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Abstract. Electromagnetic induction (EMI) proximal soil sensor systems can deliver rapid 
information about soil. One such example is the DUALEM-21S (Dualem, Inc. Milton, Ontario, 
Canada). EMI sensors measure soil apparent electrical conductivity (ECa) corresponding to 
different depth of investigation depending on the instrument configuration. The interpretation of 
the ECa measurements is not straightforward and it is often site-specific. Inversion is required to 
explore specific depths. This inversion process is an “ill-posed” problem which might lead to non-
existing, or non-unique solutions. Commonly, a complicated regularization method is chosen to 
tackle this problem. In this paper, a simple exhaustive “brute-force” method was developed to 
characterize soil layering depths and their corresponding ECa values. A two-layer soil ECa model 
was used to depict the depth of the topsoil layer and its corresponding ECa value. The two-layer 
model represents a shallow (topsoil) and deeper subsoil depths. From the high density DUALEM-
21S input data, the “brute-force” algorithm was successfully converged to the minimum mean 
squared error (MSE) for each depth increment. The software’s GUI was intuitive and provided an 
up to date progress of the calculations. This algorithm has been tested successfully to determine 
the topsoil and subsoil ECa values together with muck soil layer depth on the 25-ha field near 
Naperville, Quebec, Canada.  
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Introduction 
One step in implementing precision agriculture (PA) practices is data collection, which utilizes 

various sensors to recognize the characteristics of numerous on-farm components (Srinivasan, 
2006). Proximal soil sensors, such as electromagnetic induction (EMI) sensors, can deliver spatial 
and temporal information about soil. EMI sensors measure soil apparent electrical conductivity 
(ECa) and they have become a common way to rapidly characterize soil heterogeneity. DUALEM-
21S (Dualem, Inc., Milton, Ontario, Canada) is a popular example of an EMI sensor used in 
precision agriculture. DUALEM-21S is a sensor with a dipole configuration (the distance of the 
receivers to transmitter coil are more than ten times the diameter of the transmitter loop) and fixed 
working frequency of 9 kHz (Daniels et al., 2008). It has one vertical transmitter (Tx) coil with 2 
sets of receivers (Rx) coils spaced 1 and 2 m for horizontal coplanar orientation (HCP) and 1.1 
and 2.1 m for perpendicular coil orientation (PRP). 

The interpretation of ECa readings was not straightforward and often it was site-specific 
(Bronson et al., 2005; Pedrera-Parrilla et al., 2016), as conduction in soil can be affected by 
various factors, such as soil water content (Brevik et al., 2006), clay content (Sun et al., 2011), 
soil temperature (Padhi and Misra, 2011), mineralogy (McNeill, 1980a) and salinity (Corwin and 
Lesch, 2003). Therefore, cross validation with standard laboratory measurements together with 
expert interpretation were essential to provide reliable information (Doolittle and Brevik, 2014). 
Despite its interpretation complexity, ECa measurements from EMI sensors also provide 
information about change of ECa magnitude with depth. The process to obtain this information is 
called inversion. Inversion is an ill-posed problem which commonly is solved by regularization, 
followed by stabilization through selecting the best possible solution (Zhdanov, 2015). Generally, 
there are two versions of EMI inversion, the finite element method and the fixed slice cumulative 
depth response approach. 

The finite element inversion approach has been used extensively with various EMI sensors, 
such as EM34 (Fernando A. Monteiro Santos, 2004), EM38-EM31 (Triantafilis and Santos, 2010), 
EM38-EM34 (Triantafilis and Santos, 2009), and DUALEM 421 (F. A. Monteiro Santos et al., 
2010; Triantafilis et al., 2011; Huang et al., 2016) with acceptable results. In general, the finite 
element inversion will generate a stronger correlation between inverted ECa results and measured 
soil properties, if using joint data from various EMI sensors (Triantafilis et al., 2013; Triantafilis 
and Monteiro Santos, 2013). On the other hand, the fixed slice cumulative depth response 
approach has been used for archaeological mapping (Timothy Saey et al., 2008; Timothy Saey 
et al., 2012b; De Smedt et al., 2013), detecting the depth of clay layers (T. Saey et al., 2009) and 
identifying ploughing depths (Timothy Saey et al., 2012a). The method started with the 
determination of several fixed soil depth slices and is then followed by ECa forward calculation 
using the EMI cumulative response and modelled ECa at a specified depth slice. Further, the 
calculated ECa was compared with the measured ECa to assess the misfit value. The initial ECa 
model was further iterated with a fixed depth step (i.e., every 1 cm (Sudduth et al., 2013)) until it 
reached a specified iteration number. Another option is to use the Levenberg-Marquardt 
minimization algorithm to reach the convergence solution. However, often, this minimization 
algorithm did not converge into an acceptable solution (Timothy Saey et al., 2012b). 

In this research, an exhaustive “brute-force” method was developed to characterize soil layering 
depths and their corresponding ECa values. DUALEM-21S has four measurement modes; hence, 
it can be used to generate up to four unknowns characterizing the soil profile. Thus, a two layer 
soil ECa model was sufficient to depict the depth of the topsoil layer and its corresponding ECa 
value. The two-layer model represents a shallow (topsoil) and deeper subsoil depths, which was 
expected to be sufficient to determine depth of muck soil over clay subsoil in a Quebec vegetable 
production farm. 
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Materials and Methods 

1. Response Function 
EMI sensors measure soil ECa under the assumption of linearity between measured ECa and 

the true homogeneous halfspace conductivity. The linear relationship only holds at the low 
induction number (< 100 mS m-1) (McNeill, 1980b). The induction number is the ratio of inter coil 
spacing to skin depth. The depth where the primary field is attenuated to 1/e (36.8%) is called 
skin depth. Within this range, soil ECa can be described as: 

 𝐸𝐶# =
%

&'()*
𝐻)

𝐻,- 	(𝑆	𝑚23) (1) 

where: ω = 2πf (s-1), f = frequency (Hz), μ0 = permeability of free space (1.25663706 x 10-6 m kg 
s-2 A-2), s = primary to secondary coil (inter coil) separation (m), Hs = secondary electromagnetic 
field at the receiver coil and Hp = primary electromagnetic field at receiver coil (A m-1).  
Soil is not uniform and hence, there are various permeability levels (Patitz et al., 1995). Therefore, 
ECa interpretation needs special training and often requires other sensors to validate the ECa 
measurement. Under the low induction number (LIN) assumption, the relative (ϕ) and cumulative 
(R) depth response function for vertical (v), and perpendicular (p) coils are the following: 
for vertical dipole orientation (HCP), 

 𝜑6(𝑧) = 4(𝑧)(4𝑧9 + 1)2< 9=  (2) 

 𝑅6(𝑧) = 1 − (4𝑧9 + 1)23 9=   (3) 
while for perpendicular dipole orientation (PRP), 

  𝜑,(𝑧) = 2(4𝑧9 + 1)2< 9=   (4) 

  𝑅,(𝑧) = 2𝑧	(4𝑧9 + 1)23 9=   (5) 

where z is normalized depth (soil depth divided by inter coil spacing). Following are the graphs of 
relative and cumulative depth response functions: 

 
(a) 

 
(b) 

Fig. 1 DUALEM-21S Response Function: (a) Relative and (b) Cumulative Response Function 

The response of the n-th soil layer to the cumulative ECa (σa
c) can be described as: 

𝜎#B = 𝜎3𝑅(CD) + ∑ 𝜎FG𝑅(CH) − 𝑅(CHID)J
K23
FL9 + 𝜎KG1 − 𝑅(CMID)J  (6) 

where σ1 is a zero (air) conductivity since EMI sensor might be used at different height to 
particularly examine a specific depth of interest. 
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2. Brute-Force Algorithm  
The fixed slice cumulative depth response approach was selected as a base method to invert 

the soil ECa measurement. Matlab R2015b (MathWorks Inc. Natick, Massachusetts, USA) was 
used as a platform to develop the algorithm and its Graphical User Interface (GUI). The two-layer 
model was used to represent a shallow root zone (topsoil) and deeper subsoil. The soil depth 
increment was set to 5 cm with a maximum depth of 150 cm. The modification from the existing 
approach relies on replacing Levenberg-Marquardt minimization into an exhaustive “brute-force” 
algorithm. Furthermore, the calculated ECa model was iterated based on the modelled soil ECa 
value instead of incrementing the soil depth. 

The modified algorithm can be described as follows: assume that at a specific location the 
algorithm needs to calculate the soil ECa at the first 10 cm depth and below. The base setup 
matrices are: 

  𝜎#BN × D = 𝜎#B#PB  (7) 

where 𝜎#BN is 4 x 2 matrix consisting of DUALEM-21S cumulative ECa response at top (d) and 
deep (>d) soil depth, D is 2 x 1 matrix consisting of the modelled top (σd) and deep soil ECa (σ>d), 
𝜎#B#PB is 4 x 1 matrix consisting of calculated ECa value for all DUALEM-21S coil orientations. 

The inversion process was started by defining each DUALEM-21S measurement mode with its 
top (Rd) and deep (R>d) soil cumulative depth response from (3) and (5) to form 𝜎#BN matrix. Then, 
forward calculation was performed to estimate the calculated ECa (𝜎#B#PB matrix) from the 
DUALEM-21S cumulative response function (𝜎#BN matrix) and the modelled ECa value (D matrix). 
The calculated ECa value was then subtracted with the measured ECa to get the misfit value by 
using Root Mean Squared Error (RMSE) method. The maximum modelled ECa value was set to 
200 mS m-1 as this is the typical non-saline field (Staff, 2014), with resolution of 0.2 mS m-1. 
Therefore, there are one million combinations of σd and σ>d. 

After all iterations, the cumulative depth response values of 𝜎#BN matrix were changed at 10 cm 
depth increment then proceeded with similar processes. Since the topsoil has a maximum 150 
cm depth, therefore, we have fifteen sets of σd and σ>d. The appropriate depth combination 
solution would be the one that has the lowest RMSE value. The inversion flowchart can be seen 
in Fig. 2. 

3. DUALEM-21S Mapping 
DUALEM-21S mapping was performed at 25-ha field located at Napierville, Quebec, Canada 

(Fig. 3). The sampling rate was set at 1 Hz resulting in an approximate 5 m separation distance 
between records (mean of 10 consecutive measurements). The distance between transects was 
set to 10 m. Before starting the inversion, all ECa data points were reduced to achieve equal 
spatial resolution between points using decimation method. Thus, 2828 DUALEM-21S data were 
used for the “brute-force” inversion from the initial 5655 data points. After the inversion was done, 
the resulting σd and σ>d was spatially interpolated using Ordinary Kriging option for Geostatistical 
Analyst in ArcMap 10.4.1 (ESRI, Redlands, California, USA). 
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Fig. 2 DUALEM-21S Brute-Force ECa Inversion Flow Chart 
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Fig. 3 DUALEM-21S Mapping Location 

Results and DIscussions 
Fig. 4 represents the GUI of the brute-force inversion software. There are two *.csv input files 

needed for the software to run: DUALEM-21S measurement data and cumulative depth response. 
User can monitor or cancel the inversion process anytime. A completion process screen will 
prompt the user if the inversion is finished. The inversion result was saved into the *.xlsx file 
format and stored in the same folder as the initial DUALEM-21S measurement data. 

 

Fig. 4 The Brute-Force Inversion Software GUI 

In one soil depth combination (i.e., topsoil depth d = 10 cm and deep soil depth d > 10 cm), the 
inversion process results in one million σd (shallow) and σ>d (deep) ECa values with their 
corresponding RMSE (Fig. 5). Then the inversion software will select the minimum RMSE. After 
all depth combinations are inverted (Fig. 6), the algorithm selects the minimum RMSE from the 
successive depth increments; in this illustration, it was 10 cm which means that the depth of 
topsoil layer in this location was 10 cm. These processes were repeated for each location. 
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The example of brute-force inversion results along 110 m transect are shown in Fig. 7. This 
figure suggests that the depth of shallow ECa layer was between 5 to 10 cm which positively 
correlate with shallot rooting depth. However, this result needs to be validated through laboratory 
soil sampling or direct soil EC measurements using EC probe. Furthermore, the shallow layer 
seems to have very low ECa (< 5 mS m-1). This may correspond to very dry and loose soil. Finally, 
as previously mentioned, the brute-force inversion does not create any smoothing between 
shallow and deep layers. Therefore, the inversion result may not represent the real soil EC 
gradient. Three-dimensional spatial interpolation might become alternative to achieve a smooth 
transition between shallow and deep ECa layers. 

 
Fig. 5 Three-Dimensional Graph of σd (shallow), σ>d (deep) and their RMSE at d = 10 cm 

 
Fig. 6 Example of Brute-Force Inversion RMSE Value from 10 cm Depth Increments on One Selected Location 
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Fig. 7 Example of ECa Shallow and Deep Along 11 Transect Points 

The brute-force inversion result map for shallow and deep ECa are shown in Fig. 8. High soil 
ECa at shallow depths shown in the east to south-east area of the field (Fig. 8a) corresponds to 
wet conditions as we observed when surveying. In the deep ECa map (Fig. 8b), high ECa shown 
in the east to north-east side of the field corresponds to the drainage trench. Moreover, the nursery 
field located on the east side of the field was regularly sprayed with water which might contribute 
to higher soil ECa values. Overall, the ECa maps look realistic with smooth transitions. 

 
(a) 
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(b) 

Fig. 8 Inversion Map: (a) Shallow ECa, (b) Deep ECa 

Another brute-force inversion result is depth of topsoil (shallow) layer as shown in Fig. 9. From 
this map, the user can calculate the volume and the average depth of topsoil. The volume of the 
topsoil layer is 222,656.4 m3 with an average depth of 88.9 cm. According to the farmer, the 
topsoil type is muck soil. Therefore, knowing the volume and georeferenced depth of the muck 
soil layer provide farmers with valuable information for adjusting their soil management practices. 

 
Fig. 9 Depth of Topsoil Layer 
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Conclusion 
In this study a brute-force method was applied to develop a software for determining spatially 

variable two-layer model that could characterize change of ECa with depth.  
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