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Abstract. Feeding a global population of 9.1 billion in 2050 will require food production to be 
increased by approximately 60%. In this context, plant breeders are demanding more effective 
and efficient field-based phenotyping methods to accelerate the development of more productive 
cultivars under contrasting environmental constraints. The leaf area index (LAI) is a dimensionless 
biophysical parameter of great interest to maize breeders since it is directly related to crop 
productivity. The LAI is defined as the one-sided photosynthetically active leaf area per unit 
ground area. Direct estimates of the LAI through leaf collection and subsequent leaf area 
determination in the laboratory are tedious and time-consuming. Hence, indirect methods based 
on gap fraction theory are frequently used for in situ LAI estimation. The LAI obtained from gap 
fraction analysis by most optical sensors available on the market is not the true LAI, but a term 
called the “effective LAI” that does not consider foliage clumping. Hemispherical images of the 
bottom-up view of crop canopies offer important advantages to maize breeders, such as a low 
cost compared to other commercial sensors, and it also may provide LAI estimates corrected for 
foliage clumping (i.e., true LAI). However, taking bottom-up hemispherical images in every single 
plot of a maize breeding program can take time and patience. The use of small-sized unmanned 
aerial vehicles (UAVs) in agriculture has allowed for crop information inference at spatial and 
temporal resolutions that exceed the benefits of other remote sensing technologies (e.g., airborne, 
satellites). We assessed the efficacy of using UAVs to collect hemispherical images for estimating 
the LAI. To do this, we investigated the suitability of using nadir-view hemispherical images taken 
from a UAV flying at a low altitude (15 m) to accurately derive LAI estimates based on gap fraction 
analysis in a maize breeding trial carried out near Seville, Spain. Six maize cultivars grown in a 
split-plot design with three blocks and two irrigation treatments (well-watered and water-stressed) 
were used in the experiment. LAI estimates from top-down hemispherical imaging taken from the 
UAV were compared with LAI estimates from both bottom-up hemispherical imaging and direct 
LAI estimates obtained from an allometric relationship derived in the study. The results show that 
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hemispherical images taken from a UAV flying at a low altitude can estimate the LAI of maize 
breeding plots as accurately as by the classical bottom-up hemispherical imaging approach. CAN-
EYE software, which includes automatic image classification and allows the processing of a series 
of hemispherical photographs, was used in this experiment. 
Keywords. LAI, precision agriculture, hemispherical images, maize, allometric relationship, UAV 
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1. Introduction 
In the next few decades, the world’s population will continue to grow. To produce sufficient food 
for all, food production will have to increase at least equally fast (Zipper et. al, 2016). As resources 
such as land, water and nutrients are limited, this will have to be accomplished by increasing the 
efficiency of agriculture in a sustainable way (Foley et. al, 2011). This is an unprecedented 
challenge because the increase has to be attained while dealing with major economic, 
environmental and societal constraints, such as the scarcity of arable land, droughts in some 
areas and floods in others, deforestation and carbon dioxide emissions (Foley et al., 2005; Tilman 
et al., 2011). 
Wheat, rice, and maize are the three most valuable cereal crops in the world (Lobell et al., 2013). 
Maize provides stable food in developing countries and is sometimes the sole source of income 
for farmers who mainly practice subsistence farming (Shiferaw et al., 2011). However, despite the 
potential benefits, its cultivation is limited by water supply since it is one of the cereal crops most 
susceptible to drought (Daryanto et al., 2016; Wossen et al., 2017). When the crop is subjected 
to water stress, physiological changes occur, and crop yield can be affected (Araus, 2007). A 
water deficit during grain filling substantially affects yields, although the plant response to drought 
stress depends on the cultivar and drought level (Grzesiak et al., 2013). Despite the water stress 
affecting most of the vital functions of the crop, cell turgor, cell expansion rate, cell wall synthesis 
and leaf rolling are the primary symptoms of drought (Avramova et al., 2015; Min et al., 2016). 
Leaf rolling reduces the leaf surface, causing less evaporation of water and a lower photosynthetic 
capacity (Fernandez and Castrillo, 1999; Baret et al., 2017). 
Water is the main limiting factor in crop production since drought is the most important abiotic 
stress that influences plant growth (Basu et al., 2016). Water stress during certain phenologic 
stages such as flowering and grain filling causes yield losses (Turner, 1990; Metin Sezen et al., 
2014). Although tolerance levels and crop responses to drought stress can be different depending 
on the plant species and the environmental conditions, plant breeding programs are mainly 
focused on selecting phenotypes with abiotic and biotic stress resistance and, especially, on 
identifying cultivars with high yields under water stress conditions (Wesley et al, 2002; Maazou et 
al., 2016; Prasad Vurukonda et al., 2016). 
The production of new, improved cultivars with the capacity for significant yield in water stressed 
environments requires an evaluation under field conditions of the genotypes previously selected 
in the laboratory (Sareen et al., 2012; Bita and Gerats, 2013). These field trials, in which a large 
number of cultivars are screened, are time-consuming and use crop yield as the only variable for 
selecting the best crop varieties (Makanza et al., 2018; Tanksley et al, 1989). Because maize 
production depends on a large number of factors such as morphological, anatomical and 
physiological factors, new phenotyping tools and precision methodologies have undergone fast 
development in recent years (Rahaman et al., 2015). These technological advances will allow 
breeders to identify factors that influence the behavior and production efficiency of each cultivar 
(Cobb et al., 2013). This is important to promote the retention of new cultivars with a specific 
phenotypic response to water stress and, in this way, to accelerate the plant breeding process 
(Nogué et al., 2016). 
Among the phenotypes of interest for monitoring in breeding programs, biophysical crop variables 
are considered especially important (Danner et al, 2017). These variables are parameters that 
can provide information about crop health since they are affected by physical and biological 
factors influenced by the atmosphere, and by soil and plant physical characteristics (Haboudane 
et al, 2002; Hmida et al., 2017). Biomass, the leaf area index (LAI), plant height, the fraction of 
vegetation cover (FVC) and the fraction of absorbed photosynthetically active radiation (FAPAR) 
are some of these variables of interest (Sharifi et al., 2018). 
LAI is defined as the leaf area of the canopy per unit area projected on the soil (Watson, 1947; 
Chen et al., 1992) or as the photosynthetically active leaf area per unit soil (Fuchs, 1984; Bégué, 
1993). This index is a key biophysical variable required for crop modeling and is a precise way of 
estimating the ability of the canopy to intercept incoming photosynthetically active radiation (PAR) 
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(Delegido et al., 2016; Din et al., 2017). Since carbon is fixed by the interception of radiation and 
then converted into chemical energy; the LAI can be used as a parameter indicative of the 
productivity of a crop (Favarin et al., 2002). LAI is affected by abiotic stresses such as drought 
and is a good tool for evaluating the growth and development of crops in agronomic studies of 
crop water requirements and evaluations of bio-energetic efficiency (Canfalonieri et al., 2013).  
There are many techniques for measuring the LAI (Gower et al., 1999; Küßner and Mosandl, 
2000; Hyer and Goetz, 2004; Jonckheere et al., 2004; Weiss et al., 2004;). The two most used 
LAI measurement methods are direct LAI measurement and indirect LAI estimation (Olivas et al., 
2013). Direct methods are destructive because leaf material must be completely collected (Blanco 
and Folegatti, 2003), one example of this is the Li-3100C (Li-Cor, Lincoln, NE, USA), moreover 
these methods can be time-consuming and prohibitively expensives when applied to large crop 
areas (Poblete-Echevarría et al., 2015). Alternatively, in recent years, indirect methods including 
plant canopy analyzers, hemispherical images, and ceptometers have been developed. These 
methods utilize the relationship between light transmittance through the canopy and various 
methods of gap fraction analysis, representing the majority of methods tested for agricultural 
applications (Peper and McPherson, 2003). 
The use of hemispherical photos, also known as fisheye lens images, is based on the estimated 
position, size, density and distribution of canopy gaps, which characterize the canopy geometry 
through which the intercepted solar radiation is measured (Jonckheere et al., 2004). This method 
is more robust than others that measure the gap fraction for different zenithal angles, such as the 
LAI-2200 and 2200 (Li-Cor, Lincoln, NE, USA), because they may also analyze the gap-size 
distribution (De Bei et al., 2016). 
The development of UAVs (unmanned aerial vehicles), or drone technology, has improved in the 
last few years, and the benefits of using drones in agriculture are becoming more apparent to 
farmers and researchers (Candigo et al., 2015). Drone applications in agriculture range from 
mapping and surveying to crop-dusting and spraying (Dupont et al., 2017). Taking all this into 
consideration, our working hypothesis is that UAVs may facilitate collecting hemispherical images 
for LAI estimation. We investigate the suitability of using nadir-view hemispherical imaging taken 
from a UAV flying at a low altitude to accurately derive LAI estimates based on gap fraction 
analysis in a maize breeding trial carried out near Sevilla, Spain. The specific objectives, given 
this approach, were (i) to develop an allometric relationship for non-destructive yet direct 
estimates of LAI, and (ii) to estimate and compare the LAI from bottom-up and top-down 
approaches and compare the results. 
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2. Materials and Methods 
2.1. Field description and experimental conditions 
The trial was conducted in an experimental maize field (Zea mays L.) during the 2017 growing 
cycle. The field was located 10 km from Seville (lat. 37°27'N, long. 5°58'O). The climate of the 
study area is Mediterranean with an average rainfall and average annual temperature of 565 mm 
and 18.5°C, respectively. The soil is loam, with a pH greater than 7, and the top layer of the soil 
(40 cm) contains 1.3 % total organic matter. 
Twenty maize cultivars coded with numbers from 1 to 20 were used. However, only six cultivars 
(4, 6, 8, 14, 16, and 18) were chosen for this study. Cultivars 4, 6 and 8 were drought tolerant and 
cultivars 14, 16, and 18 were drought susceptible. The experiment was arranged in a randomized 
block design with three replications per treatment. Two irrigation treatments, well-watered (WW) 
and water-stressed (WS), differing in irrigation were evaluated. The plots were irrigated by 
pressure compensating drippers. The dripper discharge was 2 l h-1 and dripper spacing was 0.5 
m. The WW treatment received an irrigation allocation of 711 mm and the WS treatment received 
353 mm until 13th July when irrigation was cut off, coinciding with grain filling. Soil moisture was 
measured at six fixed depths (10, 20, 30, 40, 60, and 100 cm) using a PR2 profile probe (PR2/6, 
Delta-T Devices Ltd., Cambridge, UK). Each experimental plot took up an area of 4.50 m2 
(6.00x0.75), which accommodated 2 maize rows with 35 plants per row (Fig. 1). 

 
Fig. 1. The experimental setup with details of a single plot and the location of the trial plots. 

2.2. Calculation of leaf area index (LAI) by the direct method 
To measure leaf area (LA), subsamples of 80 leaves were taken around the perimeter of the trial 
to avoid affecting plot conditions. Then, the leaves were stored in cooler containers and 
immediately taken to the laboratory for analyses. For each leaf, the linear dimensions, length (L) 
and maximum width (W), were measured. The areas of the leaves were measured with a leaf 
area meter (LI-COR 3100; Lincoln Inc., Nebraska). An allometric relationship to derive the leaf 
area of individual leaves from L and W measurements was developed. 
During the month of July at the same time that top-down and bottom-up hemispherical images 
were taken in all plots, five plots from the WW treatment were selected. Two representative plants 
from each plot were selected for measurement of the width and length of all their leaves with a 
flexible tape graduated in mm, these dimensions were used to calculate the leaf area of each leaf 
using the abovementioned allometric relationship. The total leaf area for each plant was 
calculated as the sum of unitary leaf areas for all plant leaves. The LAI for the five plots was 
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obtained according to the following expression: 

LAI = !"#	(&
')

!)	(&')
, where PLA is the plant leaf area and PD is the plant density. 

2.3. Photography Acquisition  

Hemispherical bottom-up images were taken in JPEG format at the highest possible resolution 
(4000x3000 pixels) with a GoPro Hero 3 black edition (Go Pro Inc., San Mateo, California, USA) 
equipped with a fisheye lens effect at ground level from the center of each plot. Up-bottom images 
were captured with a DJI Phantom 3 with an integrated 14-megapixel camera mounted on a 
motorized stabilization gimbal that allows changes to the viewing angle and dampens rotor-
induced vibrations. Images were captured at 15 m above ground level with a resolution of 
4000x3000 pixels. Cameras were not calibrated using the method recommended in 
https://www6.paca.inra.fr/can-eye/ since each was considered to have a perfect fisheye lens 
where the optical center of the ‘‘camera–fisheye lens’’ corresponds with the center of the image. 
2.4. Image processing 
2.4.1. Digital hemispherical photography (DHP) for LAI estimates 
Methods based on DHPs are becoming increasingly popular as an alternative solution to all 
current noncontact instruments for FVC and LAI measurements (Chen et al. 2006). Hemispherical 
images capture the light obstruction/penetration patterns in the canopy, from which the canopy 
architecture and foliage can be quantified (Demarez et al., 2008; Weiss et al., 2004). These 
methods transform each pixel position from images into angular coordinates and are then able to 
distinguish leaves from the background (i.e., sky or soil) to calculate gap fraction (Zhang et al., 
2005). The gap fraction of a canopy is the fraction of view that is unobstructed by the canopy in 
any particular direction and it is described by the Poisson distribution (Welles et al., 1996; 
Gardingen et al., 1999). This method assumes a random spatial distribution of leaves in the 
canopy. However, not all canopies have random distribution of leaves, producing variations 
between the true LAI and the LAI, known as effective LAI, obtained using inversion methods of 
the type employed in this work. An advantage of DHP, against other indirect methods, is that the 
overlapping effect of leaves, the so-called clumping effect (Ryu et al., 2010), may be estimated 
and true LAI approached.2.4.2. CAN-EYE software 
Leaf area estimates from images were processed using the CAN-EYE software. This software is 
an imaging software, available just for Windows, used to extract the canopy structure 
characteristics from RGB images (either acquired with a fish-eye or with a classic objective). CAN-
EYE software is able to compute the effective LAI and several estimates of the true LAI by 
adjusting a clumping index (Weiss et al., 2004) based on the Lang and Xiang (1986) averaging 
method. 
Hemispherical bottom-up images were analyzed directly using the software. However, top-down 
images were segmented with Adobe Photoshop software to select each plot from images taken 
from the UAV. One of the advantages of CAN-EYE software is that it uses a tool to mask areas 
to eliminate parts of the images contaminated by undesirable objects (dried leaves, sun glint, 
etc.), which are often present when acquiring downward-facing images. The CAN-EYE V6.4.7 
release was used for this study. 
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Fig. 2. Description of image processing. (A) Images segmentation process with Adobe Photoshop. (B) CAN-EYE 

classifications of bottom-up images and (C) CAN-EYE classifications of top-down images 

2.5. Statistical analyses 
LAI values estimated with direct and indirect methods were compared with the following error 
measures: the root mean square error (RMSE), the mean absolute error (MAE) and the Nash-
Sutcliffe efficiency (NSE), which were calculated using the following expressions: 

𝑀𝐴𝐸 = .
/
∑ |𝑂3 − 𝑆3|/
36. 			𝑅𝑀𝑆𝐸 = 8∑ (9:;<:)'=

:>?
/

    𝑁𝑆𝐸 = 1 − ∑ (9:;<:)'=
:>?
∑ (9:;9B)'C
:>?

 

The RMSE and MAE represent the average differences between the model predicted values (S) 
and the observed (O) values. However, it is a normalized statistic that determines the relative 
magnitude of the residual variance (“noise”) compared to the measured data variance (“data or 
information”). It is important to include these absolute error measures in model evaluation 
because they provide an estimate of model error in the units of the variable. The MAE provides a 
more robust measure of average model error than the RMSE since it is not influenced by extreme 
outliers (Legates and McCabe, 1999).  

3. Results and discussion 
3.1. Soil water content 

The temporal variations of soil water content (qv) for the WS and WW treatments are shown in 
Fig. 3. The values shown correspond to the average qv for the 0-60 cm soil profile, the active root-
zone for this crop species. Moisture values for the WW treatment were relatively stable (0.35-0.40 
m3 m-3) for all cultivars and slightly above field capacity (»0.3 m3 m-3) as determined by the Saxton 
et al. (1986) pedotransfer functions. The qv values of the WS treatment decreased during the 
water stress period, especially for cultivar 4. 
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Fig. 3. Temporal variation in soil water content (qv) for the six cultivars tested in the WS (a) and WW (b) treatments. Values 
shown correspond to average depths between 0 and 60 cm. The vertical bars represent the mean standard error (n=3). 
Discontinuous lines show the period when hemispherical images were taken. The label for each cultivar (4, 6, 8, 14, 16, and 
18) is preceded with WW or WS, indicating the irrigation treatment. 

3.2. Allometric relationships 
Obtaining an allometric relationship that allows estimating the leaf area of individual maize leaves 
in a non-destructive way, is of great interest for the validation of other non-destructive methods in 
trials where the plant material cannot be sampled, as it is the case of a trial of varieties where the 
variation in the number of plants per sub-plot would alter the productivity results of the varieties. 
In this paper, an empiric relationship with the capacity to explain 96% of the variability in observed 
single leaf area was obtained (Fig. 4). The relationship is a first-degree equation, y = ax, where 
the independent variable is calculated as the product of W and L, being 0.7678 the slope of the 
linear relationship. A similar relationship was reported by Birch et al. (2003), although the value 
they obtained was 0.75, slightly lower than the value found in this study.   

 
Fig. 4. The allometric relationship obtained from leaf dimensions of a plant and unitary leaf area: W: maximum leaf width; L: 
maximum leaf length. 

 
3.3. Validation of LAI estimates using hemispherical images 
The reliability to estimating the LAI of maize from hemispherical images through gap fraction 
analyses using CAN-EYE software was assessed in five WW treatments. LAI estimates with the 
direct method (LAI-d) using an allometric relationship and LAI with the indirect method (LAI-i) are 
shown in Fig. 5. LAI-i and LAI-d values were similar, with mean values ranging from 6.1 to 5.9 m2 

m2. respectively. A 3-4% difference was observed between LAI-i and LAI-d. This small difference 
may be explained by the fact that, in the direct method, only leaves were measured, while in the 
indirect method other plant organs (e.g. stems) are also considered. For that reason, LAI-i values 
are known by some researchers as the plant area index (PAI) (Holst et al., 2004; Sandmann et 
al., 2014). In any case, both LAI-d and LAI-i values are similar to those observed by Song et al. 
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(2010) in well-watered maize plants. 

 
Fig. 5. Comparison of LAI values estimated using the direct method (LAI-d) and indirect method (LAI-i). The vertical bars 
represent the mean standard error (n=5). MAE, RMSE and NSE are statistics used to analyze the estimation error when the 
direct method is used to estimate LAI. MAE: mean absolute error; RMSE: root mean square error; NSE: Nash–Sutcliffe model 
efficiency coefficient. 

3.4. Estimating LAI using a UAV 
LAI values for six cultivars (during DOY: 213) were compared using images taken from a UAV 
(top-down and at ground level (Fig. 6). LAI values were similar for both methods. 

 
Fig. 6. Comparison of LAI values using top-down (LAItdo) and bottom-up (LAIbup) images. The vertical bars represent the 
mean standard error (n=6). MAE, RMSE and NSE are statistics used to analyze the estimation error when the direct method 
is used. MAE: mean absolute error; RMSE: root mean square error; NSE: Nash–Sutcliffe model efficiency coefficient. 

When mean LAI values for each cultivar were statistically compared using Duncan's multiple 
range test (Fig. 7), significant differences were not found between the LAI estimated using up-
bottom images (LAIbup) and the LAI estimated using top-down images (LAItdo). This shows that 
it is possible to estimate LAI using gap fractions obtained from hemispherical images from UAVs.  
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Fig. 7. LAI values using bottom-up (LAIbup) and top-down (LAItdo) images for six cultivars. The vertical bars represent the 
mean standard error (n=6). Different letters indicate statistically significant differences as measured by the Duncan test (P < 
0.05). 

3.5. Biophysical variable responses (LAI and VCF) to water stress during grain filling 
The temporal variation of biophysical variables (LAI and VCF) for the WW and WS treatments are 
shown in Fig. 8. Values have been obtained as the mean of six cultivars. Due to water stress, the 
WS LAI and VCF decreased from 20% and to 40%, respectively, in contrast to the WW treatment. 
In previous studies, it was demonstrated that the LAI and VCF are closely related, although 
nonlinearly (Nielsen et al., 2012).  

 
Fig. 8. (a) Leaf area index (LAI) and the (b) vegetal cover fraction (VCF) for (WW and WS) treatments through time. Points 
represent the mean value of the six cultivars analyzed. The vertical bars represent the mean standard error (n=6). LAI and 
VCF were estimated from hemispherical images taken in the morning (8:00-9:00 am) and were analyzed with CAN-EYE. 

a

a
a a a

aa
a a

a a

a

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

WW4 WW6 WW8 WW14 WW16 WW18

LA
I (

m
2

m
2 )

LAIbup
LAItdo

206 208 210 212 214 216 218 220 222

LA
I (

m
2  m

-2
)

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

WW
WS

Día del año

206 208 210 212 214 216 218 220 222

VC
F 

(%
)

30

40

50

60

70

80

WW
WS

(a)

(b)

DOY



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 11 

Significant differences in LAI and VCF values between cultivars were not observed from (DOY: 
207 to 213) for LAI and VCF values (Fig. 9). However, on DOY: 220, significant differences were 
observed due to the beginning of the senescent phase beginning. Respect For instance, to the 
LAI, cultivar 16 showed a significantly value lower LAI than cultivars 4, 8 and 14, cultivars, while 
cultivar 6 showed an VCF value statically significantly lower than all other in contrast all cultivars, 
with the 16 cultivar exception of cultivar 16. The differences observed in LAI and VCF between 
cultivars in LAI and VCF do not let explain the yield differences in the WW treatments. This fact 
is due to because the maize yield response is caused by a multigenic phenotype that multigenic 
which depends on physiological and physiology variables (Araus et al., 2008). 
 

 
Fig. 9. Leaf area index (LAI) (a) and vegetal cover fraction (VCF) values (b) for the six cultivars during grain filling in the WS 
treatment. The vertical bars represent the mean standard error (n=3). Different letters indicate statistically significant 
differences as measured by the Duncan test (P < 0.05). 

The WS cultivars showed more variability in LAI and VCF values than the WW treatments (Fig. 
10). The LAI value was not affected in each cultivar until the last day (DOY: 220), when cultivar 4 
showed values higher than the other cultivars, except cultivar 14. Differences in VCF values were 
evidence from the beginning, with being cultivar 4 having higher which values were higher.  
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Fig. 10. Leaf area index (LAI) (a) and vegetal cover fraction (VCF) values (b) for the six cultivars during grain filling in the WS 
treatment. The vertical bars represent the mean standard error (n=3). Different letters indicate statistically significant 
differences as measured by the Duncan test (P < 0.05). 

 

4. Conclusions 
In a first approach, this method using bottom-up and top-down hemispheric images is a useful 
tool for the determination of the LAI and the VCF in maize plants. 
The water regime imposed during the grain filling phase of the crop development cycle has a 
great impact on both LAI and VCF. The differences between the cultivars became apparent 
almost a month after the water deficit. 
Comparing the measurements taken early in the morning and at noon under optimal irrigation 
conditions, the reductions in the LAI and VCF values were minimal, indicating that the varieties 
studied show a low foliar response to environmental stress. Under conditions of water stress, a 
strong reduction of VCF at noon was observed in all the cultivars tested. The reductions were 
much less evident in LAI, probably due to errors in estimating the agglomeration index under 
water stress conditions. 

Considering the rapid improvement in drone technology for capturing high-resolution photos from 
above, in the future, other researchers can study the possibility of using new tools such as 
computer vision and artificial intelligence to estimate LAI. These technologies use software’s such 
as Python and OpenCV in combination with neural networks to improve and automated image 
processing. 

Acknowledgments 
This work was made possible through the support of the Spanish Ministery of Economic and 
Competence (Project: AGL2016-78964-R) and thanks to Predoctoral Research Fellowship for the 
development of the University of Seville R&D&I program (IV.3 2017) . 

 

LA
I (

m
2  m

-2
)

4.0

4.5

5.0

5.5

6.0

6.5

7.0
WS4
WS6
WS8
WS14
WS16
WS18

b

abb

a

b

b

207 213 220

(a)

Día del año

VC
F 

(%
)

20

30

40

50

60

70

80

90

100

b

b

b

a

b

a

207 213 220

(b)

b
b

b

b

a

b

bc

c
c c b b

DOY



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 13 

5. References 
Avramova, V., AbdElgawad, H., Zhang, Z., Fotschki, B., Casadevall, R., et al. (2015). Drought Induces Distinct Growth 

Response, Protection, and Recovery Mechanisms in the Maize Leaf Growth Zone. Plant Physiology, doi: 
10.1104/pp.15.00276. 

Araus, J.L., Slafer, G.A., Royo, C., Serret, M.D. (2008). Breeding for yield potential and stress adaptation in cereals. Crit. 
Rev. Plant Sci., doi: 10.1080/07352680802467736. 

Baret, F., Madec, S., Irfan, K., Lopez, J., Comar, A., et al. (2017). Leaf rolling in maize crops: from leaf scoring to canopy 
level measurements for phenotyping. Journal of Experimental Botany, doi: 10.1093/jxb/ery071. 

Basu, S., Ramegowda, V., Kumar, A., Pereira, A. (2016). Plant adaptation to drought stress. F1000Research, doi: 
10.12688/f1000research.7678.1. 

Bégué, A. (1993). Leaf area index, intercepted photosynthetically active radiation, and spectral vegetation indices: A 
sensitivity analysis for regular-clumped canopies. Remote Sensing of Environment, doi: 10.1016/0034-4257(93)90031-
R. 

Birch, C.J., Vos, J., van der Putten, P.E.L. (2003). Plant development and leaf area production in contrasting cultivars of 
maize grown in a cool temperate environment in the field. European Journal of Agronomy, doi:10.1016/S1161-
0301(02)00034-5 

Bita, E. B., Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and 
production of heat stress-tolerant crops. Frontiers in Plant Science, doi: 10.3389/fpls.2013.00273. 

Candigo, S., Remondino, F., De Giglio, M., Dubbini, M., Gatelli, M. (2015). Evaluating Multispectral Images and Vegetation 
Indices for Precision Farming Applications from UAV Images. Remote Sensing, doi: 10.3390/rs70404026. 

Canfalonieri, R., Foi, M., Casa, R., Aquaro, S., Tona, E., Peterle, M., et al. (2013). Development of an app for estimating 
leaf area index using a smartphone. Trueness and precision determination and comparison with other indirect methods. 
Computers and Electronics in Agriculture, doi: 10.1016/j.compag.2013.04.019.  

Chen, J. M., Black, T. A. (1992). Defining leaf area index for non-flat leaves. Plant, Cell & Environment, doi: 10.1111/j.1365-
3040.1992.tb00992.x. 

Cobb, J. N., DeClerck, G., Greenberg, A., Clark, R., McCouch, S. (2013). Next-generation phenotyping: requirements and 
strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop 
improvement. Theor Appl Genet, doi: 10.1007/s00122-013-2066-0. 

Danner, M., Berger, K., Wocher, M., Mauser, W., Hank, T. (2017). Retrieval of Biophysical Crop Variables from Multi-
Angular Canopy Spectroscopy. Remote Sensing, doi: 10.3390/rs9070726. 

Daryanto, S., Wang L., Jacinthe, P.-A. (2016) Global Synthesis of Drought Effects on Maize and Wheat Production. PLOS 
ONE, doi: 10.1371/journal.pone.0156362. 

De Bei, R., Fuentes, S., Gilliham, M., Tyerman, S., Edwards, E., Bianchini, N., Smith, J. Collins, C. (2016). VitiCanopy: A 
Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine. Sensors, doi: 10.3390/s16040585. 

Delegido, J., Meza, C. M., Pasqualotto, N., Moreno, J. (2016). Influencia del ángulo de observación en la estimación del 
índice de área foliar (LAI) mediante imágenes PROBA/CHRIS. Revista de Teledetección (Asociación Española de 
Teledetección), doi: 10.4995/raet.2016.4612. 

Demarez, V., Duthoiit, S., Baret, F., Weiss, M., Dedieu, G. (2008). Estimation of leaf area and clumping indexes of crops 
with hemispherical photographs. Agricultural and Forest Meteorology, doi: 10.1016/j.agrformet.2007.11.015. 

Din, M., Zheng, W., Rashid, M., Wang, S., Shi, Z. (2017). Evaluating Hyperspectral Vegetation Indices for Leaf Area Index 
Estimation of Oryza sativa L. at Diverse Phenological Stages. Frontiers in Plant Science, doi: 10.3389/fpls.2017.00820. 

Dupont, Q. F. M., Chua, D. K. H., Tashrif, A., Abbott, E. L. S. (2017). Potential Applications of UAV along the Construction's 
Value Chain. Procedia Engineering, doi: 10.1016/j.proeng.2017.03.155. 

Blanco, F. F., Folegatti, M. V. (2003). A new method for estimating the leaf area index of cucumber and tomato plants. 
Horticultura Brasileira, doi: 10.1590/S0102-05362003000400019. 

Favarin, J. L., Dourado Neto, D., García y García, A., Augusto Villa Nova, N., Vieira Favarin, M. da G. G. (2002). Equations 
for estimating the coffee leaf area index. Pesquisa Agropecuária Brasileira, doi: 10.1590/S0100-204X2002000600005. 

Fernandez, D., Castrillo, M. (1999). Maize leaf rolling initiation. Photosynthetica, doi: 10.1023/A:1007124214141. 
Foley, J. A., DeFries, R., Asner, G., P., Barford, C., Bonan, G., et al. (2005). Global Consequences of Land Use. Science, 

doi: 10.1126/science.1111772.  
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. D., et al. (2011). Solutions for a cultivated planet. 

Nature, doi: 10.1038/nature10452. 
Fuchs, M., Asrar, G., Kanemasu, E. T., Hipps, L. E. (1984). Leaf area estimates from measurements of photosynthetically 

active radiation in wheat canopies. Agricultural and Forest Meteorology, doi: 10.1016/0168-1923(84)90024-8. 
Gower, S. T., Kucharik, C. J., Norman, J. M. (1999). Direct and Indirect Estimation of Leaf Area Index, fAPAR, and Net 

Primary Production of Terrestrial Ecosystems. Remote Sensing of Environment, doi: 10.1016/S0034-4257(99)00056-
5. 

Grzesiak, M. T., Waligórski, P., Janowiak, F. Marcińska, I., Hura, K., Szczyrek, P., Głąb, T. (2013). The relations between 
drought susceptibility index based on grain yield (DSIGY) and key physiological seedling traits in maize and triticale 



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 14 

genotypes. Acta Physiol. Plant., doi: 10.1007/s11738-012-1097-5.  
Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., Dextraze, L. (2002). Integrated narrow-band vegetation 

indices for prediction of crop chlorophyll content for application to precision agricultura. Remote Sensing of 
Environment, doi: 10.1016/S0034-4257(02)00018-4. 

Hmida, S. B., Kallel, A., Gastellu-Etchegorry, J.-P., Roujean, J.-L., Zribi, M. (2017). Lidar full waveform inversion to estimate 
maize and wheat crops biophysical properties. Geoscience and Remote Sensing Symposium, doi: 
10.1109/IGARSS.2017.8127203. 

Hyer, E. J., Goetz, S. J. (2004). Comparison and sensitivity analysis of instruments and radiometric methods for LAI 
estimation: assessments from a boreal forest site. Agricultural and Forest Meteorology, doi: 
10.1016/j.agrformet.2003.09.013. 

Küßner, R., Mosandl, R. (2000). Comparison of direct and undirect estimation of leaf area index in mature Norway spruce 
stands of eastern Germany. Canadian Journal of Forest Research, doi: 10.1139/x99-227. 

Jonckheere, I., Stefan, F., Nackaerts, K., Muys, B. Coppin, P., Weiss, M., Baretc, B. (2004). Review of methods for in situ 
leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agricultural and Forest 
Meteorology, doi: 10.1016/J.AGRFORMET.2003.08.027. 

Lang, A. R. G., Xiang, Y., (1986). Estimation of leaf area index from transmition of direct sunlight in discontinuous canopies. 
Agricultural and Forest Meteorology, doi: 10.1016/0168-1923(86)90033-X. 

Legates, D. R., McCabe Jr., G. J. (199). Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic 
model validation. Surface Water and Climate, doi: 10.1029/1998WR900018. 

Lobell, D. B, Hammer, G. L., McLean, G., Messina, C., Roberts, M. J., Schlenker, W. (2013). The critical role of extreme 
heat for maize production in the United States. Nature Climate Change, doi: 10.1038/nclimate1832. 

Maazou, A.-R.S., Tu, J., Qiu, J., Liu, Z. (2016). Breeding for Drought Tolerance in Maize (Zea mays L.). American Journal 
of Plant Sciences, doi: 10.4236/ajps.2016.714172. 

Makanza, R., Zaman-Allah, M., Cairns, J. E., Magorokosho, C., Tarekegne, A., Olsen, M., Prasanna, B. M. (2018). High-
Throughput Phenotyping of Canopy Cover and Senescence in Maize Field Trials Using Aerial Digital Canopy Imaging. 
Remote Sensing, doi: 10.3390/rs10020330. Plant Cell Rp, doi: 10.1007/s00299-016-1993-z. 

Nogué, F., Mara, K., Collonnier, C., Casacuberta, J. M. (2016). Genome engineering and plant breeding: impact on trait 
discovery and development. Plant Cell Reports, doi: 10.1007/s00299-016-1993-z.  

Olivas, P. C., Oberbauer, S. F., Clark, D. B., Clark, D. B., Ryan, M. G., et al. (2013). Comparison of direct and indirect 
methods for assessing leaf area index across a tropical rain forest landscape. Agricultural and Forest Meteorology, doi: 
10.1016/j.agrformet.2013.04.010. 

Prasad Vurukonda, S., S. K., Vardharajula, S., Shrivastava, M., SkZ, A. (2016). Enhancement of drought stress tolerance 
in crops by plant growth promoting rhizobacteria. Microbiological Research, doi: 10.1016/j.micres.2015.12.003. 

Poblete-Echeverría, C., Fuentes, S., Ortega-Farias, S., Gonzalez-Talice, J., Yuri, J. A. (2015). Digital Cover Photography 
for Estimating Leaf Area Index (LAI) in Apple Trees Using a Variable Light Extinction Coefficient. Sensors, doi: 
10.3390/s150202860. 

Rahaman, M. M., Chen, D., Guillani, Z., Klukas, C., Chen, M. (2015). Advanced phenotyping and phenotype data analysis 
for the study of plant growth and development. Frontiers in Plant Science, doi: 10.3389/fpls.2015.00619. 

Ryu, Y., Nilson, T., Kobayashi, H., Sonnentag, O., Law. B. E., Baldocchi, D. D. (2010). On the correct estimation of effective 
leaf area index: Does it reveal information on clumping effects? Agricultural and Forest Meteorology, doi: 
10.1016/j.agrformet.2010.01.009. 

Sharifi, A. (2018). Estimation of biophysical parameters in wheat crops in Golestan province using ultra-high resolution 
images. Remote Sensing Letters, doi: 10.1080/2150704X.2018.1452058. 

Shifera, B., Prasanna, B. M., Hellin, J., Bänziger. (2011). Crops that feed the world 6. Past successes and future challenges 
to the role played by maize in global food security. Food Sec., doi: 10.1007/s12571-011-0140-5. 

Tanksley, S. D., Young, N. D., Paterson, A. H., Bonierbale, M. W. (1989). RFLP Mapping in Plant Breeding: New Tools for 
an Old Science. Nature Biotechnology, doi: 10.1038/nbt0389-257. 

Tilman, D., Blazer, C., Hill, J., Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. 
Proc. Natl. Acad. Sci., doi:10.1073/PNAS.1116437108. 

Turner, N. C. (1990). Plant water relations and irrigation management. Agric. Water Manag., doi: 10.1016/0378-
3774(90)90056-5. 

Metin Sezen, S., Yazar, A., Da Gan, Y. Yucel, S. Akyildiz, A., Tekin, S., Akhoundnejad, Y. (2014). Agricultural Water 
Management Evaluation of crop water stress index (CWSI) for red pepper with drip and furrow irrigation under varying 
irrigation regimes. Agric. Water Manag., doi: 10.1016/j.agwat.2014.06.008. 

Min, H., Chen, C., Wei, S., Shang, X., Sun, M., et al. (2016). Identification of Drought Tolerant Mechanisms in Maize 
Seedlings Based on Transcriptome Analysis of Recombination Inbred Lines. Frontiers in Plant Science, doi: 
10.3389/fpls.2016.01080. 

Van Gardingen, P. R., Jackson, G. E., Hernandez-Daumas, S. Russell, G., Sharp L. (1998). Leaf area index estimates 
obtained for clumped canopies using hemispherical photography. Agricultural and Forest Meteorology, doi: 
10.1016/S0168-1923(99)00018-0.  



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 15 

Watson, D. J. (1947). Comparative Physiological Studies on the Growth of Field Crops: I. Variation in Net Assimilation 
Rate and Leaf Area between Species and Varieties, and within and between Years. Annals of Botany, doi: 
10.1093/oxfordjournals.aob.a083148. 

Weiss, M., Baret, F., Smith, G. J., Jonckheere, I., Coppin, P. (2004). Review of methods for in situ leaf area index (LAI) 
determination: Part II. Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology, doi: 
10.1016/j.agrformet.2003.08.001. 

Welles, M. J., Cohen, S. (1996). Canopy structure measurement by gap fraction analysis using commercial 
instrumentation. Journal of Experimental Botany, doi: 10.1093/jxb/47.9.1335. 

Wesley, B. B., Edmeades, G. O., Barker, T. C. (2002). Molecular and physiological approaches to maize improvement for 
drought tolerance. Journal of Experimental Botany, doi: 10.1093/jexbot/53.366.13. 

Wossen, T., Abdoulaye, T., Alene, A., Feleke, S., Menkir, A. Manyong, V. (2017). Measuring the impacts of adaptation 
strategies to drought stress: The case of drought tolerant maize varieties. Journal of Environmental Management, doi: 
10.1016/j.jenvman.2017.06.058. 

Zipper, S. C., Qiu, J., Kucharik, C. J. (2016). Drought effects on US maize and soybean production: spatiotemporal patterns 
and historical changes. Environ. Res. Lett., doi:10.1088/1748-9326/11/9/094021. 

 


