation on an AWS cloud GPU machine). In some cases, when the colour of the 
object to be detected constitutes crucial information for its detection (e.g., the potato beetle), a 
segmentation followed by a colour testing is useful to apply before using CNN CaffeNet. 
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The results of detection obtained with different sizes of analysis windows show that the best 
success rates for the detection of downy mildew are achieved with window sizes of 100 x 100 to 
250 x 250 pixels. The best grazing detection success rates in the vineyard are observed with 
windows of 50 x 50 to 150 x 150 pixels of 1 mm. Potato beetle detection is optimal for windows 
of 50 x 50 pixels of 1 mm. Weed detection at the beginning of the growth stage is also optimal 
for windows of 50 x 50 pixels of 1 mm. 
Tests on the number of reference signatures (windows used for CNN training) by symptom 
class showed that success rates stabilize when there are at least 500 reference signatures for 
each symptom class. The ratio between the reference signatures for the symptom classes and 
those for the “other” class that gives the best results is “1:1”, i.e., when the size of the “other” 
class is roughly equal to the size of the classes of symptoms. Weighting techniques exist to 
overcome the imbalance between the class size of the objects searched and the size of the 
classes of the background (Wang et al., 2016). 

These optimal parameters were used in the application of CNN CaffeNet for the three 
applications of this study: the detection of vine mildew, potato beetle and weeds in fields of 
vegetable crops (lettuce, carrots and onion). Note that the use of a single-GPU machine (Intel 
Xeon E5-2686 v4 with 61 Go RAM) allowed processing an entire Phantom-3 UAV image (12 
megapixels) in about one minute, 115 times faster than a CPU (Intel i7-2600 CPU, 3.40 GHz 
and 16 Go RAM). 

Pest Detection in Vineyards 
Figure 3 shows an example of detection of mildew symptoms on one of the Phantom-3 images 
acquired on September 22, 2017, in which signs of advanced mildew (dried leaves) can be 
observed. The detection carried out with windows of 100 x 100 pixels shows that the majority of 
the traces of mildew were correctly detected. We can note an omission and some false alarms. 
Note that the dry leaves on the ground, which could have been false alarms, were not detected. 

 
Figure 3. Example of mildew detection using deep learning  

The detection of mildew on all UAV images associated with the GPS coordinates recorded 
during the flight allows producing a map that shows the spatial distribution of mildew infection 
rates (Figure 4). This rate represents the ratio between the number of windows classified as 
"mildew" and the total number of (vegetated) windows analyzed in the UAV image. The 
mapping of the detection results thus makes it possible to evaluate the extent and severity of 
the infection and infestation rates of a plot and to establish a phytosanitary intervention plan. 
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This will allow a variable dose application during the phytosanitary treatment. 

 
Figure 4. Severity of mildew infection map produced from UAV images analysed by deep learning 

 

Insects Detected in Potatoes  
The detection of potato beetles on a Phantom-3 image is illustrated in the example of Figure 5. 
All insects on the scene have been detected. Only one false alarm is observed in this example. 

Figure 5. Example of detection of potato beetles on UAV images using deep learning 

Weed Detection 
Figure 6 shows examples of weed detection in lettuce, carrot and onion plots. The distinction 
between weed leaves and crop leaves, which have different shapes, is very satisfactory, 
according to the visual appreciation of the images of Figure 6. 
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Figure 6. Examples of weed detection in lettuce, carrot and onion fields using deep learning 

Spatio-Temporal Optimization of UAV Acquisitions 
 

The CIPRA model was run for the Frelighsburg farm. The software automatically retrieves the 
weather data and displays temperature and precipitation history. The CIPRA model also 
calculates, from these meteorological data, leaf wetting, which is used to predict the risk of 
developing diseases, such as mildew and pests. Field observations of mildew and grazing 
(presence of Japanese beetle) are consistent with the risk dates given by CIPRA. Mildew 
appeared early in the season, with a dramatic increase as early as mid-July. The signs of 
grazing became apparent later, around September. This agreement shows the usefulness of 
CIPRA in achieving an acquisition schedule that takes into account the risk of pests for a given 
growing season. 
In order to assess the ability of Sentinel-1 satellite imagery to estimate surface moisture, we 
examined whether a relationship existed between VV and VH backscatter observed at different 
dates and the amount of rain that was measured during the three days before these dates. This 
analysis was limited to backscatter values from 17 vineyard plots with no vegetation on the 
ground (between rows). Changes in VV backscattering closely follow moisture level fluctuations. 
As with Sentinel-1 images, the NDMI moisture index calculated from Landsat-8 imagery is 
strongly affected by rainfall recorded three days prior to the date of acquisition of the image. 
Figure 7 shows an example of VV backscattering of Sentinel-1 and Landsat-8 NDMI for 
acquisition dates before and after precipitation. 
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This variability in moisture levels between vineyard plots can be an indicator of differences in 
the risk of developing diseases and insects between these plots. For example, the level of 
moisture often appears to be higher in Plot D than in Plot A. Thus, one might think that the risk 
of mildew is higher in Plot D than in Plot A. Plot D should therefore be prioritized in the planning 
of screening activities. Regarding intra-plot variations, it would be difficult to validate the 
patterns observed within the plots given the low resolution of the Sentinel-1 and Landsat-8 
images and the lack of field measurements of moisture that could be used for validation. 

 
Figure 7. Estimation of the spatial distribution of surface moisture used to assess the risk of pest development   

Conclusion and Perspectives 
The concept presented in this paper proposes to combine the major developments in compact 
UAV systems, on the one hand, and in advanced computer vision, on the other. In the last five 
years, deep learning techniques allowed developing new image-based applications that are very 
difficult to implement with conventional image processing methods. Thanks to GPU computing 
power, the processing time is very reasonable for operational use. 
The approach developed in this paper will help improving precision farming from zone-based to 
plant-based management, especially for agricultural input application. We can also assume that 
efficient and automatic pest detection and identification will help promote the smart use of 
chemical products thus reducing waste, pollution and human and animal health problems. 
This system could be improved or adapted with respect to several components. For example, 
more recent CNN architectures could be tested, including fine-tuning the CNN through a 
retraining process, to make the network more sensitive to color. Also, the imagery could be 
captured with cameras installed on tractors during regular operations and used for a variety of 
crop monitoring issues.  
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