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Abstract. The ultimate goal of Precision Agriculture is to improve decision making in the business 
of farming. Many broadacre farmers now have a number of years of crop yield data for their fields 
which are often augmented with additional spatial data, such as apparent soil electrical 
conductivity (ECa), soil gamma radiometrics, terrain attributes and soil sample information. In 
addition there are now freely available public datasets, such as rainfall, digital soil maps and 
archives of satellite remote sensing which can be used to interpret the crop-growing environment. 
However, rather than analysing one field at a time as is typical in precision agriculture research, 
there is an opportunity to explore the value of combining all this data for multiple fields/farms and 
years into one dataset. Using these datasets in conjunction with machine learning approaches 
offers the possibility of building predictive models of crop yield. In this study, several large farms 
in Western Australia were used as a case study, and yield monitor data from wheat, barley and 
canola crops from three sequential that covered approximately 11,000 to 17,000 hectares in each 
year were used. The yield data was processed to a 10 m grid, and a space-time cube of predictor 
variables was built at this scalle. This consisted of grower-collected data such as ECa and gamma 
radiometrics surveys, and the freely-available public data. The data was aggregated to a 100 m 
spatial resolution for modelling yield. Random Forest models were used to predict crop yield of 
wheat, barley and canola using this dataset. Three separate models were created based on pre-
sowing, mid-season and late-season conditions to explore the changes in the predictive ability of 
the model as more within-season information became available. These time points also coincide 
with points in the season when a management decision is made, such as the application of 
fertiliser. The models were evaluated with cross-validation using both fields and years for data 
splitting, and this was assessed at the field spatial resolution. Cross-validated results showed the 
models predicted yield accurately, with a root mean square error (RMSE) of 0.36 to 0.42 t ha-1, 
and a Lin’s concordance correlation coefficient (LCCC) of 0.89 to 0.92 at the field resolution. The 
models performed better as the season progressed, largely because more information about 
within-season data became available (e.g. rainfall, remote sensing). The yield forecasts were 
used to formulate basic nitrogen application scenarios. The more years of yield data that were 
available for a field, the better the predictions were, and future work should use a longer time-
series of yield data. The generic nature of this method makes it possible to apply to other 
agricultural systems where yield monitor data is available. 
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Introduction 
The ability to forecast final crop yields before, and during a growing season is invaluable in guiding 
management decisions, such as the application of fertiliser or irrigation. The spatial resolution of 
these yield predictions is a crucial component, as this allows management to be tailored to 
different fields within a farm, or at the sub-field level. Traditionally, farmers haphazardly estimated 
their ‘yield goals’, which was generally based upon previous experience and seasonal conditions, 
and then used this as a guide to alter management (Dahnke et al. 1988; Raun et al. 2001). Given 
that yield is controlled by the interaction between management, pests, soil and weather, this yield 
goal should vary from season to season, but also vary from location to location.   
 
More systematic, quantitative approaches to predicting crop yield typically consist of using 
mechanistic/simulation models, such as APSIM (Agricultural Production Systems sIMulator) 
(Keating et al. 2003) or DSSAT (Decision Support System for Agrotechnology Transfer) (Jones 
et al. 2003). These mechanistic models are useful, but there are several limitations. In these 
approaches, many underlying assumptions are made, a large selection of inputs is required, and 
the model is often not well-suited to the study area of interest. An alternative approach is to 
forecast yield using empirical, data-driven approaches. This has typically involved using crop 
reflectance data from remote or proximal sensing platforms during the growing season to make a 
prediction of final crop yield (e.g. Raun et al. 2001; Boydell and McBratney 2002). Many of these 
empirical approaches have traditionally ignored other climatic and geo-physical variables, 
however, more recent research has included a larger suite of data sources with this remotely and 
proximally sensed data (e.g. Balaghi et al. 2008; Walsh et al. 2013). Including these additional 
data sources can be invaluable, and the wealth of agricultural and environmental data available 
today is an exciting and promising opportunity to further improve yield forecasting through 
empirical approaches. 
 
In broadacre agricultural systems, such as Australia, Canada and the United States of America, 
farmers typically have an abundance of spatial agricultural data. This often includes a time-series 
of crop yield monitor data, which is frequently augmented with auxiliary spatio-temporal data, such 
as soil test results, and apparent electrical conductivity (ECa). This data is highly valuable, but is 
often underutilised due to various limitations, such as being in different formats, located in a 
variety of repositories, and consisting of different spatial and temporal resolutions. There is often 
disconnect between these different data sources, and they are rarely combined. Furthermore, 
publicly-available spatial and temporal environmental data is becoming more available at finer 
spatial and temporal resolutions, and at declining costs. The nature of these publicly-available 
datasets is diverse, and includes remotely sensed imagery, geophysical data, and climate data.  
 
In theory, every agricultural crop is an experiment, where the yield is a function of the interaction 
between a suite of variables that vary in space and time. This abundance of data collected on-
farm and publicly-available data describe the conditions under which crops are grown. Machine 
learning techniques are well-equipped to deal with large datasets with many variables, and they 
provide the opportunity to create predictive models of crop yield using this mass of data. 
Traditional agronomy and precision agriculture (PA) was typically concerned with examining 
single fields in isolation, but there is now the opportunity to explore the value of combining this 
data over multiple fields and years into one dataset and model. An approach such as this utilises 
historical information from neighbouring fields to guide yield forecasts, and has the potential to 
stimulate a paradigm shift in precision agriculture.  
 
Rather than focusing on single fields in isolation, in this study we collate large amounts of spatial 
and temporal on-farm data and publicly-available data sources in the southern agricultural region 
of Western Australia (WA). These datasets are then combined with Random Forest models to 
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create predictive yield models of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and 
canola (Brassica napus L.) at three time points in the growing season. This study had a particular 
focus on the forecasting ability of the models based on pre-, mid-, and late-season information 
from predictor variables.   

2. Methods 

2.1. Study area and period 
The study was conducted on three large aggregations (A, B and C) of several farms owned by a 
single corporation (Lawson Grains) that are located in the southern agricultural region of Western 
Australia (Fig. 1). The soils of the area are typically sandy with notable amounts of gravel. Dryland 
winter cropping is the sole enterprise in the study regions, with wheat, barley and canola being 
grown. The study area is characterised by a Mediterranean climate, with cool, wet winters, and 
hot, dry summers and average annual rainfall of the aggregations ranges from 420 to 533 mm. 
This study uses data from the 2013, 2014 and 2015 growing seasons. During this period, total 
annual rainfall values ranged from 389.0 mm to 687.4 mm for the different aggregations (BOM 
2017a; BOM 2017b).   

 
Fig. 1 – Location of the study area within Australia 

 

2.2. Yield forecasting approach 
2.2.1. Datasets (space-time cube) and processing 
A variety of spatial and temporal data collected on-farm, and publicly-available environmental and 
agricultural data for the whole study area was collated into a space-time cube (STC). The data 
was of varying spatial and temporal resolutions, and consisted of yield monitor data, soil 
information, ECa and gamma radiometrics surveys (collected on-farm), and remotely sensed 
information and climate data (publicly-available). Yield from wheat, barley and canola crops from 
three different seasons that covered 10,587, 16,001 and 16,755 ha in 2013, 2014, and 2015, 
respectively, were used (Table 1). The amounts of yield monitor data for each crop varied by each 
season and aggregation, with the most yield data for wheat, followed by barley, and then canola 
(Table 1). A STC, for the purpose of this study, can essentially be described as a large dataset 
where each row in the dataset possesses; spatial coordinates (latitude and longitude), year 
(season), yield, crop type, and a large suite of associated covariates that relate to yield (predictor 
variables). Each row represents a spatial entity for a particular time point. Some spatial locations 
in the dataset possessed multiple years of yield data, while others only had one. Despite the 
varying spatial resolutions of the variables, they were all resampled to a common 10 m grid without 
changing their native spatial resolution (Table 2).  
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Table 1 – Number of hectares (ha) of yield monitor data for each crop type and season within each aggregation  
 

Aggregation 
 

Crop 
Season  

Total (ha) 2013 2014 2015 

 
A 

Wheat 1,508 5,296 2,868 9,672 

Barley 1,551 1,398 3,979 6,928 

Canola 0 0 0 0 

 
B 

Wheat 1,934 1,723 2,326 5,983 

Barley 1,177 969 986 3,132 

Canola 1,050 2,169 2,219 5,438 

 
C 

Wheat 809 1,976 1,886 4,671 

Barley 949 1,570 2,491 5,010 

Canola 1,609 900 0 2,509 

Total 10,587 16,001 16,755 43,343 

 
 

Table 2 – Data sources used in the space-time cube to create the predictive yield models   
 
Data type 

 
Data description 

 
Resolution 

 
Data source 
 
 

Response 
 
Stationary 
variables 

Yield 
 

Yield monitor data 10 m  On-farm 

 
 
Stationary 
variables 

Soil ECa (from 
dual EM) 

Shallow (0.5 m)  10 m On-farm 

Deep (1.5 m) 10 m On-farm 

Gamma 
radiometrics 

Potassium (K) 
 

10 m On-farm 

Uranium (U) 10 m On-farm 

Thorium (Th) 10 m On-farm 

Total count (K, U, Th) 10 m  On-farm 

Soil maps  
 

Clay content (%) 10 m On-farm & Project-created 

Sand content (%)  10 m On-farm & Project-created 

 
 
Within-season 
variables 

MODIS - EVI July (middle) 250 m  Global (NASA LPDAAC) 

September (middle) 250 m  Global (NASA LPDAAC) 

Total received 
rainfall 
 

Jan 1st to Mar 31st  ~5,000 m  National (BOM) 

Apr 1st to Jun 30th  ~5,000 m  National (BOM) 

Jul 1st to Aug 31st  ~5,000 m  National (BOM) 

Forecasted 
rainfall 

Apr 1st to Jun 30th Regional  National (BOM) 

Jul 1st to Aug 31st Regional National (BOM) 

Sep 1st to Dec 31st Regional  National (BOM) 

   
Before the response and predictor variables were collated into a STC, the varying data sources 
were processed and feature extraction was performed. Feature extraction and processing of 
variables is a crucial task, as this transforms the initial set of raw data into useful, usable, and 
informative data. The yield monitor data at 10 m resolution was corrected and standardised using 
field-average yields measured after harvest at the silo, as it is known that different yield monitors 
vary in their measurement accuracy. The whole of the study area had been surveyed with EM 
and gamma radiometric surveys to 10 m resolution by a single consulting company when the soil 
profile was dry in summer, ensuring some consistency. An abundance of soil test results were 
available for the study area, but as this data was in point-form, it was difficult to utilise directly. To 
transform this soil information into an easily-usable spatial layer, sand and clay content maps 
were created for the whole study area using Random Forest models and the ECa and gamma 
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radiometric survey data as covariates. MODIS 16-day Enhanced Vegetation Index (EVI, 
MOD13Q1) composites at 250 m resolution were acquired from the NASA Land Processes 
Distributed Active Archive Centre (LPDAAC) portal for the whole study area 
(https://lpdaac.usgs.gov/, last accessed 21 November 2017). Unlike the Normalised Difference 
Vegetation Index (NDVI), EVI does not saturate at high canopy density (Huete et al. 2002), as 
such it is better suited as a surrogate of vegetation vigour in high input cropping systems. We 
selected composites closest to mid-July and mid-September to reflect vegetation conditions at 
mid- and late growing season. Published research has found that remotely sensed images closest 
to the middle of September are the most accurate for final yield predictions of winter wheat in the 
Southern Hemisphere, as this is when flowering and grain-filling occurs (Lyle et al. 2013). Total 
daily rainfall (mm) maps for the study area were obtained from the Bureau of Meteorology (BOM), 
and this was then aggregated from Jan 1st–Mar 31st, Apr1st–June 30th, and Jul 1st–Aug 31st 
inclusive, and used as predictor variables in the models (BOM 2017c). In addition, the forecasted 
rainfall from BOM was used as an input, which is the probability of exceeding the median rainfall 
for the ensuing three months (BOM 2017d). The dates for EVI, aggregation of rainfall, and the 
seasonal forecasts were chosen to coincide with different important points in the winter cropping 
season, e.g. sowing (April), mid-season N-fertiliser top-dressing allocation (July), and anthesis 
(September).    
2.2.2. Predictive yield modelling  
Random Forests (Breiman 2001) were used in conjunction with this STC to create predictive 
models of crop yield. Rather than creating individual models for wheat, barley and canola, one 
model was created and crop type was included as a predictor variable. Three models were 
created based on pre-sowing (April), mid-season (July), and late-season (September) conditions 
to explore the changes in the predictive ability of the model as more within-season information 
became available. The models were built at a 100 m resolution, and predicted at the same 100 m 
resolution. This was then aggregated up to the field resolution, and the prediction quality was then 
assessed at the field spatial resolution.  
 
The quality of the model predictions were assessed using cross-validation techniques. The first 
(1) cross-validation method involved creating a model with all seasons of yield data for all fields 
in the study area, but without all seasons of yield data for a particular field, and then using that 
model to predict the yield for that field for the missing years. This is identified as leave-one-field-
out cross-validation (LOFOCV). The second (2) cross-validation method was similar, and involved 
creating a model with all seasons of yield data for all fields in the study area, but removing only 
one year of yield data for a particular field (prior/other yield data retained in the model), and this 
model was then used to predict the yield for that field in the missing year. This is identified as 
leave-one-field-year-out cross-validation (LOFYOCV). In both instances, this was repeated for all 
fields and years, and the average statistics were calculated. It should also be noted that Random 
Forest models were re-fitted for each data splitting iteration. The aim of performing these different 
cross-validation techniques was to determine the prediction quality for predicting at a new field 
with no prior data, as opposed to the predicting at a field with prior yield information included in 
the model. The root mean square error (RMSE) and Lin’s concordance correlation coefficient 
(LCCC) was used as an assessment of model quality. The LCCC is the fit of the observed and 
predicted values to the 1:1 line, and is unit-less, making it useful for comparing between models 
where the magnitude of the predictions may vary (Lin 1989).   

3. Results 

3.1. Yield modelling predictions   
Predictions at the field resolution had a LCCC ranging from 0.19 to 0.27 for the LOFOCV 
technique, and ranging from 0.89 to 0.92 for the LOFYOCV technique (Table 3). As the season 
progressed, the models performed slightly better, with the September models possessing the 
lowest RMSE, and the highest LCCC (Table 3). The significantly improved predictions of the 
LOFYOCV technique show the important benefit of including prior yield information for a particular 
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field. As an example, cross-validated predictions for the July model improved from an LCCC of 
0.20 when no prior yield information was included for a particular field, to 0.91 when prior yield 
information for the field being predicted was included (Table 3; Fig. 2).  
 

Table 3 – Quality of crop yield predictions at the field resolution with the LOFOCV and LOFYOCV approaches 
 
Cross-validation type 

April (pre-season)  July (mid-season)  September (late-season) 

RMSE (t ha-1) LCCC  RMSE (t ha-1) LCCC  RMSE (t ha-1) LCCC 

LOFOCV 0.64 0.19  0.63 0.20  0.62 0.27 
LOFYOCV 0.42 0.89  0.39 0.91  0.36 0.92 

 

 
Fig. 2 – Observed and predicted yield for the July (mid-season) model for all fields and years using the LOFYOCV 

approach at the field resolution (* the scale was altered to range from 0 to 100 for privacy reasons)  
 
The value of including prior yield information for a paddock is also supported by Fig. 3, which 
shows that as more seasons of prior data were available for an individual field, the predictions 
substantially improved. This figure was created by using cross-validation, where all data available 
was used to create a model and this was then used to predict yield for a particular field in a 
particular year (with that field and year removed from the model). For fields that contained only 
one year of data (a) (no years of prior yield data in the model), the LCCC was 0.46, and this 
improved to 0.89 for fields with two years of yield data (b) (one year of prior yield data in the 
model), and 0.94 for fields with three years of yield data (c) (two years of prior yield data in the 
model) (Fig. 3).  

 
Fig. 3 – Cross validated observed and predicted yield for fields that had a) zero, b) one, and c) two years of prior yield data 

in the model (* the scale was altered to range from 0 to 100 for privacy reasons)  
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3.2. Predictor variables and importance  
The importance of different predictor variables in the model was tested using the mean decrease 
in accuracy. The larger the mean decrease in accuracy for a predictor variable, the more important 
that variable is deemed. Using the July model as an example, crop type was the most important 
predictor variable (Fig. 4), and this is expected due to the inherent differences in typical yield and 
yield potential between wheat, barley, and canola. Within-season variables proved to be vital in 
the models, with received rainfall, forecasted rainfall, and within-season EVI images amongst the 
most important covariates. The soil maps and geo-physical data (EM and gamma radiometrics) 
were less important predictors (Fig. 4).   

 
Fig. 4 – Predictor variable importance from the July (mid-season) yield model  

 

4. Discussion 

4.1. Model testing and cross-validation approach 
Overall, our approach to predict wheat, barley and canola yield showed promising results. An 
obvious down-fall of both cross-validation approaches used is that information from other fields 
for the same year is included in the model. Removing all yield data from the same season was 
restrictive (a leave-one-year-out cross-validation approach), as only three seasons of yield 
monitor data were available. Furthermore, the expanse of crops grown in each season varied 
considerably within the different aggregations. For example, we only have canola yield data for 
the B aggregation in the 2015 season. Despite this limitation, the contrasting results from the 
different cross-validation techniques suggest that the accurate predictions from our models are 
not due to the inclusion of yield data from other fields for the prediction year. In the LOFYOCV 
approach the predictions were very accurate (LCCC of 0.89 to 0.92), however, in the LOFOCV 
approach the predictions were very poor (LCCC of 0.19 to 0.27) despite the model including data 
from other fields for the year of prediction (Table 3). While this is not completely robust, it is an 
indication that prior yield data for the prediction field is the driver for the high quality predictions 
achieved by the second cross-validation approach, rather than data from other fields from the 
same year being included in the model.  
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4.2. Dataset size and resolution (spatial and temporal) 
It was clear that including prior yield data for a field resulted in more highly accurate yield 
predictions, and this is logical, as the model would have a better understanding of expected yield 
for that field. This is likely due to the consistency of yield patterns between seasons, for example 
high yielding areas are likely in the same location in each of the three seasons. Consequently, 
the model then simply needs to scale the yield values from year to year based on seasonal 
conditions (weather) and observations (EVI). These findings suggest that a larger time-series of 
yield monitor data, such as 10 or 15 years would greatly improve the prediction accuracy of yield. 
While there was some climatic variability between the 2013, 2014 and 2015 growing seasons that 
were used to develop our yield modelling approach, a greater time series would allow the diversity 
of growing conditions to be better represented in the model, as climatic variables fluctuate 
significantly from season to season. This would also permit whole-years to be removed from the 
training model during cross-validation, which would give a more accurate depiction of actual 
model performance for yield forecasting. 
 
The impact of the spatial extent of the dataset on prediction quality needs to be further explored. 
In this study we have predicted crop yield for a collection of large farms that covers a large area, 
but future work should focus on whether this approach can be used on smaller spatial domains  
– e.g. for a single farm. It may be ideal to have one model for a region, or it may be better for 
individual farms to have a specific model, and this ideal area that the model covers should be 
evaluated. For example, it would be interesting to explore whether 10 years of yield data for a 
2,000 ha farm results in better predictions than three years of yield data for a 15,000 ha area.  
 
The models in this study were built at 100 m resolution, predicted at 100 m, and then aggregated 
to the field resolution, but there are opportunities to refine this. The finest spatial resolution of the 
variables used were 10 m (yield, EM and radiometrics), and it would be possible to build the STC 
at this resolution, however, 100 m was chosen to make the cross-validation manageable on a 
desktop computer. While yield predictions at the field resolution are valuable, predictions at finer 
resolutions within-fields, such as 10 m or management units/zones would be much more useful 
to guide management decisions and implement spatial precision agriculture (Bishop and Lark 
2007; Taylor et al. 2007; Bishop et al. 2015), such as the variable rate application of fertiliser. This 
will be the subject of future work.       
 

4.3. Predictor variables and feature extraction 
As the season progressed the model predictions slightly improved and this is likely due to an 
increased amount of within-season predictor variables being used in these models. The variable 
importance plot showed that within-season variables were very important predictors in the 
models, and integrating more of these within-season data sources should be considered in further 
research. The remotely-sensed EVI images used in this study were sourced from MODIS and are 
at a 250 m spatial resolution, however, there are opportunities to include finer spatial data, such 
as Landsat at 30 m resolution as this would give more detailed information (Lewis et al. 2017). 
Both received rainfall and forecasted rainfall were highly important variables in the models, and 
the inclusion of other climatic data variables, such as temperature could also improve the model 
predictions. The degree-days (cumulative of the average temperature in a day) are a useful way 
of measuring the physiological development of a crop, and this can also provide useful insight 
into the expected final crop yield (McMaster and Wilhelm 1997). The management choices and 
practices growers implement have a strong impact on final crop yields, and this type of information 
should be included in the modelling approach in the future. This could include variables such as 
the crop variety, sowing seeding rate, or amount of applied fertiliser.  
 
Furthermore, additional research should consider the quality of the models under data-poor 
scenarios, such as when only freely-available datasets are available, and data-rich scenarios, 
such as when there is an abundance of data collected on-farm available, as was the case here. 
This could identify the value proposition for growers when deciding on the type of data to collect, 
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as well as the optimal spatial and temporal resolution. For example, this could identify whether 
growers should invest in surveying their property with EM and gamma radiometrics.  

4.4. Potential for using yield forecasts for management interventions 
Predictive models of the upcoming season’s crop yield are extremely useful, particularly when the 
predictions are at fine spatial resolutions and of high accuracy. There is a wealth of potential uses 
of the models presented in this study, and this information could be used to identify yield gaps, 
decide on futures contracts and market speculation, and to inform decisions on precision 
agricultural management practices. In particular, the incorporation of management inputs with 
these models is a promising avenue for future research, for example variable rate application of 
fertiliser, gypsum, lime, seeding rates, or variety selection.  

5. Conclusion and future directions 
In this study, a data-driven approach to predicting wheat, barley, and canola crop yield as an 
alternative to approaches that use mechanistic models was presented. The results from this 
approach are promising, and the generic nature makes it possible to apply it to many other 
agricultural systems where yield data is available. Particular benefit was found from including prior 
yield information for fields, and future work should explore the change in model quality predictions 
with a larger time-series of yield data (e.g. 10 years). Furthermore, the optimal spatial domain 
covered for this modelling approach should be investigated, for example; are better predictions 
obtained if data is pooled among farmers within a similar region (as we have done here), or is it 
better to have a single model for each individual farm? Future work should also explore integration 
of more data sources and improved feature extraction, particularly within-season measurements 
into the model, such as temperature and remotely-sensed information at a finer spatial resolution. 
Future research should consider forecasting yield at finer spatial resolutions within-fields, such as 
a 30 m grid or management zones, as this would be more valuable in informing management 
decisions, such as the application of variable-rate fertiliser. 
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