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Abstract. Remote sensing has been used as an important tool in precision agriculture. With the 
development of unmanned aerial vehicle (UAV) technology, collection of high-resolution site-
specific field data becomes promising. Field topography affects spatial variation in soil organic 
carbon, nitrogen and water content, which ultimately affect crop performance. To improve crop 
production and reduce inputs to the field, it is critical to collect site-specific information in a real-
time manner and at a large scale. The goal of this study was to evaluate the feasibility of a remote 
sensing system based on a UAV and imaging sensors to quantify the influence of topographic 
variables on apparent soil electrical conductivity (ECa) and plant performance. The experiment 
was conducted in 6.2 ha area within a 20-ha research soybean field with varying topography. 
Geo-referenced ECa data were collected before planting soybean in 2017. Geo-referenced crop 
yield was measured using a yield monitor system in 2016 and 2017. A RGB camera and a 
multispectral camera were used to take images on the field at four critical times during soybean 
growth in 2017. The UAV system was flying at an altitude of 100 m or 50 m above ground level 
with an image overlap > 70%. The image data were processed to generate geo-referenced 
orthophotos and a digital surface model (DSM) which was used to develop a digital elevation 
model (DEM). Results showed that image-based elevation represented 95% of the variability in 
elevation as measured by a GPS system. Results show that the relationships of field topography, 
i.e. elevation and slope, to soil ECa and crop were significant. Field regions with the lowest 
elevation had significantly lower yield and the lowest normalized difference vegetation index 
(NDVI) values, indicating a negative effect on crop development. Meanwhile, field slope also 
showed significant relationships to crop development, with significantly lower NDVI and crop yield 
in regions having the highest slope. The study showed that it was possible to use UAV-based 
remote sensing for monitoring crop growth and yield differences due to topographic variation. 
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Introduction 
Field topography, such as elevation, slope and flow accumulation, has an important impact on 
spatial variation of soil organic carbon, nitrogen and water content, which ultimately affect crop 
growth and yield. Among field topographic attributes, terrain slope affects soil moisture content 
and transpiration rate because that soil moisture became spatially organized across the hillslope 
during a short transition between the wet and dry state (Tromp-van Meerveld and McDonnell, 
2006). Lower elevation, concave slope regions usually have more water content (Zhu et al., 2015). 
Crop yield is affected by topography due to yield dependence on soil. Spatial variability of maize 
yield was found to correspond to profile curvature and slope (Zhu et al., 2015). Topography has 
more impact on crop yield in dry regions and drought periods due to its significant influence on 
soil water content (Kumhálová et al., 2011; Muñoz et al., 2014). Therefore, it is critical to monitor 
crop growth in different growth stages and quantify the relationship of field topography to yield to 
improve crop production and manage crops efficiently.  

Field topography can be mapped using a RTK-GPS (Real Time Kinematic Global Positioning 
System) operated by hand (Kumhálová et al., 2008) or mounted on a combine (Kumhálová et al., 
2011). However, the number of sampling points was limited, and the digital surface model (DSM) 
derived using spatial interpolation (e.g. nearest-neighbor interpolation, bilinear interpolation cubic 
convolution and kriging regression) might result in large measurement errors (Kumhálová et al., 
2011; Wu et al., 2008). High-resolution topography data can be obtained by airborne Light 
Detection and Ranging (LiDAR) (Muñoz et al., 2014); however, high-resolution LiDAR is 
expensive and it is not convenient to operate an airplane. With the development of UAV and 
imaging processing technologies, it is possible to monitor crop and field topography using a small 
UAV equipped with a low-cost camera. UAV, as a high-throughput tool, can fly at low altitudes 
with large image overlap to acquire ultra-high spatial resolution images (Turner et al., 2014). 
Images collected by UAV have been used to generate high-resolution DSM and orthomosaics 
(Yang et al. 2017).  

The goal of this study was to evaluate the feasibility of a remote sensing system based on a UAV 
and imaging sensors to quantify the influence of topographic variables on soil ECa and crop 
growth in a soybean field. The objectives were: 1) to map the elevation and slope of an 
experimental field using the UAV imaging system; 2) to evaluate the effect of field topography on 
soil ECa and soybean growth.  

Materials and Methods 

Experimental Field and Ground Data Collection 

This study was conducted on a soybean field at the Rocheford Turkey Research Farm of the 
University of Missouri (MU) located in Boone County, MO, USA (38°58'29.0" N 92°11'14.3" W). 
The field was about 20 ha in total, from which a region of 270 m × 235 m (about 6.3 ha) was 
selected to collect data (marked in Fig. 1a with dashed lines). From Fig. 1a, it can be seen that a 
lake is located in the corner of the field, where the elevation is the lowest. The elevation of the 
selected region is from 260 m to 267 m above mean sea level (MSL) which results in rainfall 
flowing to the lake from surrounding areas. The apparent soil electrical conductivity (ECa) of the 
farm was measured prior to planting of soybean in the spring 2017 using a soil ECa mapping 
system (model: 3100, Veris Technologies, Salina, KS) integrated with a GPS system to record 
the geo-information of each measurement. In this study, 2927 soil ECa sample points were 
obtained from the selected region. Prior to planting, burndown herbicides (2,4-D: 1.68 kg·ha-1 and 
Roundup: 2.24 kg·ha-1) were applied for control of winter annual broadleaf weeds. Soybean 
(MorSoy 4327, MFA Incorporated, Columbia, MO) was planted at a population of 56,660 seeds 
per ha on May 31, 2017 using a 6-row soybean planter (Kinze Manufacturing, Williamsburg, Iowa, 
USA). Pre-emergent herbicides (Roundup: 2.24 kg·ha-1 and Fierce XLT 2.62 kg·ha-1) were applied 
at the same day of planting and post-emergent herbicides (Roundup: 2.24 kg·ha-1, Select Max 
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1.12 kg·ha-1 and Warrant 1.68 kg·ha-1) were applied on July 2, 2017 (32 days after planting). 
Soybeans were harvested on October 15, 2017 using a combine harvester (Case IH, Racine, WI) 
equipped with an Ag Leader Insight (Ag Leader Technology, Ames, IA) yield monitor system, 
which was able to record geo-referenced yield data points every one second.  After harvesting, 
yield data were “cleaned” with the Yield Editor software (Sudduth et al., 2012) to remove abnormal 
data points and shift GPS coordinates to the center of harvesting rows. In this study, 2089 yield 
data points were collected in the selected region. Precipitation data was acquired from a nearby 
weather station (MU Bradford Research Center), and the accumulative precipitation and 
temperature in the year 2017 is shown in Fig. 1b. 

 
Fig. 1. (a) Experimental field. Red dashed trapezoid shows the location of the selected region. A lake is 

located in bottom-left corner of the field. (b) Accumulative precipitation and daily air temperature in 2017. 

UAV-based Image Data Acquisition  

A UAV-based remote sensing system was developed by integrating a UAV platform (Dji Matrice 
600 Pro, DJI, China) with an RGB camera (HERO 5, GoPro) and a customized multispectral 
camera using a Canon PowerShot ELPH130HS (Canon U.S.A. Inc.) by a company (LDP LLC, 
Carlstadt, NJ, USA). The specifications of the cameras are listed in Table 1. The RGB camera 
was set to capture still images at a rate of two frames per second (fps) and images were saved 
on an on-board SD card. An open-source third-party firmware (CHDK, http://chdk.wikia.com) was 
used to control the multispectral camera to allow automatic snapshotting at an interval of about 
2.5 s per image and saving images on its on-board SD card. 

Table 1. Parameter of Cameras used in this study. 

Camera name Model Spectrum of each 
channel 

Snapshot rate 
(s/image) Resolution (pixel) Spatial 

resolution 
Multispectral 

camera ELPH110HS NIR (680-800), R (550-
720), G (500-620) 2.5 4608 × 3456 1.56 cm/pixel 

RGB camera GoPro Hero 5 R-G-B 1 4000×3000 2.6 cm/pixel 

 

Flight of the UAV was controlled using a UAV ground control app (Autopilot, Hangar Technology, 
Austin, TX, USA), which allows planning flight path, setting way-points, flight speed and flight 
altitude (above ground level). Before each flight, flight path and speed were planned properly 
according to flight height and a minimum overlap requirement (>60% in forward and sideward 
directions). After each flight, geo-information of the UAV on-board GPS system and images were 
downloaded for further processing. Image data were collected at four soybean growth stages 
described by Fehr & Caviness (1977), as shown in Table 2. 
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Table 2. Field activities and data collection time line 

Field activity 
(growth stages) Date Flight height 

(m, AGL) 

Soil survey Feb 16-17 -- 
Imaging April 11 100 

Planting  May 31 -- 
Imaging (V2) June 20 100 

Imaging (R3) July 24 100 

Imaging (R5) August 13 100 

Imaging (R7) September 
07 50 

Harvest  October 15 -- 

Image Pre-processing  

Sequential images from the cameras were stitched using Agisoft PhotoScan Pro (Version 1.4.1, 
Agisoft LLC., Russia), which was able to generate dense point cloud data based on the structure-
from-motion (SfM) method (Glendell et al., 2017). GPS information obtained from the UAV 
platform was manually matched with every image based on their time stamps. The geo-
referenced images were uploaded to the software to generate dense point cloud data, 
orthomosaic images and a digital elevation model (DEM). The DEM map was generated using 
RGB images acquired on April 11, 2017, which had the higher overlap and were expected to 
provide higher DEM accuracy because they were obtained before the crop was planted (Torres-
Sánchez et al., 2017).  

In this study, an image feature-based geo-registration method was developed to register 
coordinates in images and GPS coordinates associated with the yield mapping and soil survey. 
Five ground control points (GCPs) were distributed in the selected region and their GPS 
coordinates were recorded using the GPS on the UAV. The coordinates of the GCPs were 
manually extracted from the orthomosaic images, and the GPS coordinates and image 
coordinates of the GCPs were used to calculate conversion coefficients that registered geo-
referenced data of ECa and yield data with image coordinates, as shown in Eq. 1.  

!
𝑘# =

%#&'(#&)%
%#*'(#*)%

𝑘+ =
|+&'(+&)|
|+*'(+*)|

		, 𝑖, 𝑗 = 1, 2, 3, 4, 5, 𝑖 ≠ 𝑗                                 (1) 

where, kx and ky are the conversion coefficients in x and y direction respectively, (xGi, yGi), (xIi, yIi) 
and (xGj, yGj), (xIj, yIj) are the GPS coordinate and image coordinate of the ith and the jth GCP, 
respectively. The conversion coefficients were used to convert all the GPS coordinate points to 
image coordinate points using Eq. 2.   

7
𝑥9: = 𝑥9; × 𝑘# + 𝑥>
𝑦9: = 𝑦9; × 𝑘+ + 𝑦>

		 , 𝑖 = 1, 2, 3, 4, 5                            (2) 

where, (xGI, yGI) is the image coordinate converted from a GPS coordinate, (xGi, yGi) is a GPS 
coordinate in the geo-referenced ECa or yield data, and (x0, y0) is the image coordinate of a GCP. 
Fig. 2 shows the geo-referenced ECa and yield data that were plotted on an orthomosaic image 
collected on July 24, 2017. As it is shown in the figure, tracks of soil and yield data were not 
aligned with each other. To align geo-referenced data points of ECa (soil) and yield with image 
coordinates, data points of yield (fewer in number) and ECa were gathered based on their 
minimum Euclidean distance, i.e. the soil data points were assigned to their nearest yield data 
points.  
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Fig. 2. Registered geo-referenced soil and yield data plotted on an orthomosaic image. The red line indicates the route of 

ECa soil survey and the green line indicates the route of harvesting 

Topographic Attributes and NDVI Extraction    

Elevation of the selected field region was extracted from the DEM map. The accuracy of the 
image-based elevation was evaluation by comparing with the elevation obtained with a RTK-GPS 
system (Geo 7X, Trimble, Sunnyvale, CA) that traversed the field on the same day and on 
approximately the same transects as the ECa sensor (Fig. 2). The terrain (surface) slope of the 
field, representing the rate of elevation change for each digital elevation model cell, was 
calculated based on the DEM map. For raster slope calculation, a moving window was used to 
perform this process in x and y direction using the planar slope algorithm developed by Burrough 
et al. (1998). In this study, the spatial resolution of the DEM was 5.2 cm per pixel as determined 
by the field of view of the camera and the UAV flight attitude (100 m AGL). To achieve a 
reasonable scale for the calculation of field slope, a 100-pixel moving window, equivalent of about 
a 5-m2 area, was used to calculate the slope at each point. In addition, NDVI maps for the selected 
test regions were calculated from multispectral images acquired at the four growth stages using 
Eq. 3.  

𝑁𝐷𝑉𝐼 = D:E(EFG
D:EHEFG

 (3) 

The numbers of geo-referenced data points of ECa and yield were much smaller than the data 
obtained from the images (elevation, slope and NDVI). Therefore, image-based features were 
resampled by calculating the mean of pixel values in a rectangular area (80 × 60 pixels, equivalent 
to 12.8 m2) centered on each geo-referenced data point. A balanced data set, including all geo-
referenced data and image-based data, for each image collection date was established based on 
the data points.   

To evaluate the effect of topography (elevation and slope) on the ECa and crop variables, the 
data set was firstly divided into five groups (levels) based on the elevation, i.e. E1 to E5 from the 
lowest to the highest elevation. Then data in each elevation group were split into three sub-sets 
based on the slope in ascending order. A linear regression analysis was conducted to evaluate 
the accuracy of elevation extracted from the UAV-based DEM compared with elevation data 
collected by the ground-based GPS receiver. The variation in elevation, ECa, NDVIs and yield 
was assessed using ANOVA (‘PROC GLM’) analysis with the least square mean difference 
(‘LSMEANS/PDIFF’) option to compare the differences at a 0.05 level of significance. The results 
were used to evaluate the effect of topographic attributes on ECa, crop development and yield. 
All statistical analyses were conducted using SAS 9.4 software (SAS Institute, Cary, NC, USA). 
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Results and Discussion 

Image-based DEM Map  

UAV-based remote sensing provides a convenient approach to measure the variation of field 
elevation. The accuracy of the measurement in elevation was evaluated by comparing with the 
elevation measured by the RTK-GPS system. Fig. 3 illustrates the DEM model developed with 
images collected prior to planting, where Fig. 3(a) shows the RGB orthomosaic image of the test 
plot, Fig. 3(b) shows the corresponding DEM map and Fig. 3(c) shows the relationship between 
elevations of image- and GPS-based measurement. The result of a linear regression analysis 
indicated that elevation extracted from image-based DEM fitted with that of GPS well, with the 
coefficient of determination R2 = 0.96 and RMSE = 0.5 m. Comparing to GPS-based elevation, 
the image-based DEM may provide a fast approach for measuring the elevation of a field with 
more detail (high-resolution data). The developed DEM map might be used to monitor crop growth 
and calculate various topographic attributes for site-specific management. 

 

Fig. 3. Elevation measured with imaging method. (a) RGB orthomosaic image of test field taken prior to planting. (b) DEM 
map generated based on images and (c) fitness between elevations measured by imaging method and a RTK GPS system. 

Effect of Topographic Variation on ECa and Yield  

Topographic attributes derived from the DEM, including elevation and terrain slope, were used to 
evaluate the effect of topography on ECa and crop development. The least squares means (lsm) 
of elevation in the five ranges (E1 – E5 as shown in Table 3) were significantly different (p < 0.001) 
at 5% significance level based on an ANOVA analysis. The data in each elevation level were 
sorted in ascending order by the terrain slope and then evenly split into three sets (Table 3). The 
relationship of crop NDVIs in different growth stages and yield in 2016 and 2017 to the topographic 
attributes was analyzed using ANOVA and the results are shown in Fig. 4b and Fig. 4b, 
respectively. At the vegetative stage (V2), soybean NDVI was significantly higher in the region 
with lower elevation (E1) than in higher elevation levels. As shown in Fig. 1b, the accumulative 
precipitation was low when crop images in V2 stage were collected (21 days after planting), and 
no precipitation was received since planting. Since the development of the soybean root system 
needs sufficient water (Quach et al., 2014), crops in the low-elevation regions, where soil might 
have higher water content than high-elevation regions (Zhu et al., 2015), had more vegetation 
(higher NDVI). The lowest NDVI values, in regions with E4 level might be because of higher 
slopes. However, in the later crop growth stages (R3, R5 and R7), NDVI in the regions with the 
low elevation E1 were consistently lower among all five elevation levels (as shown in Fig. 4a). 
This phenomenon might be explained by the large accumulative precipitation during the later 
growth stages, which might have reduced the difference in soil moisture at different elevations. 
Meanwhile, the established root system might help the plants access more water and reduce 
water stress in regions of middle and high elevation. Also, heavy precipitation might cause 
waterlogging or flooding stress for crops in the lower regions and thereby affect crop development 
(Kim et al., 2015). 
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Table 3. Elevation and slope levels in the divided data ranges. Different lower-case letters indicated significant difference 
in least square means at different levels. 

E1 (m) Slope 
(degree) E2 (m) Slope 

(degree) E3 (m) Slope 
(degree) E4 (m) Slope 

(degree) E5 (m) Slope 
(degree) 

262.4 ± 
0.4 (a) 

0.9 ± 0.2 
263.0 ± 
0.5 (b) 

1.3 ± 0.2 
263.8 ± 
0.4 (c) 

1.2 ± 0.3 
264.4 ± 
0.4 (d) 

1.2 ± 0.3 
265.4 ± 
1.2 (e) 

1.3 ± 0.4 

1.4 ± 0.1 1.9 ± 0.2 1.9 ± 0.2 1.8 ± 0.2 2.1 ± 0.1 

2.4 ± 1.1 3.4 ± 1.7 3.3 ± 1.4 2.7 ± 0.7 2.7 ± 0.7 

 

 
Fig. 4. Relationship of elevation to crop development and yield. (a) Response of NDVI to different elevations at four growth 

stages, and (b) response of crop yield to different elevations. ANOVA test was conducted to compare the least squares 
means of NDVI and yield in different elevation levels at four growth stages and two years, respectively. Different lower-

case letters indicate a significant difference at the 5% level. 

More evidence of the effect of topography on crop development can be seen in Fig. 5, which 
shows the variation in elevation and NDVI along one row in the field. The figure clearly shows that 
NDVI values were generally decreasing along with the decrease of elevation. The lower NDVI 
was caused by less vegetation in the region of low elevation (A2 in Fig. 5). The NDVI values might 
also be affected by slope of field. In marked area A1 in Fig. 5, the location with a jump in elevation 
showed a drop in NDVI. However, ANOVA results in Fig. 4a show no significant effect of elevation 
on NDVIs in the regions with higher elevation (E4-E5). Similarly, crop yield in lower elevation 
levels (E1 and E2) was significantly lower than those in higher elevation levels (E4 & E5) in both 
years (Fig. 4b).  

 

Fig. 5. Illustration of NDVI variation at different levels of elevation. Row was extracted using GPS information in yield data 

 

The effect of terrain slope on yield and soil was also significant. Overall, yield was significantly (p 
< 0.001) higher in low-slope regions than area with steep slopes in both years, likely due to 
reduced soil quality from erosion in areas of steeper slopes. ANOVA results also show that the 
interaction effect of elevation and slope was significant on soil ECa values and soybean yield in 
both years (p ≤ 0.001 at 5% significance level). As shown in Fig. 6a, soil ECa response to slope 
variation was significantly different in high elevation regions (E4 and E5). ECa in low-slope regions 
was significantly higher than in regions with steep slope. However, soil ECa in regions with lower 
elevation was not significantly affected by terrain slope, which was possibly due to less dynamic 
range in ECa values in that area. The effect of field topography on yield showed a similar pattern 
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as those for ECa. As shown in Fig. 6b, yield in 2017 and 2016 was significantly higher at high-
elevation regions (E3-E5, in 2017 or E5 in 2016 (not shown here)) with low slope (Slope1) than 
that with steep slopes. However, crop yield variance with slope in the low-elevation regions (E1-
E2) was not significant. 

 

Fig. 6. Interaction effect of field elevation and slope on soil ECa and crop yield. (a) Response of soil ECa to field elevation 
and slope, and (b) response of yield to field elevation and slope 

To understand the effect of soil ECa on yield, the least squares means of yield at different ECa 
levels were calculated. The ECa levels were acquired by sorting data according to ECa values in 
ascending order and evenly split into five levels, i.e. EC1-EC5. As shown in Fig. 7, there was a 
positive effect of soil ECa on yield, with areas of higher ECa consistently yielding more soybeans 
than areas of lower ECa in both years.  

 

Fig. 7. Effect of soil ECa on crop yield. Statistical analysis was conducted to compare least squares means in yield due to 
five split levels of EC within each year separately. Different lower-case letters indicate significant differences at a 5% 

significance level 

Summary 
A UAV-based remote sensing system was evaluated for feasibility in monitoring crop development 
and soil and topography variation in a soybean field. A field DEM was successfully developed 
using images collected using a UAV platform. The accuracy of the derived elevation was 
evaluated by comparing with elevation from a RTK-GPS system, and analysis results showed 
that R2 between these two measurements was 0.95. Results indicated that UAV-based remote 
sensing had potential to map the elevation of a field. The field slope map was also established 
based on the DEM, and used to evaluate the effect of topography on soil and crop. A multispectral 
camera was used to collect soybean images in four different growth stages. The derived NDVI 
was used to monitor the growth status of the soybean crop. 

Field elevation was split into five levels to test the response of soil ECa and crop to the variation 
of elevation and slope. Statistical analysis indicated that elevation significantly affected crop yield, 
with the area with the lowest elevation yielding the least. The effect of elevation on NDVI was not 
consistent at different stages. Lower elevation benefited the growth of crop in an early vegetative 
stage, but negatively affected crop growth (less vegetation) afterward. Field slope and elevation 
affected crop and soil jointly. The interaction effect of elevation and slope was analyzed and it 
was found that slope affected soil and yield significantly in the region with high elevation, with low-
slope regions yielding significantly more crop than steep slope regions. This study indicated the 
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potential of using remote sensing in analysis of the effect of topography on crop growth and yield.  
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