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Abstract. Sclerotinia sclerotiorum (white mold) is a fungus that infects the flowers of snap beans 
and causes a reduction in the number of pods, and subsequent yields, due to premature pod 
abscission. Snap bean fields typically are treated with prophylactic fungicide applications to 
control white mold, once 10% of the plants have at least one flower. The holistic goal of this 
research is to develop spatially-explicit white mold risk models, based on inputs from remote 
sensing systems aboard unmanned aerial systems (UAS). The objectives of this study are to i) 
identify spectral signatures for the onset of flowering towards optimal timing of the fungicide 
application and ii) investigate spectral characteristics of white mold onset in snap bean, for 
eventual inclusion in the risk models. This paper concentrates on the first objective. The study 
area was located at Cornell University, Geneva, NY, USA. A DJI Matrice-600 UAS, boasting a 
high spatial resolution color (RGB) camera, a Headwall Photonics Nano-imaging spectrometer 
(272 bands; 400-1000 nm), and a Velodyne VLP-16 light detection and ranging (LiDAR) system, 
was utilized to collect the data. High frequency flights were flown around days when various 
portions of the snap bean fields were beginning to flower. The imaging spectroscopy data were 
first ortho-rectified and then mosaicked using GPS/IMU (inertial measurement unit) information 
from the UAS. The imagery was calibrated into reflectance data using the empirical line calibration 
method, based on in-field black/white calibration panels. Samples of flowering and non-flowering 
snap bean spectra were selected from the hyperspectral imagery, followed by single feature linear 
discriminant analysis to determine which ratio indices, normalized difference indices, and 
wavelengths critical for discriminating between flowering and non-flowering plants. Next, the 
features with the highest c-index trained linear discriminant, logistic regression, and support 
vector machine models. Results showed that the linear discriminant model had the highest test 
accuracy of 93%, 95%, and 92% for 20, 10, and 3 features, respectively. These results are 
promising for eventual implementation in disease risk models. 
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Introduction 
Snap beans are the fifth largest vegetable crop in the United States in terms of acres planted 
(USDA 2012), with harvests valued at 416 million dollars in recent years (USDA 2015). New York 
State ranks second for both processing and fresh market snap beans in terms of acres planted 
(USDA 2014). The most important disease affecting snap bean production is white mold caused 
by the fungus, Sclerotinia sclerotiorum. The disease causes reductions in the number of pods, 
from premature pod abscission and contamination from mycelia. White mold control is centered 
on the prophylactic application of fungicides initiated when 10% of snap bean plants have at least 
one flower. Protection of flowers is important because S. sclerotiorum ascospores can only infect 
the flowers. Research by Lehner et al. (2017) has identified suboptimal timing of fungicides as 
the primary reason for poor disease control. Tools to assist in detection of early flowering may 
therefore assist farmers in improving timing of fungicides and optimizing already available tools 
for optimal disease control.  
Multivariate analysis and machine learning have potential to partition imagery into classes using 
spectroscopy. For example, Rumpf et al. (2010) trained a support vector machine (SVM) to 
classify Cercospora leaf spot, powdery mildew and leaf rust on sugar beets. An SVM is a machine 
learning technique that finds a hyperplane that maximizes the separation between classes. 
Classification results varied from 85.7 to 96.5% depending on the disease. Delalieux et al. (2007), 
on the other hand, used logistic regression on a per-wavelength basis to identify wavelengths that 
best discriminated between diseased and healthy apple trees (Braeburn cultivar) for apple scab 
(Venturia inaequalis). Logistic regression is a direct probability model that estimates the 
probability of a binary response based on one or more features. The authors found solid 
predictability (c-values > 0.8) when classifying diseased plants based on such supervised 
classification techniques. Studies performed by Rumpf and Delalieux concentrated on classifying 
diseased plants, but the discriminating methods used can be applied to any problem that needs 
to separate classes, like flowering and non-flowering snap beans.  
Research by Rumpf and Delalieux made extensive use of ground-based spectroradiometers for 
spectral data collection. Until recently, airborne hyperspectral platforms have been unable to 
collect hyperspectral imagery at a sufficiently fine spatial resolution to effectively classify spectra 
of diseased plants. However, with the advent of unmanned aerial systems (UAS), mounted with 
hyperspectral platforms now boast centimeter-scale ground sampling distances (GSD). This 
capability, past research efforts, and the need for optimized, variable rate fungicide applications 
have all laid the foundation for studies such as this one.  
The overall objectives of our research are to i) identify spectral signatures for the onset of 
flowering to optimally time the application of fungicide, ii) investigate spectral characteristics of 
white mold onset in snap beans, and iii) to link the location of white mold with metrics like ratio 
indices (RI), normalized difference indices (NDI), leaf area index (LAI), row and plant spacing, 
and digital elevation models to create a spatially-explicit probabilistic risk model for the 
appearance of white mold in a snap bean field. This paper will focus on applying proven 
multivariate and machine learning approaches to the first objective of this research. 

Methods  

Data Collection 
A DJI Matrice-600 UAS, with a high spatial resolution color (RGB) camera, a Headwall Photonics 
Nano imaging spectrometer (272 bands; 400 to 1000 nm), and a Velodyne VLP-16 light detection 
and ranging (LiDAR) system, was used to collect snap bean spectra during flowering onset at the 
New York State Agricultural Experiment Station, Cornell University, Geneva, NY, USA. Snap bean 
plants were planted at three different periods in the growing season, ‘early’ (June 3, 2017), ‘mid 
(June 14, 2017), and ‘late’ (June 28, 2017), which allowed for different crop development stages 
to be captured in single UAS flights. Twenty-two flights were conducted throughout the season 
on ten different days with GSDs that ranged between 1.25 to 3 cm. By July 19, 2017 the portion 
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of the field that was planted first (early plant) was 99% flowering, while the second and third (mid 
and late planting dates) were not flowering. Data from the first flight (July 19, 2017) with a GSD 
of 3 cm were used to train the snap bean flowering models. 

Data Analysis 
White and black calibration panels were placed in the field during the various flight missions. 
Spectra of the calibration panels were collected using a SVC hand-held spectrometer (334-2508 
nm; 2 nm resampled bandwidths). These panels were used to calibrate hyperspectral data from 
the UAS into reflectance using the empirical line method of calibration (ELM) (Smith 2010). 
Calibrating into reflectance is critical, since it largely removes the illumination dependence from 
the image. The ELM takes the UAS radiance spectra of the panels and calculates gain factors 
that force the radiance spectra to approximate the reference reflectance spectra, collected from 
the panels on the ground using the hand-held spectroradiometer. 

𝛽 =	
$%&'()*+	,+-./$%&01234	,+-.
56$7()*+	,28./56$01234	,28.

                                                  (1) 

where, 𝛽 is a vector that contains the gain factors for each wavelength to turn any radiance 
spectrum in the image into reflectance. Next, the gain factors were applied to the spectra of every 
pixel to convert all the radiance spectra into reflectance.   

𝑈𝐴𝑆<=>. = 	𝛽 ∗ 𝑈𝐴𝑆<@A.                                                   (2) 

Plots within the field were monitored at two to three-day intervals for crop development and 
flowering. Regions of interest (ROIs) were created for plots that contained flowering and non-
flowering plants. Spectral samples were collected from the UAS reflectance imagery on dates 
when 99% of the plants within the plot were flowering. 
The labeled spectral samples (100 flowering, 134 non-flowering) were then divided evenly into 
training and testing datasets (50 testing/ 50 training and 67 testing/ 67 training for flowering/ non-
flowering, respectively) and processed by performing a per-feature (e.g., wavelength, ratio, or 
normalized difference index) linear discriminant analysis (LDA). LDA is a statistical classification 
and dimensionality reduction method that finds a linear boundary between classes by using Bayes 
rule to fit class conditional densities. Within LDA, each class is assumed to share the same 
covariance matrix and is fitted with a Gaussian density (Randles 2012). Single spectral 
features/metrics were tested on an individual basis by the LDA model. The features that were 
used in the LDA include RI, NDI and the reflectance values at the wavelengths. RI simply imply 
the division of two reflectance values. 

𝑅𝐼 =	
<DE
<	DF

                                                                 (3) 

Normalized difference indices refer to a normalization of the spectral differences by their sum, 
similar to the popular normalized difference vegetation index (NDVI) (Delalieux et al. 2009). 

𝑁𝐷𝐼 =	
<DE/<DF
<DEI<DF

                                                           (4) 

Table 1 shows the RI and NDI features used for the LDA. The wavelengths used for RI and NDI 
calculations are similar to those listed by Delalieux et al. (2009), specifically because these 
features correlated with chlorophyll content and water stress. 
Finally, the discriminating performance of each spectral feature was evaluated via the c-index, 
which corresponds to the area under the receiver operator characteristic (ROC) curve. A c-index 
of 0.5 implies that the discrimination is random, while a c-index of 1.0 infers perfect discrimination 
between the training and testing datasets. A c-index of 0.8 or greater is an acceptable 
discriminating model (Delalieux et al., 2007).  
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Table 1. Wavelengths used to create ratio indices and normalized difference indices used as features in the per-feature 
linear discriminant analysis (Delalieux et al., 2009). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next, features with the largest c-index were combined to train and test a LDA model using least 
squares, a logistic regression, and a SVM with a radial basis function kernel (Melgani 2004). The 
model with the highest mean accuracy was applied to regions of the hyperspectral imagery that 
were flowering and non-flowering, in order to spatially visualize the model probabilities. 

Ratio Indices 

Numerator Wavelength (nm; 𝑅JE) Denominator Wavelength (nm; 𝑅JF) 

430 680 

440 690 

550 800 

605 760 

672 550 

675 700 

695 420 

695 670 

695 760 

710 760 

740 720 

750 550 

750 705 

750 710 

800 550 

800 635 

800 680 

Normalized Difference Vegetative Indices 

First Wavelength (nm; 𝑅JE) Second Wavelength (nm; 𝑅JF) 

415 435 

680 430 

750 660 

750 705 

750 445 

800 635 

800 680 
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Results and Discussion  
The per-feature LDA identified three ratio index features and two NDI features with c-indices at 
least 0.8 (Fig. 1). The wavelengths with the highest c-index values (725.8 nm, 759.2 nm, and 
721.3 nm), are within the red portion of the spectrum. 

Figure 1. c-index values, which represent  the area under the receiver operating characteristic curve, for each single 
spectral fearture that was used in the linear discrimiant analysis. Features with high c-index values have the ability to 

separate the flowering/ non-flowering classes and will be used toward reducing the data dimensionality of selected 
spectral features to train and test the linear discriminant, logistic regression, and support vector machine models in this 

study. 

The top three, 10, and 20 spectral features, i.e., those with the highest c-index values, were used 
to train and test three different models. The LDA model approach had the highest mean accuracy 
of 95%, with 10 spectral features. Even with three features, the LDA model was still able to 
achieve a mean accuracy of 92% (Table 2). 

The 10-feature LDA model was then applied to two ROIs, one flowering and one non-flowering, 
from the snap bean fields of interest. The flowering probability of each pixel is displayed to create 
a “heat map”, which eventually may be used for management interventions. Figure 2 below 
confirms that the probability map for the image with flowering plants shows high probability-of-
flowering where one would expect, i.e., at individual plant locations, and < 50% probabilities for 
bare soil areas. Figure 2 also shows that the model for flowering, when applied to an image with 
non-flowering plants, exhibits probabilities < 50%, with only erroneous outliers. This serves as 
visual confirmation of the efficacy of the approach, where the oversampled spectral data was 
distilled to key indicators, quantitatively evaluated flowering accuracies, and mapped these to 
potential management-ready heat maps for use in crop operations.  
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Table 2. Following the per-feature linear discriminant analysis, the top three, 10, and 20 3 c-index values were used to 
identify key spectral features with which to train and test linear discriminant, logistic regression, and support vector 

machine models (mean accuracies for the various models are shown here). 

Model 
Mean Accuracy (%)  

Three features 10 features 20 features 

Linear Discriminant 92 95 93 

Logistic Regression 67 73 86 

Support Vector 
Machine 

84 85 80 

 

Figure 2. Two-dimensional spatial probability maps from the trained support vector machine model; red pixels indicate a 
higher probability that the pixel contains a flowering snap bean plant.  

Conclusions 
This research represents a first step toward developing extensive white mold risk models based 
on UAS sensing of both spectral and structural features. The first step involved an evaluation of 
spectral metrics, from ratio and NDI metrics to individual reflectance wavelengths, to detect 
flowering. This detection is critical to ensure appropriate timing of fungicides to protect flowers 
from ascosporic infection. The single feature LDA approach was able to identify key spectral 
metrics for flowering detection, e.g., with key wavelengths located in the red portion of the 
reflectance spectrum. The LDA model with least squares returned a classification accuracy of 
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92%, 95%, and 93% for three, 10, and 20 spectral features, respectively. This high classification 
accuracy for even three features has exciting implications for the commercial deployment for UAS 
in precision agriculture and for disease management. Instead of utilizing large UAS with heavy 
payloads and expensive imaging spectrometers, it may be possible to use silicon range detectors 
with bandpass filters to obtain the necessary data for flowering detection. This would enable more 
operational (smaller and cheaper) UAS solutions for crop management. Future work on this 
project will include investigating spectral features that will aid in the prediction of flowering onset, 
i.e., a temporal analysis approach. 

Acknowledgements 
We would like to thank Mr. Tim Bauch for his assistance with UAS data collection and processing, 
as well as Ms. Nina Raqueno for her help with data pre-processing. This research is supported 
USDA-NIFA Critical Agriculture in Research and Extension Award Number 2017-68008-26207. 

References 
Delalieux S., Somers B., Verstraeten W. W., Aardt J. van, Keulemans W., and Coppin P. (2009). Hyperspectral indices to 

diagnose leaf biotic stress of apple plants, considering leaf phenology. International Journal of Remote Sensing. 
Delalieux S., Aardt J. van, Keulemans W., Schrevens E., and Coppin P. (2007). Detection of biotic stress (venturia 

inaequalis) in apple trees using hyperspectral data: Non-parametric statistical approaches and physiological 
implications. European Journal of Agronomy. 

Lehner, M., Kikkert, J. R., Gugino, B., and Pethybridge, S. J. (2017). Fungicide sensitivity and efficacy of boscalid, 
fluazinam and thiophanate-methyl for white mold control in snap bean.  Plant Disease 101:1253-1258. 

Melgani F., Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines. (2004) 
IEEE Transactions on Geoscience and Remote Sensing. 

Randles R., Broffitt J., Ramberg J., Hogg R. (2012). Generalized Linear and Quadratic Discriminant Functions Using 
Robust Estimates, Journal of the American Statistical Association, 73:363, 564-
568,DOI: 10.1080/01621459.1978.10480055 

Rumpf T., Mahlein A., Steiner U., Oerke E., Dehne H., and Plmera L. (2010). Early detection and classification of plant 
diseases with support vector machines based on hyperspectral reflectance. Computers and Electronics in Agriculture. 

Smith G., Milton E. (2010) The use of the empirical line method to calibrate remotely sensed data to 
reflectance, International Journal of Remote Sensing, 20:13, 2653-2662, DOI: 10.1080/014311699211994 

USDA National Agricultural Statistics Service. (2012). Census of Agriculture. U.S. Dep. Agric. Nat. Agric. Stat. Serv. 
Online. 

USDA National Agricultural Statistics Service. (2014). The 2014-2015 New York Annual Bulletin, U.S. Dep. Agric. Nat. 
Agric. Stat. Serv. Online. 

USDA National Agricultural Statistics Service. (2015). National Statistics for Beans, U.S. Dep. Agric. Nat. Agric. Stat. 
Serv. Online. 

 


