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Abstract. Determination of an optimum fertilizer application rate involves various influential 
factors, such as past management, soil characteristics, weather, commodity prices, cost of input 
materials and risk preference. Spatial and temporal variations in these factors constitute sources 
of uncertainties in selecting the most profitable application rate. Therefore, a decision support 
system (DSS) that could help to minimize production risks in the context of uncertain crop 
performance is needed. This paper presents a newly developed framework for a dynamic DSS, 
called NumericAg, which seeks to estimate the probability of achieving expected profits under 
specific growing conditions. The proposed system includes a database, a user interface, and a 
numeric engine for computation of profit space. The online web interface (www.numericag.com) 
allows a user to specify production conditions (e.g., previous crop, tillage system, soil type, 
organic matter content, rainfall, and crop heat unit), and to accept or modify the price of grains 
and fertilizers. The database stores the results of previously recorded fertility trials. The profit 
space computation engine was designed to estimate the probability of achieving different levels 
of net return over the cost of nitrogen fertilizer for every potential application rate. The profit space 
engine considers over 20,000 potential quadratic-plateau fertilizer response functions in 
combination with 49 cost scenarios evaluated against every fertility trial weighted according to the 
growing conditions specified by the user. Consequently, probability of different levels of potential 
net return over cost of fertilizer was estimated using fertilizer response observations that relatively 
closely match the growing conditions specified by the user. A sensitivity analysis was used to 
show DSS response to changes in specified growing conditions. Thus, when comparing different 
growing conditions, a smaller probability of achieving relatively high profits was found with sandy 
soils, relatively low crop heat units and water availability, or low levels of nitrogen contribution 
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from previous crops. Although the rate that maximized the expected net return over cost of 
nitrogen did not change substantially, the rate of profit decline due to under application of nitrogen 
fertilizer was different for different growing conditions. 
Keywords. decision support system, numeric analysis, nitrogen fertilization, corn, profitability. 

Introduction 
Crop response to a specific fertilizer input can be influenced by a number of undocumented or 
unknown factors that cause uncertainties. The uncertainty of spatial and temporal information can 
be a major impediment to good decision outcomes (McBratney et al., 1997). Producers like to 
achieve maximum returns from the fertilizer application and often over-apply nitrogen fertilizer to 
corn because of the uncertainty in predicting the economic optimum nitrogen rate (EONR) 
(Dellinger et al., 2008). Also, the optimal rates of nitrogen for corn are difficult to determine 
because they depend mainly on the interactions between weather, soil and crop management 
factors (Tremblay et al., 2010). The over-application of fertilizers leads to soil degradation and 
increased costs, whereas application below a sufficient rate incurs profit losses (Bullock & Bullock, 
1994; Assimakopoulos et al., 2003). Nitrogen (N) recommendation rates provided by agronomists 
and soil and fertilizer consultants vary by soil and by crop across Canada (Yang et al., 2006). 
Thus site-specific growing conditions should be considered while estimating the optimum 
application rate.  
This paper presents an extension to the initial framework proposed by Adamchuk et al. (2017). 
The proposed DSS dynamically links the site-specific spatial, temporal and management factors, 
in the context of uncertain information (Bachmaier, 2012), to production and profit functions, which 
enables the estimation of the EONR to maximize net return over the cost of fertilization (NRCF) 
or to increase the probability of achievement of certain levels of NRCF. Production uncertainty 
was modeled through the probability of the residuals between observed and predicted yields 
(estimation error), and economic uncertainty was modeled from the probability of different crop 
prices and costs of fertilizer. The uncertainty-based treatment of each model input allows for a 
balance between the potential results of under-application or over-application. To illustrate this 
framework, an online prototype DSS was developed to optimize nitrogen fertilization for corn using 
fertility trial data assembled through research experiments across Central Canada. 

Materials and Methods 
The proposed DSS consists of several key components (Figure 1): 1) a user interface, 2) a 
database, 3) access to public online resources, and 4) a numeric engine for user interaction, 
computation of profit space and result visualization. 
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Figure 1. Architecture of the proposed decision support system. 

Through a mobile interface, available online at www.numericag.com, the user specifies his/her 
crop growth conditions and practices, such as previous crop, tillage system, soil type, organic 
matter content, rainfall, and crop heat unit. Also, the user has the ability to modify the pre-
populated prices of grains and fertilizers, retrieved in real-time from the Chicago Mercantile 
Exchange (CME). These constitute the basic inputs used to construct alternative scenarios. 
Complementary input values, such as soil information, weather and prices, could eventually be 
retrieved from alternative online sources. The initial database, currently implemented in MySQL, 
includes 320 records of yield data replicated for 5 N fertilization rates (0 to 200 interpolated to 
increments of 50 kg/ha). This means a total of 1680 fertility trials, resulting from an extensive 
meta-analysis study (Tremblay et al., 2012). Each record is linked to a site and a year. It includes 
a corn yield estimate and the corresponding nitrogen application rate, as well as weather data, 
soil conditions and management practices. At the same time, previous observations pertaining to 
completed fertility trials can be entered in the database when available. That way the DSS can 
integrate the newly entered data to adapt and generate up-to-date output. 
Profit (objective function) was defined as the net return over cost of fertilizer (NRCF): 

 (1) 

where Y is the crop yield predicted as a function of the N fertilization rate (t/ha), cY is the price of 
the harvested crop ($/t), N is the specified fertilizer application rate (kg/ha) and cN is the cost of 
fertilizer ($/kg). For any specified N rates, it is possible to calculate NRCF values and their 
probability of occurrence for different combinations of possible values of Y, cY and cN. 
The probability of obtaining a specific NRCF was calculated by the joint probability of occurrence 
of each of its component, assuming they are independent of each other: 

 (2) 
   

NY cNcYNRCF ×-×=

( ) ( ) ( ) ( )Y Np NRCF p Y p c p c= × ×
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where p(Y) is the probability of yield Y, p(cY) is the probability of yield price cY; and p(cN) is the 
probability of fertilizer cost cN. The goal of the DSS is to calculate the whole range of possible 
outcomes and their associated probabilities of occurrence, for all possible values of the production 
factors under control. 
The heart of the DSS is comprised of a record similarity assessment mechanism that weighs 
database trial data with respect to the production context (growing conditions) specified by the 
user. The production context for each record may correspond very well, only partially or not at all 
to the context defined by a DSS user. Our proposed approach to handle partial correspondence 
to the user context was based on the calculation of a similarity index (l) for each record present 
in the dataset: records with higher similarity would play a more significant role in model 
assessment and vice versa. In the current version of the prototype, non missing feature records 
from the database were retrieved (1,140 records) with SQL statements and a similarity index was 
calculated for each record using such features as soil type (e.g., sandy, clay, silt), precipitation 
(e.g., dry, medium, wet) based on the concept of abundant and well distributed rainfall (AWDR) 
proposed by Tremblay et al., (2012), temperature (e.g., cold, warm, hot) based on the crop heat 
unit (CHU) described in Bootsma et al., (2005), as well as tillage practices (i.e., till or no-till) and 
N contribution of preceding cultivar (e.g., weak, medium, strong). Each similarity feature (k) was 
discretized and provided as options for the user to ease the specification of the conditions 
prevailing on his/her site. The system then transforms the feature’s category into its continuous 
numerical value equivalence, to be used in the similarity assessment function.  

Record similarity assessment 
Several criteria were established for the development of the record similarity assessment 
mechanism. First, it should consider the fact that some features are more important than others 
when assessing similarity. Second, it should be highly sensitive to the presence or absence of a 
match, especially for essential features. Thirdly, it should be able to handle numeric, continuous 
features. The approach that was adopted was based on a product, which rapidly decreases the 
similarity between records towards its minimum value in the absence of a match for at least one 
feature, which in turn decreases their impact when fitting models. A power value was used to 
decrease further the similarity index if the database record does not match with the user context. 
To simplify the presentation, let’s assume that the record representing the user context is u. The 
similarity li,u between any jth record (a database trial) and the user specified record u can be 
calculated based on all k features as: 

     (3) 

where dlk is the weight (between 0 to 1) affiliated with the kth feature, xk, j is the value of the kth 
feature of record j, xk, u is the value of the kth feature of user context u, xk, max and xk, min are the 
maximum and minimum values found in all records for the kth feature, and q is the power of 
similarity. xk, max and xk, min are used to standardize values within a range from 0 to 1. Increasing 
the value of q reduces the influence of records that do not match well user inputs.  
Another factor discussed earlier is the importance of the feature. Some features may have greater 
influence then others on yield responses (based on metadata analysis), and a higher weight value 
should be associated with these features when calculating the similarity index. For example, the 
soil type has greater influence on the yield response than the tillage system. In the current version, 
the weights for all features were assigned based on domain knowledge and preliminary analysis, 
but they could be changed in future. When a user defines a context (growing conditions), the DSS 
calculates a similarity index (l) for each record in the database with values ranging from 0 to 1, 
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and where values closer to 1 indicate higher resemblance. 

Production function 
A quadratic-plateau (QP) equation was used as the production function to model and predict corn 
yield in response to N fertilization (Figure 2). The QP model is known to be a good fit with biological 
response (Bullock and Bullock, 1994; Bongiovanni and Lowenberg-DeBoer, 2000; Adamchuck, 
2013). Thus, yield response to nitrogen fertilization was defined as: 

        (4) 

where Y is the crop yield (t/ha), N is the specified fertilizer application rate (kg/ha), and NYmax is 
the minimum fertilizer application rate resulting in the maximum yield. The a0, a1 and a2 are the 
coefficients of a second-order polynomial representation of yield response to N application rates 
below NYmax.  
As shown in Figure 2, the parameters of Equation 4 can be defined through physical parameters: 
Y0 (yield with no fertilization), Ymax (maximum achievable yield) and NYmax (mimimum N rate for 
maximum yield). This way, the coefficients of the second-order polynomial can be rewritten as: 

   (5) 

 (6) 

  (7) 

 
Figure 2. Example of a quadratic-plateau yield response model. 

The traditional approach in a modeling process is to find the set of parameters that minimize 
errors or residuals. However, Bachmaier (2012) argued that the analysis of residuals alone may 
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not be sufficient to assess the modeling results for N fertilizer studies. The main reason is that 
this does not assess accurately the reliability of the NYmax values derived from the quadratic 
models. Cerato and Blackmer (1990) previously showed that two models with very close R2 values 
could lead to very different NYmax. This is valid also when comparing different sets of parameters 
for the same model. The approach that is proposed here is to consider all possible sets of model 
parameters within a physically plausible range and calculate the probability that each set of 
parameters results in no errors (i.e., probability that this model is the proper fit). Since Y = f(N), 
p(Y) reflects the accuracy with which the model predicts yield as a function of the N rate.  
In the DSS, all possible sets of model parameters within a plausible range were considered for 
each N rate within a range of application rates. Values ranged from 0 to 19.5 t/ha with 0.5 t/ha 
increment for Y0, from Y0 to 20 t/ha with 0.5 t/ha increment for Ymax, and from 0 to 250 kg/ha with 
10 kg/ha increment for Nymax. The combination of these parameters (Y0, Ymax, Nymax) generates 
21,525 possible production models for a given application rate (N). 

Production probability assessment 
The calculation of the probability that the yield predicted by any given model (or combination of 
production function parameters) be right, was based on the assumption that the errors of 
estimation for all trials in the database were normally distributed. For any model, the estimation 
error or residual was calculated through the difference between predicted yield and actual yield 
of a trial (database record), weighted by the record similarity index (l): 

 (8) 

where Yi is the yield estimate (t/ha) for the ith model (Equation 4), Yj is the actual yield (t/ha) for 
the jth trial from the database, and lj indicates the similarity of the jth trial to the user’s conditions 
(Equation 3). Therefore, the ei,j is the yield estimation error for a combination of model i and 
database trial j. 
Figure 3 illustrates the distribution of errors obtained for one of many possible QP models (i.e., a 
given combination of Y0, Ymax and NYmax).  

( ) jji YY le ×-=ji,
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Figure 3. Example showing distribution of errors for an arbitrary model combination. 

Estimation errors were used to obtain the frequency distribution value of zero error for a given 
production model using the normal probability density function (Evans et al., 2000):  

 (9) 

where	ƒreq(Y)i is the probability density (frequency) of 0 error at the ith model, calculated by 
providing average avg (ei) and standard deviation of errors std (ei). The average of weighted 
residuals was calculated as: 

 (10) 

where the avg (e)i is the mean of the errors for the ith model, calculated from the errors of all j 
records/trials (1,140 errors in total for each model). After obtaining the average, the standard 
deviation of weighted residuals can be calculated as: 

 (11) 

where std (e)i was the standard deviation of the ith model, using residuals calculated at all jth 
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    (12) 

Finally, p(Y)i was the probability of achieving the yield Yi estimated by model i, after normalization. 
The probability of getting and error of prediction of zero is proportional to the probability p(Y) for 
that specific model.  
The probability of achieving yields at each possible combination of the model were calculated 
using the proposed errors to probability approach. However, the probability of achieving the 
estimated yield needs to be combined with the prices and costs probabilities as in equation 2 to 
integrate economic uncertainty associated with price/cost variations. Combining production and 
economic uncertainties will enable the generation of probabilities associated with possible profit 
margins for each N rate. 

Computation of the profit space 
The price (cY) and cost (cN) were formulated in seven equal discrete values, from 130 to 220 ($/t) 
and from 0.4 to 1.6 ($ kg/ha), respectively. The probability of each discrete value was calculated 
using the normal distribution density function, with means and standard deviations provided in the 
user input form for price and cost, respectively. Figure 4 illustrates the distribution of prices and 
cost using given mean and standard deviation values. 

 
Figure 4. Distributions of the cost of fertilization (a) and price of yield (b) model inputs. 

The NRCF for a specific case (i.e., for ith model, lth price and mth cost) and any given N fertilization 
rate was calculated using: 

 (13) 

where Y (Y0 i, Ymax i, NYmax i, N) is the yield function derived by combining equations 1 and 4 
together for ith combination of production function parameters. The cY is the discrete price of the 
harvested crop ($/t) at index l, N is the nitrogen application rate (kg/ha) and (cN)m is the discrete 
cost of fertilizer ($/kg) at index m. The probability of NRCF for a specific case (i.e., for ith model, 
lth price and mth cost) was calculated using: 

 (14) 
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where p(Y)i is the probability associated with the ith model, which was itself calculated using the 
error to probability method. Likewise, p(cY)l is the probability of having a yield price cY at discrete 
value l, and p(cN)m is the probability of the cost of fertilizer cN being at an mth discrete value.  
Calculating all possible NRCF values and associated probabilities at each specific N rate 
produced the profit space at each application rate. With 49 combinations of possible costs of yield 
and fertilizer, combined with 21,525 production models, a total of 1,054,725 (21,525 x 49) NRCF 
values were calculated at each N rate, each with a corresponding p(NRCF). These values can be 
summarized through the expected NRCF for each application N rate, which can be calculated for 
the whole range of possible rates, by joining Equations 13 and 14 together as: 

 (15) 

where NRCF(N) represents the expected NRCF at the given application rate N, calculated by 
summing up the NRCF values multiplied by their respective p(NRCF), for all combinations of 
models, prices and costs. 
The expected fertilization benefit (EFB) can then be calculated, by comparing the expected NRCF 
without fertilization (N rate is 0) and the expected NRCF at each nitrogen rate (N). The EFB values 
will show the increase in profit with respect to the increased fertilizer amount: 

   (16) 

where EFB(N) is the expected fertilization benefits ($/ha) at each nitrogen rate of N. NRCF(N=0) 
is the expected NRCF at the nitrogen application rate 0, and NRCF(N) is the NRCF at nitrogen 
amount N (kg/ha). Likewise, using this list of NRCF values, it is possible to find the economically 
optimum nitrogen rate (EONR), which is where the maximum NRCF is found from all considered 
application rates. Applying fertilizer beyond the proposed EONR may not lead to a further increase 
in net profits for the given agronomic conditions. 

Results and Discussions 
After completion of the numeric computation for a submitted request, the DSS sends a detailed 
report to the user as an e-mail message containing the results presented in different ways. The 
report includes a graph to visualize the estimated net returns of fertilization which provides the 
expected profit (NRCF) response as a function of nitrogen rate (Figure 5). A second graph allows 
the user to view the probabilities of different NRCF values at any given application rate, which 
corresponds to the computed profit space graph (Figure 6). In addition to these graphs, the report 
also includes the summary of NRCF and, EFB values at each potential nitrogen application rate. 
In the example illustrated in Figure 5 and Figure 6, medium values for all qualitative or quantitative 
input features were selected: clay loam soil, moderate weather (medium AWDR and CHU values) 
as well as medium nutrient contributor from a previous crop. 
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Figure 5. The expected NRCF as a function of fertilizer application rate 

Analyzing the NRCF values predicted for every application rate is a traditional way to determine 
optimum application rates. However, to assess the financial risk affiliated with different 
management scenarios (Anton 2009), one can, for example, analyze the probability of profit to be 
above a certain threshold and select the rate related to the anticipated profit with an acceptable 
level of probability (Figure 6). The decline in probability at given combinations of NRCF and 
application rate corresponds to an increase of the associated risk for these combinations, and 
vice versa. In Figure 6, the risk was classified into four subjective categories based on ranges of 
probabilities such as certainly (between 75% and 100%), most likely (50% to 75%), and possibly 
(25% to 50%). Higher anticipated NRCF values lead to higher risks at a chosen application rate. 
However, higher application rates shift maximum probability towards higher NRCF, i.e., an 
increase of fertilization rates reduces the NRCF achievement risk for the selected profit range. 
The probability of NRCF reduction is higher when a lower application rate than EONR rate is 
accepted and vice versa. Based on the QP model restrictions, the probability of severe economic 
loss for over-application is rather small. 
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Figure 6. Profit space, profits and probabilities as a function of application rate. 

The above analysis is based on current production conditions, and predictions are derived from 
these known conditions. However, the DSS can also be used to analyze the possible effects on 
expected returns of changes in the growing conditions over time and place. This can be performed 
through a sensitivity analysis of what happens when input features are changed.  

Sensitivity analysis 
The sensitivity of the DSS was examined by providing flexible scenarios varying the categories 
used in the user input form. For example, the sensitivity to precipitation was illustrated by 
alternatively selecting the dry, medium and wet conditions, while keeping constant the other 
attributes. The values for the constant attributes are listed in Figure 7, which shows the profit 
response for each precipitation category. Apparently, the medium conditions were found to be 
optimum and balanced in terms of profitable scenarios (Table 1). The reduction was lower with 
very wet conditions, whereas a significant economic loss was observed with very dry conditions. 
This indicates that the soil (loam) was more tolerant to abundant water than water stress. The 
DSS estimated near 40 $/ha higher profits for medium conditions when compared to very dry 
conditions at the optimum application rate. The EONR was the same for all the scenarios since 
the fertilizer cost was relatively low, and results may be less sensitive to the cost of fertilizer than 
to the price of yield.  
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Figure 7. Profit response for the precipitation (AWDR) classes. 

Table 1.Sensitivity assessment of climate conditions (precipitation) on the expected benefits. 

AWDR EONR 
kg/ha 

EFB 
$/ha 

NRCF 
$/ha 

Probabilities of NRCF > 
1000 $/ha 1500 $/ha 2000 $/ha 2500 $/ha 

Very Dry 170 922 2008 91% 72% 47% 25% 
Medium 170 955 2050 91% 75% 50% 27% 
Very Wet 170 956 2040 91% 74% 49% 27% 

Other analyses done with the DSS indicate that the sensitivity to precipitation would change under 
a different input/production context. For example, the economic benefits expected with the same 
precipitation categories would likely change if a clay soil was specified instead of a loam soil.  
The sensitivity to fertilizer cost can be assessed by specifying the costs and prices structure 
manually in the user input. To illustrate sensitivity to fertilizer cost, independent scenarios were 
submitted in subsequent requests to the DSS, in which the mean fertilizer cost was high (1.2 $/kg), 
low (0.3 $/kg) and average (0.6 $/kg). Error! Reference source not found., which includes the 
values for the features that were kept constant, illustrates the profit response lines for the different 
cost values. 
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Figure 8. The expected profits for the fertilizer low, average and high-cost scenarios. 

Apparently, if the cost was high, the system proposed lower application rates (EONR =150 kg/ha) 
and there was a decline in the expected profit of about 90 $/ha, and 20 kg/ha in the EONR when 
compared to the average cost scenario (Table 2). On the other hand, if the fertilizer was cheaper 
(low cost) then the system proposed very high application rates (EONR = 190 kg/ha, 20 kg/ha 
more than with average cost) with higher net returns than the other scenarios. This makes sense 
since increasing fertilizer costs lowers the potential profits, and vice versa. The probability of profit 
achievement was higher when the mean cost was low, and vice versa.  

Table 2. Sensitivity assessment of fertilizer cost on the expected economic returns. 

Cost 
value 

Mean 
USD/kg 

EONR 
kg/ha 

EFB 

$/ha 
NRCF 
$/ha 

Probabilities of NRCF > 
1000 $/ha 1500 $/ha 2000 $/ha 2500 $/ha 

Low 0.3 190 983 2118 93% 78% 55% 31% 
Average 0.6 170 952 2086 91% 76% 52% 29% 

High 1.2 150 856 1991 90% 73% 48% 26% 

Although a sensitivity analysis can be performed with the other features, only sensitivity to 
precipitation and fertilizer cost were shown here to illustrate the process. These sensitivity 
analyses have shown that it is possible to anticipate the variability in the economic returns caused 
by changes to the production context. The results were based on records currently available in 
the database and are expected to change with the addition of new trials. In future, with a more 
complete database, it should be possible to assess the impact of changes in management, such 
as going from conventional tillage to no-till practices. 
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Conclusion 
The NumericAg DSS enables the determination of the optimum average application rate that 
maximizes expected profits (net return over cost of fertilization) for a given set of farm specific 
conditions. Probabilities associated with possible anticipated profits, at a given application rate, 
were found to be useful in determining an application rate based on the individual risk preference. 
The DSS handles production uncertainties by modeling the probability of yield prediction errors, 
by considering economic uncertainties and by using price and cost distributions. Uncertainty-
based treatment of each model input and dynamic assessment of the importance of each record 
in the underlying production database, using the record similarity concept, constitute the unique 
features of this algorithm. The DSS also allows for a better understanding of the sensitivity of 
expected economic benefits for various input features. 
The current version is illustrated using only one crop and one fertilizer disregarding effect of split 
application. However, the methods and equations specified in the material and methods section 
can be generalized and used with other fertilizer variants (such as potassium or phosphorus as a 
single controlled input), and with other crops provided the appropriate database of prior historical 
trials for the respective fertilizer and crop has been included in the database. The DSS is evolving 
with ongoing advancements and the prototype application can be accessed online at 
http://www.numericag.com. 
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