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Abstract. In both the academic and popular literatures on precision agriculture technology, a 
management zone is generally defined as an area in a field within which the optimal input 
application strategy is spatially uniform.  The characteristics commonly chosen to delineate 
management zones, both in the literature and in commercial practice, are yield and variables 
associated with yield.  But microeconomic theory makes clear that economically optimal input 
application strategies do not necessarily depend on yield levels; rather, they depend on the 
responses of yields to inputs. Therefore using “yield zones” to determine “management zones” 
is likely to be a suboptimal strategy, and these zones should instead be delineated using 
characteristics that affect the yields’ response to inputs. Specifically, a management zone 
should be an area of the field with the same marginal product function with respect to the input 
being managed.  
 This paper reports research that uses data from a 2017 full-field randomized agronomic 
trial to assess the impact on economic profits of these the yield-based and economic-theory-
based approaches to nitrogen management zone delineation. The response of yield to many 
different factors, including managed inputs and soil and field characteristics (e.g., 
electroconductivity and slope), is known as a yield function, and the marginal product of nitrogen 
is the derivative of this function with respect to nitrogen. Estimation of the yield function for this 
field used a quadratic form, and considered both a full set of covariates containing results of a 
soil test and a subset of the covariates with only electroconductivity and topography variables. 
Results indicate a spatial error model is appropriate as shown by a significant nonzero Moran’s I 
on the error terms from the OLS estimation. Additionally, results indicate there is information 
contained in the soil tests that impacts yield estimation but the value is not estimated in this 
preliminary work. 
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 The results of this research inform both future literature and commercial activity in 
precision agriculture. With the establishment of theoretically consistent new methods for 
delineating management zones, management advice may improve, and the value of data 
collection such as soil sampling and electroconductivity measurement can be increased.  
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Introduction  
 
In both the academic and popular literatures on precision agriculture technology, a 
management zone is generally defined as an area in a field within which the optimal input 
application strategy is spatially uniform. Despite major advances in and strong adoption 
of variable-rate technology, the delineation of management zones has remained largely 
unchanged. This research proposes and evaluates a new delineation method using 
economic principles that were previously ignored in the literature. The characteristics 
commonly chosen to delineate management zones, both in the literature and in 
commercial practice, are yield and variables associated with yield. These variables were 
selected because previous literature assumed an input should be applied more 
intensively on higher yielding parts of a field; however, it can be shown that yield potential 
does not determine optimal input application. This research proposes a microeconomic 
theory based approach to selecting variables for nitrogen management zone delineation, 
using a spatial error model for yield estimation and Moran’s I plots for delineating 
management zones. Although nitrogen management is the focus of this research, the 
process can be applied to other agricultural inputs.  
 
 Microeconomic theory makes clear that economically optimal input application 
strategies do not necessarily depend on yield levels; rather, they depend on the 
responses of yields to inputs. The response of yield to many different factors, including 
managed inputs and soil and field characteristics (e.g., electroconductivity and slope) is 
known as a yield function, and the marginal product of nitrogen is the derivative of this 
function with respect to nitrogen. Solving the profit-maximization problem with this yield 
function, the optimal nitrogen rate for a plot is given by a function of the variables in the 
marginal product of nitrogen. The optimal nitrogen equation demonstrates that using 
“yield zones” to determine “management zones” is likely to be a suboptimal strategy, and 
these zones should instead be delineated using characteristics that affect the yields’ 
response to inputs. Specifically, a management zone should be an area of the field with 
the same marginal product function with respect to the input being managed.  
 
 Note that typical profit-maximization does not consider the cost of data collection 
which does not appear in the production function but, depending on the type, can be quite 
expensive. For instance, deep soil sampling to measure organic matter and nitrogen in 
the soil is labor intensive making the cost higher than many other data. To inform the 
choice to collect soil characteristics, the value of these data should be evaluated in terms 
of the profit gained from their collection. Thus, the yield function and the coefficient on the 
interaction between the input and the field characteristic of interest are needed to 
determine the potential profits gained from data collection. 
 
 This research contributes to a large literature on management zone delineation for 
variable rate application of inputs. Early work used organic matter, phosphorous, and in-
soil nitrogen collected in grid sampling or soil maps to produce zones (Carr et al. 1991, 
Ferguson et al. 1996, Mausbach et al. 1993). Due to the cost of soil sampling, this 
research also tried to determine the optimal density of sampling for accurate management 
zones while minimizing costs, and Ferguson et al. found even low density soil maps 



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada 

4 

produced higher profits than a single-rate application (1996.) Conversely, homogenous 
Midwest fields may not benefit from variable rate application of inputs as noted by Bullock 
et al. 1998. 
 
 As a lower cost alternative to soil sampling, yield maps were also considered for 
the delineation of management zones. Because weather causes yield to vary from year 
to year, multiple years of yield maps are recommended for any management zone 
delineation (Ferguson et al. 1996, Horbe etal. 2013, King 2005). The maps are used to 
identify consistently low or high yield areas of the field, as well as, parts of the field with 
inconsistent yields. Management zones created using yield maps have shown increased 
profits, as seen in a 2013 study on seed rate (Horbe et al. 2013). Rather than for defining 
management zones, another piece research identifies yield maps as a way to assess field 
variability and, thus, suitability for variable rate application (King 2005).  
 
 Another variable used in the delineation of management zones is 
electroconductivity (EC) which measures the ability of soil to conduct electrical current. 
The use of EC in zoning does not require multiple years of data, but past research has 
shown both positive and negative relationships between the variable and yield due to the 
underlying soil characteristics that EC values represent (Kitchen et al. 2001, Kravchenko 
et al. 2002). For example, EC has been shown to be correlated with water, salt, silt, clay, 
and sand content, drainage, and organic matter in the soil which are all variables affecting 
the productivity of nitrogen application (King 2005; Kweon et al. 2013). Kravenchenko et 
al. 2003 found that EC had a negative effect on yield when there was high March 
precipitation; this result is consistent with high EC values in Illinois being associated with 
high levels of clay, water content, and poor drainage. Soil type can also explain the 
relationship between EC and yield because soils contain different types of salts with 
different relationships to crop yield (King 2005). Thus, current research generally includes 
EC along with several other variables, such as elevation, slope, and soil type, when 
defining management zones (King 2005, Kweon et al. 2012, Velandia et al. 2008).  
 
 Recent research uses three steps: identifying variables associated with yield, 
choosing the number of zones, and then using cluster analysis to define management 
zones. Each step of this process can be accomplished through multiple methods. 
Principal component analysis is the most common way to choose the relevant variables 
(Gustaferro et al. 2010, King 2005, Peralta et al. 2013, Tagarkis et al. 2013, Yan et al. 
2007). Normalized classification entropy has been the dominant way to determine the 
optimal number of management zones through balancing the variation within a zone and 
the variation across zones, but alternative methods have been proposed by Zhang et al. 
in 2010 and Vendrusculo and Kaleita in 2011. Similarly, fuzzy c-means clustering has 
been the most common way to delineate management zones with the chosen numbers 
of zones and characteristics variables, but Velandia et al. proposed a new method to 
account for spatial correlation in 2008. By using Moran’s I scatter plots, these zones 
account for the spatial structure of the field or soil characteristics. There are three resulting 
zones for any variable, high-high, low-low, and mixed. The high-high and low-low zones 
are comprised of the plots with similar neighbors while the mixed zones are plots with 
dissimilar neighbors.  
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 Another limitation of the past literature is the lack of zone prescriptions and 
economic analysis; many of the studies mentioned establish management zones without 
determining the input rates for each zone or evaluating the profitability of the zones 
compared to the optimal uniform input rate for a field. Rather, these studies tend to 
measure the validity of a management zone based on the variation of the characteristic 
within and across zones. This research will estimate a quadratic yield function using a 
spatial error model. Soil and field characteristics will be chosen from the nitrogen 
interaction terms in the yield estimation, and the zones will be defined with the Moran’s I 
cluster analysis proposed by Velandia et al. in 2008. To compare the management zones 
to a uniform rate, I will simulate the yields from both approaches using the APSIM model 
which incorporates many models of the growing process into a predictive algorithm 
(Keating, B. A., P.S Carberry, G.L Hammer et al. 2003). Although microeconomic theory 
suggests the proposed management zones will result in higher profits, this difference may 
not be statistically significant.  
 
 The results of this research inform both future literature and commercial activity 
in precision agriculture. Currently producers have machinery that enables them to apply 
variable rate inputs, and they collect data about the field to establish those rates. 
Further, the methods used to collect soil characteristics are labor intensive, resulting in 
high costs for producers and collection of this data every few years rather than annually. 
With data containing both EC and soil properties from a soil test, this research also 
shows the value in terms of economic profits of collecting soil samples rather than using 
EC as a proxy for soil properties. The common methods to establish management 
zones rely on the concept of yield-limiting factors, and much of literature does not 
discuss how to determine optimal rates after zoning. With the establishment of 
theoretically consistent new methods for delineating management zones, management 
advice may improve, and the value of data collection such as soil sampling and 
electroconductivity measurement will be better understood. If traditional soil tests are 
not necessary for profitable management zone delineation, producers would benefit 
from eliminating these activities.   
 
Data 
 
 These data come from a 2017 completely randomized agronomic nitrogen and 
seed rate trial on a 113-acre farm growing corn in Central Illinois. The field data collected 
are electroconductivity, elevation, nitrogen applied, seed rate applied, and dry yield per 
acre. Elevation was transformed into slope and aspect, which are also considered in the 
estimation procedures. Additionally, the producer supplied a recent soil test containing 
the analysis of 46 samples. Soil properties included are organic matter, calcium content, 
phosphorous, cation exchange capacity (a measure of the soil’s ability to hold essential 
nutrients), potassium, and other contents not considered in this research. To estimate the 
soil characteristics in a subplot, inverse distance weighting interpolation was used on a 
114 by 150 foot grid. Equation 1 represents the interpolated value of the characteristic c 
at any point x, where 𝑤"(𝒙) is a weight assigned to sample point 𝒙" based on the distance 
between x and 𝒙".  
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The results of the interpolation for calcium and the original sampled points are shown in 
Figure 1; note that only the right side of the figure is the part of the field this study is 
analyzing.  
 

 
Figure 3. Results of Interpolation for Calcium 
 
 Experimental plot size was determined by the width of the machine’s applicators 
and the known errors of yield monitors; on this field the plots were 60 feet wide and 280 
feet long. The producer’s sprayer had two 60 feet wide sections, a 30 feet wide planter, 
and a 60 feet wide yield monitor. Thus, a width of 60 feet gives accurate application of 
inputs and retrieval of trial yield. Additionally, monitors do not respond immediately to 
large changes in yield, such as when the machine moves from a low nitrogen treatment 
to a high nitrogen treatment. For this reason, plots were designed to be long enough to 
eliminate observations on the width-end of a plot where errors in the yield monitor are 
more likely to occur while maintaining an adequate number of interior observations.  
 
 The exact length needed for accurate yield is not known and depends on the 
change in yield and the yield monitor used. The length of the 280 feet was considered the 
best length given the constraints mentioned. To clean out unreliable yield observations, 
30 feet was considered a conservative amount to eliminate from each plot. One way to 
assess this cleaning process is to compare the variability of yield before and after cleaning 
the plots. The average yield was around 230 pounds per acre in both datasets, but the 
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standard deviation reduces to 15 from 42 when the ends of plots are removed. Thus, the 
cleaning reduced the noise in the yield variable but did not alter the mean value of yield 
on the field.   
 
 Plots on the edges of the field and partial plots are also eliminated because there 
are too few observations in small plots and the driving patterns on the edge of the field 
result in unreliable data. As seen in Figure 2, there are partial plots on the bottom and top 
of the field which are eliminated from the data for analysis as this is the area where the 
machinery turns around, leading to errors in the measured yield or applied input amounts. 
There were 237 plots in this field, and after removing the 30 feet off of the ends, each plot 
was divided into 4 subplots in which the median of these data was calculated, resulting in 
948 observations. These subplots can be seen in Figure 3, where 77 partial and edge 
plots are deleted, leaving 640 subplots for analysis. The nitrogen treatments were 0, 7, 
13 and 20 gallons of nitrogen per acre, and seed rates were 27, 31, 34, and 37 thousand 
plants per acre. The rates the producer would apply without participation in the trial were 
13 gallons of 28% nitrogen and 37 thousand plants per acre. The producer applies a base 
level of nitrogen at planting of 160 pounds of nitrogen, so the applied rates here are 
additional pounds of nitrogen. The resulting treatments are 160, 180, 200, and 220 
pounds of nitrogen per acre. 
 

 
      Figure 1. Plot Design               Figure 2. Subplot Design 
 
 
Descriptive Statistics 
 
Like yield monitors, but to a lesser extent, input applicators also have a lagged response 
to changes in experimental rates, so there is reason to compare the applied amounts to 
the designed amounts. Table 1 indicates the applicator did not consistently apply the 
nitrogen rates, particularly the zero rate. While 160 of the subplots were designed to have 
zero nitrogen applied, only 97 of the plots had zero nitrogen applied. This is likely the 
result of a zero nitrogen plot designed next to a higher rate plot, where the machine does 
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not apply the correct amount immediately.  Table 2 shows that the seed applicator was 
accurate over the whole range of seed rates designed. Overall, the accuracy of the 
applicators resulted in a smaller range of nitrogen rates in the data, which limits the ability 
to predict yield at low levels of nitrogen.  
 
Table 1. Accuracy of Nitrogen Applicator 
Designed N-
Rate 

Average Applied 
N-Rate 

Standard Deviation of 
Applied N-Rate 

0 6.22 8.30 
7 10.35 3.87 

13 15.44 2.73 
20 19.18 4.03 

 
Table 2. Accuracy of Seed Applicator 
Designed S-
Rate 

Average Applied 
S-Rate 

Standard Deviation of 
Applied S-Rate 

27 27.06 0.10 
31 31.03 0.08 
34 33.99 0.08 
37 36.96 0.12 

 
 Previous research has shown that variable rate application of inputs results in 
higher profits for fields with larger variation in field and soil characteristics (Bullock et al. 
1998, Thrikwala et al. 1999). Additionally, the homogeneity of fields may also result in 
fewer management zones. In Table 3 I present the mean and standard deviation of the 
potential covariates in the yield equation; these statistics suggests there is little variation 
in elevation or slope to create management zones. However, there is variation in EC and 
several soil properties, suggesting these variables could be used to define management 
zones.  
 
Table 3. Descriptive Statistics of Yield and Covariates 
Variable Mean Standard Deviation  
yield 229.60 15.06 
slope 1.07 1.51 
elevation 627.67 3.04 
ec_shallow 29.51 7.22 
ec_deep 37.23 8.53 
om 2.41 0.07 
k 215.88 18.83 
p 69.62 8.99 
ca 2866.35 289.08 
cec 9.30 0.62 

 
 If EC can substitute the more expensive method of soil sampling for determining 
management zones, it should be correlated with the soil properties. Table 4 shows that 
ec_deep and ec_shallow are correlated with all of the properties except potassium, 
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suggesting the measure could produce profitable management zones if those soil 
properties are affecting the marginal product of nitrogen. Elevation is also correlated with 
all soil properties, including potassium; however, its lack of variation makes it an ill-suited 
variable for the delineation of management zones.  Table 5 shows the randomization of 
the seed and nitrogen rates resulted in the applied amounts being uncorrelated with the 
covariates as would be expected. 
 
Table 4. Correlation of Covariates  
 ec_s ec_d elev slope om k p ca 
ec_s 1        
ec_d 0.98*** 1       
elevat -0.04 -0.08 1      
slope 0.04 0.04 0.10** 1     
om 0.12*** 0.15*** -0.46*** -0.15*** 1    
k -0.04 0.00 -0.56*** -0.04 0.31*** 1   
p 0.09** 0.13*** -0.40*** -0.07* 0.29*** 0.62*** 1  

ca -0.12*** -0.09** -0.66*** -0.20*** 0.40*** 0.56*** 0.50*** 1 
cec -0.17*** -0.15*** -0.51*** -0.21*** 0.37*** 0.54*** 0.48*** 0.92*** 

 
 
Table 5. Correlation of Treatment Variables and Covariates 
 s n 
s 1  
n -

0.03 
1 

ec_s -
0.05 

-0.03 

ec_d -
0.05 

-0.04 

elev -
0.01 

-0.06 

slope 0.02 0.08 
om 0.05 -0.04 
k -

0.01 
0.05 

p -
0.00 

-0.03 

ca 0.04 0.01 
cec 0.07 0.02 

 
Yield Estimation and Results 
 
There is a large existing literature regarding the functional form of yield’s response to 
inputs. Popular forms include quadratic, quadratic plateau, linear plateau, von Leibig, and 
the Misterlich-Baule form. The last three are nonlinear forms that allow for 
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nonsubstitutability between inputs, which is consistent with Leibig’s Law of the Minimum 
(Llewelyn and Featherstone 1996). The Law of the Minimum says that maximum yield is 
related to the most limiting growing factor; thus, additional units of any other input will not 
increase yield. Studies comparing functional forms have found the quadratic form 
overestimates the maximum yield, resulting in higher optimal nitrogen rates (Llewelyn and 
Featherstone 1996). In the future, estimation will use a quadratic plateau with spatial 
errors. For the purposes of this paper, the quadratic form, despite this bias, will be used. 
The resulting optimal nitrogen rates will be biased for both delineation techniques, but the 
comparison should still be valid.  
 
 The functional forms above treat nitrogen as a continuous variable, but the 
designed trials can lead to categorical rather than continuous input variables. The nature 
of these variables is why the crop science literature often uses analysis of variance for 
analyzing the results of trials, but those trials use manual application of inputs ensuring 
accurate rates. As Tables 1 and 2 demonstrate, using the precision technology does not 
result in the same accuracy. Based on the results of those tables and the plots in Figures 
4 and 5, seed should be treated as a categorical variable in the yield estimation while 
nitrogen can be considered continuous.  
 

 
Figure 4. Plot of Seed Against Dry Yield to Demonstrate Categorical Nature of Seed                            
Variable 
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Figure 5. Plot of Nitrogen Against Dry Yield to Demonstrate Continuity of Nitrogen 
Variable 
 
 An ordinary least squares (OLS) estimation of the yield function is likely to exhibit 
spatial correlation in the residuals because there are unobserved variables affecting yield 
that are spatially correlated; this violation of spherical errors in the OLS model results in 
a loss of efficiency for the OLS estimates. Three models were compared to investigate 
the spatial correlation in the yield model: OLS, a spatial lag, and a spatial error.  
 
 The neighborhood structure used in the analysis is a Queen structure as presented 
in Figure 6, where the surrounding yellow subplots are considered neighbors of subplot 
a. The alternative rook neighborhood structure was also considered for the models with 
negligible differences in the results. The first spatial model is a spatial lag estimation that 
allows for the observed dependent variable to be spatially correlated; the second is a 
spatial error estimation that allows the residuals to be spatially correlated. An example of 
when the spatial lag model is used is the estimation of flu incidence, where an individual 
is more likely to have the flu if his neighbors have the flu. As the yield of a subplot is 
unlikely to affect the yield of a neighboring plot, it is more likely that the underlying soil 
and land characteristics are responsible for spatial correlation in the observed yield. Thus, 
the spatial error model is expected to be the best procedure for eliminating the spatial 
correlation in the error term.  
 

 
  Figure 4. Queen Neighborhood Structure for Spatial Analysis 
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 Using the two specifications presented in Table 6, the OLS and spatial lag models 
had spatially correlated errors according to the Moran’s I estimate on the residuals while 
the spatial error model had an insignificant Moran’s I. Thus, the spatial error model is the 
preferred estimation procedure. Equation 3 shows the specification of this model, where 
𝑋 contains the variables in the restricted and unrestricted model and 𝜆 is the estimate of 
spatial correlation of the error term.  
 

𝑦 = 𝑿𝛽 + 𝜆𝑾𝑢 + 𝜀                     (3) 
 

 The results in Table 6 suggest there is a difference in the yield estimation when 
including the results of the soil test. When only topography and EC are available, nitrogen 
interacts with elevation which is highly correlated with the soil contents as seen in Table 
4. The negative sign on this interaction indicates higher elevation decreases the marginal 
product of nitrogen. EC only affects nitrogen linearly with EC decreasing yield. Nitrogen 
and seeding rates are significant and have the expected signs.  
 
 The full model results in Table 6 suggest calcium and EC are the characteristics 
for the delineation of management zones. Although the results are consistent with the 
restricted model in terms of the seeding rate coefficients, the nitrogen and nitrogen 
interactions are notably different in the full model. Once organic matter is added in the 
specification, nitrogen applied is insignificant, and the interaction between EC and the 
squared nitrogen term is significant while the squared nitrogen coefficient is insignificant. 
The positive sign on the nitrogen and calcium interaction terms indicates high levels of 
calcium increase the marginal product of nitrogen, a result that is consistent with the Law 
of the Minimum. The EC and nitrogen interaction suggests that increased levels of EC 
result in a faster decrease in the marginal product of nitrogen.  
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Table 6. Results for the Full and Restricted Covariates 
 Restricted Model Full Model 

Intercept 227.814*** 
(3.097) 

145.130***   
(22.864)   

n 23.790*** 
(8.974) 

-0.0513   
(0.482) 

𝑛? -0.0104*** 
(0.006) 

 

𝑠=31 6.924 *** 
(1.876) 

6.293***  
(1.797)   

𝑠 = 34 9.913***  
(1.904)   

9.6921***   
(1.822)   

𝑠 = 37 14.265***    
(1.949)   

13.790***   
(1.869)   

𝑒𝑐_𝑑 -0.386***    
(0.065) 

-0.332***   
(0.075) 

𝑛 ∗ 𝑒 -0.0366***    
(0.014) 

 

𝑜𝑚  33.563***   
(9.619)   

𝑛 ∗ 𝑐𝑎  0.0003***   
(0.0001)  

𝑛? ∗ 𝑒𝑐  -0.0004***  
(0.0002) 

𝜆 0.292 0.271 
Moran’s I on 
Residuals 0.378*** 0.230*** 

   
 Given the spatial correlation in the data, Velandia et al.’s approach to management 
zone delineation seems appropriate for this research. Thus, Figure 7 shows the Moran 
scatter plot as proposed by Anselin 1996 for EC. The slope of the line is the Moran’s I 
statistic that represents positive correlation in EC; that positive correlation can be seen in 
the plot with most points falling in the upper-left (high EC values around other high EC 
values) or lower-right corners (low EC values around low EC values) of the plot. The next 
step is to take this plot and create a map of the field with the three types of subplots (high, 
low, and mixed). With zones established, the optimal nitrogen rates will then be assigned 
and evaluated. This evaluation will compare the restricted and full model to each other as 
well as to the yield based management zones that have not been established yet.  
 
 These preliminary results suggest there is information contained in the soil test that 
can be used for management zone delineation, but the evaluation of the resulting 
management zones is necessary to determine the real benefits from collected these data. 
Additionally, the stability of the selected soil characteristics will change the amount of time 
management zones can be considered reliable from a given soil test. The final results will 
consider this aspect with discounted future benefits. 
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Figure 7. Moran’s I Scatter Plot of Soil EC for Zone Delineation 
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