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Abstract. Understanding the spatial variability of soil chemical and physical attributes allows for 
the optimization of the profitability of nutrient and water management for crop development. 
Considering the advantages and accessibility of various types of multi-sensor platforms capable 
of acquiring large sensing data pertaining to soil information across a landscape, this study 
compares data obtained using four common soil mapping systems: 1) topography obtained 
using a real-time kinematic (RTK) global navigation satellite system (GNSS) receiver, 2) 
apparent soil electrical conductivity obtained using an electromagnetic induction instrument with 
topographic data, 3) combination of apparent soil electrical conductivity obtained using galvanic 
contact resistivity sensing, subsurface soil reflectance and direct soil pH measurements with 
topographic data, and  4) passive gamma-ray spectroscopy with topographic data with regards 
to their capability to predict six soil properties: clay content, cation exchange capacity (CEC), 
soil pH, soil organic matters (SOM) content, extractable potassium (P) and phosphorus (K) 
levels. These systems were used to map two agricultural fields: NX (45 ha) and ST (40 ha) in 
northeastern Ontario, Canada. It was shown that sensor combinations produced lower 
prediction errors as compared to individual sensors. 
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Introduction 
Understanding the spatial variability of soil chemical and physical attributes optimizes the 
profitability of nutrient and water management for crop development. Soil mapping systems with 
various types of proximal soil sensors provide crop growers with a great opportunity to access 
soil heterogeneity at a sub-meter spatial scale in an efficient and less invasive manner. Studies 
suggest that sensing information linked to soil pH, electrical conductivity, organic matter content, 
soil moisture, etc., can be obtained in a relatively cost-effective manner (Adamchuk 2007; Lund 
2011; Heege 2013). Given the easy accessibility to many options of PSS in recent decades, 
sensor-based soil characterization has gained in popularity (Viscarra Rossel et al. 2010). 
Various types of PSS capable of directly or indirectly estimating the magnitude of soil properties 
commonly quantified by conventional soil testing methods are available on the market. The 
majority of sensor deployment scenarios employ off-site interpretation of sensor-based soil 
maps to alter nutrient input (Viscarra Rossel et al. 2011). Although many sophisticated soil 
mapping systems can be used to detect specific soil properties, one single system capable of 
responding to all soil properties does not yet exist (Adamchuk et al. 2011; Mahmood et al., 
2012).  
An economical alternative incorporates the strengths of different sensors by assembling them 
on an on-the-go platform (Kuang et al. 2012; Mahmood et al. 2012; Adamchuk et al. 2011). 
Such platforms are typically equipped with a real-time kinematic (RTK) level global satellite 
system (GNSS) receiver to take into account the topographic-induced hydrological effects on 
the spatial distribution of agri-chemicals and yield. Elevation and its derivatives, such as slope, 
aspect, and topographic wetness index (TWI), flow direction, flow length, catchment area, etc. 
have been used as auxiliary data for approximate soil heterogeneity (De Benedetto et al. 2013; 
Piikki et al. 2013, 2015). Additionally, soil conductivity sensors, potable ion-selective sensors 
and soil reflectance sensors are the three other popular choices for precision farming 
applications (Srinivasan, 2006). Conductivity sensors measure the electrical conductivity of bulk 
soil to infer soil texture, salinity and moisture. On-the-go ion-selective sensing systems use 
electrodes, such as ion-selective electrode and ion-selective field effect transistor to detect ion 
activity associated with plant required nutrients in a soil solution (e.g., pH, nitrate-N, etc.) from 
soil while traveling. Soil reflectance sensors are based on the principle of spectroscopy to 
quantify soil properties associated with color changes, such as organic matter, moisture content 
and texture and other influential properties such as cation exchange capacity, soil pH and total 
nitrogen. Intensive research studies have been conducted to investigate the optimum 
wavelengths or wavelength ranges (e.g., visible, mid-infrared, near-infrared) for the soil 
properties of interest. Thus, the ability to take into account the effects of sensor responses from 
multiple soil attributes when translating sensing measurements into a specific attribute of 
interest has become an attractive field of research for sensor developers.  
Considering the advantage and accessibility of various types of multi-sensor platforms capable 
of acquiring large sensing data pertaining to soil information across a landscape, this study 
compares the predictability of four common soil mapping systems: 1) topography only (RTK), 2) 
DUALEM-21S (Dualem, Inc., Milton, Ontario, Canada) with topography, 3) Veris MSP3 (Veris 

Technologies, Inc., Salina, Kansas, USA) with topography, and 4) SoilOptix (Practical Precision, 
Inc., Tavistock, Ontario, Canada) with topography for six soil properties: percent clay, cation 
exchange capacity (CEC), soil pH, soil organic matters (SOM), potassium (K) and phosphorus 
(P) levels. 
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Materials and methods 
To compare the soil predictability of the four selected soil mapping systems, the procedure 
illustrated in Figure 1 was followed. Field data was collected at two agricultural fields, NX (2015) 
and ST (2016), located in Eastern Ontario, Canada (Figure 2). NX and ST are approximately 
40 ha and 45 ha in area, respectively.  Data collection was performed included soil sensing 
using the four soil mapping strategies and through soil sampling.  

 
Figure 1. Flowchart illustration the procedure used to compare the predictability of the four soil 
mapping systems.   

 
Figure 2. Geographic locations of the two studied fields: ST and NX. 
Soil sensing  
As shown in Figure 3, the four popular soil mapping systems: RTK, Dualem, MSP3 and 
SoilOptix were used to collect dense geo-referenced sensor measurements in this study. Their 
description and evaluated sensor variables are listed in Table 1. An RTK-level GNSS receiver 
was used to collect elevation measurements and to extract different topographic features: 
elevation, slope, aspect ratio index (ARI) and topographic wetness index that potentially affect 
agro-chemical movement across a field. ARI was calculated as sin(aspect/2). TWI was 
calculated using SAGA GIS version 2.4 (University of Hamburg, Hamburg, Germany) developed 
by Conrad et al. (2015) to quantify topographic-induced hydrological effects. Dualem, pairing a 
horizontal co-planar geometry (HCP) and a perpendicular geometry (PRP) windings, was used 
to obtain ECa measurements according to the signals accumulated from four depths [e.g., PRP1 
(0-0.5 m), HCP1 (0-1.5 m), PRP2 (0-1.0 m) and HCP2 (0-3 m)]. MSP3 housing an EC surveyor 
(EC 3100 model) to collect ECa measurements based on the signals from two depths [e.g., 
shallow (0-0.3 m) and deep (0-0.9 m)], a set of pH electrodes to estimate soil pH, and an dual-
wavelength OpticMapper Module to obtain visible red (660 nm) and near-infrared (940 nm) soil 

Data collection 

Soil sensing using soil mapping system Soil sampling 

Spatial interpolation of sensor data 

Data fusion of sensor and sampling data 

Regression analysis 

Comparison 
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reflectance at a depth of approximately 5 cm below the surface. SoilOptix scanner was used to 
collect the selected attributes of gamma rays emitted from top soil (0-0.3 m) including total count, 
40K, 232Th and 238U. Raw sensor data was filtered to remove abnormal values. As listed in 
Table 1, a total of 17 sensor variables were used to predict soil properties; among them, four 
under RTK, four under Dualem, five under MSP3, and four under SoilOptix.  
    

 
Figure 3. Four soil mapping systems: (a) RTK, (b) Dualem, (c) MSP3, and (d) SoilOptix used in 
this study. 
Table 1. The descriptions and the evaluated sensor variables of the four soil mapping platforms. 
Systems Soil characteristics Sensing variables  
RTK Landscape Elevation 

TWI – Topographic wetness index 
Slope 
ARI – Aspect ratio index 

Dualem Soil apparent electrical conductivity (ECa) PRP1 
HCP1 
PRP2 
HCP2 

MSP3 Soil apparent electrical conductivity (ECa) 
Soil acidity 
Reflectance of soil color 

EC.sl – Shallow ECa 
EC.dp – Deep ECa 
pH.s – Veris soil pH 
RED – Red reflectance 
NIR – Near-infrared reflectance   

SoilOptix Top soil gamma rays r.TC – Total count of gamma rays 
r.40K – Gamma rays 40K  
232Th – Gamma rays 232Th 
238U – Gamma rays 238U 

Soil sampling 
Soil sampling was performed to investigate the predictability of the four mapping systems and to 
develop further strategies for soil mapping optimization. Three sampling strategies: grid, target 
and validation samplings were deployed at the two selected fields. Grid sampling was performed 
using 1-ha square grids. With each grid, one composite soil sample was formed by mixing 
multiple soil cores scattered within the grid cell at a fixed depth of 0.15 m. A total of 35 and 46 
grid samples were collected for the ST and NX fields, respectively. Target sampling locations for 
both fields were modeled using a newly developed algorithm, Neighborhood Search Algorithm 

(a) RTK 
(b) Dualem 

(c) MSP3 

(d) SoilOptix 
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(Dhawale et al., 2016). This approach determined 20 optimal locations at each site by 
delineating spatial-clusters based on the spatial variability of multiple sensor layers. Validation 
samples were collected as a separated dataset for validation purposes. 10 random samples 
were obtained for each field. The total number of soil samples was 65 and 76 for ST and NX, 
respectively. All sampling locations were geo-referenced using a Garmin handheld GNSS/GPS 
device with WASS correction. The collected soil samples were sent to certified laboratories [i.e., 
A &L Canada Laboratories Inc. (London, Ontario, Canada) for chemical analysis and Agro-
Enviro-Lab (La Pocatière, Québec, Canada) for textural analysis and soil organic matter] to 
obtain soil property content. In this study, six measured soil properties of interest were clay 
content (%), SOM (%), pH, CEC (meq hg-1), P (ppm), K (ppm).  Figure 4 illustrates the spatial 
distribution of data points collected using soil mapping systems and soil sampling.        

  
Figure 4. Illustration of the spatial distribution of sensor measurements and soil sampling 
locations at the two studied fields ST and NX.   
Spatial interpolation and extraction 
Ordinary kriging (OK) interpolation was used to create the continuous sensor data surface as 
sensor measurements were distributed along multiple travelling passes with different fixed 
intervals. The interpolated surface allowed further extraction of sensor data at soil sampling 
locations. The commercial GIS software ArcGISTM developed by ESRI (2015) was used to 
execute this task. In its Geostatistical Analyst tool, a 2nd degree polynomial surface trend 
removal function was used to ensure the autocorrelation of sensor data following a spherical 
fitting model. All point based sensor data layers were interpolated through this process and 
stored as a raster format with 5m x 5 m grid cells. Furthermore, ArcGIS was also used to 
perform spatial extraction of sensor data (i.e., raster surface) at each soil sampling location. A 
tabular file showing the coordinates of soil sampling locations and corresponding soil analysis 
data and multiple types of sensor measurements was prepared for regression analysis.       
Regression analysis 
In this study, the analyses were conducted using R version 3.4 (R Development Core Team, 
2013). Exploratory analyses: histogram, boxplot and correlation matrix were used to investigate 
data distribution, quality, and pattern providing the basis of classical multivariate regression. 
Both histogram and boxplot were used to guide the process of outlier removal to optimize 
regression performance. Pearson correlation matrix was used to provide rapid observation of 
the senor responses to soil properties. Partial least squares regression (PLSR) analysis was 
used to evaluate the strength of soil predictability using the four mapping systems under multiple 
linear models. As topographic measurements providing substantial soil characteristics are easily 
available, this study compared the soil prediction using 1) RTK only, 2) Dealem + RTK, 
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3) MSP + RTK and 4) SoilOptic + RTK. The interaction terms of predictor variables were added 
to regression analysis. To obtain a global comparison of the prediction quality, all soil samples 
(i.e., 76 at NX; 65 at ST) were used in the regression analysis regardless of the different 
sampling strategies. As a rule of thumb, the predictor variables were limited to 7, which was 
10% of the number of samples, in the model selection of PLSR analysis. Regression coefficient 
(R2) and root mean squared error of prediction model (RMSEP) were used as quality indicators.         

Results and discussion 
Figure 5 is the histogram of sensor data showing the density distribution plot, mean (µ), 
standard deviation (s) and number of measurements (n) for both fields. In general, Dualem 
PRP1 ECa was lower (µ = 15.67 mSm-1 at NX and µ = 15.67 mSm-1 at ST) than Veris shallow 
ECa with a smaller standard deviation (s = 15.67 mSm-1 at NX and µ = 15.67 mSm-1). Both ECa 
instruments revealed two spatial clusters with two data peaks across ST. In terms of topology, 
NX was situated at a higher elevation and was relatively flatter than ST. The total count of 
gamma rays was very similar in terms of mean, standard deviation and range. Red reflectance 
was relatively smoother at ST with a narrower range. Both pH data layers presented a similar 
range (roughly 5 ≤ pHs ≤ 8; s < 1.0). Veris pH sensor also reveals two clusters similar to ECa 
instruments at ST.  
Figure 6 is the histogram of measured soil properties. For the selected properties, the 
measurements obtained using grid and target sampling strategies show similar distribution 
patterns. Both fields have a similar range of clay content, yet, NX contained the higher clay 
percentage (20% – 25%) than the one of ST (15% – 20%). The range of SOM was also similar 
with slightly higher variations at NX. Although the range at both fields was similar, the acidity 
was stronger at ST. Similar to Veris pH sensor data, soil sampling of pH also revealed two data 
clusters suggesting potential subdivisions across the field. The level of CEC was slightly higher 
at ST than NX, which was consistent with the higher SOM level at St. Potassium level and 
variation were much higher at ST than NX (µ = 141.56 ppm and s = 47.78 ppm at ST; µ = 83.34 
ppm and s = 18.45 ppm at NX). Phosphorus level was also higher and more varied at ST than 
NX with (µ = 40.34 ppm and s = 19.65 ppm at ST; µ = 33.60 ppm and s = 15.67 ppm sat NX).        
Figure 7 shows the correlation matrixes of the measured soil properties and the sensor 
measurements for both NX and ST, illustrated by using Pearson correlation coefficient (r). The 
increased color intensity represented a stronger correlation with blue showing positive 
correlation and red showing negative correlation. Among the RTK variables, clay content was 
highly correlated with elevation at NX (r = -0.85) but weaker at ST (r = -0.62). TWI was another 
topographic variable showing good correlation but only presented at ST (r = 0.62). The four 
Dualem sensor variables all highly correlated with clay content, in particular, PRP1 (r = 0.79) for 
both fields. MSP3 variables were strongly correlated with clay content except RED reflectance 
for the NX field. Among them, EC.sl (the shallowest ECa measurements of MSP3) showed the 
strongest correlation with clay content (r = 0.89 at NX and r = 0.8 at ST), similar to PRP1 
(Dualem’s shallowest ECa measurements). Two variables of SoilOptix: r.232Th and r.TC 
showed a strong correlation with clay content. For SOM correlation, all four mapping systems 
had a weak to moderate correlation (-0.45 < r < 0.45) with elevation and ECa associated 
variables performed slightly better at NX. Such correlation patterns did repeat at ST and only pH 
showed a moderate correlation (r = -52). The correlation with measured pH was very different 
for the two fields. RTK variables (except ARI), Dualem variable, and MSP3 variables (except 
optic reflectance) were well correlated with soil pH and CEC at ST. However, all mapping 
systems performed poorly at correlating soil pH, except MSP3 variables at NX. At least two 
variables from each mapping systems had good correlation with CEC at ST. As for P and K, all 
four systems provided poor correlations. Figure 8 is the correlation matrix of different sensor 
measurements to investigate the potential collinearity. Visually, the two matrixes were similar 
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with slight differences. Among them, ARI, RED, r.40K, r.238U were not correlated with any other 
variables at both fields. Slope and TWI were not correlated with the rest of variables at NX field.  

 
Figure 5. Histograms showing the distribution of sensing measurements collected at NX and ST 
fields.   
     

 
Figure 6. Histograms showing the distribution of soil property values obtained through grid and 
target samplings.   
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Figure 7. Correlation matrix showing the correlation between sensor measurements and soil 
properties for NX and ST fields. 

 
Figure 8. Correlation matrix showing the collinearity among sensor variables.   
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Figure 9 illustrates the spatial autocorrelation of different sensor measurements using an 
experimental semivariogram. All plots showed a tendency of spherically-modelled curve with 
various values of nugget, sill and range. These inconsistent spatial structures of senor data 
across the two evaluated fields suggest the uniqueness of soil composition at each site. 
Figure 10 shows the data distribution patterns of the extracted sensor measurements at 
sampling locations (illustrated in red) with reference to the distribution of the entire sensor data 
(illustrated in black). The similarity in the two colored patterns in each plot suggests that the 
extracted sensor measurements were representative of further PLSR regression.    

 
Figure 9. Semivariograms of different sensor measurements at NX and ST fields. 

 
Figure 10. Histograms showing the patterns of sensor measurements at sampled locations with 
respect to the entire field for different sensor variables at NX and ST.     
Figure 11 shows the comparison of predictability of RTK only, Dualem + RTK, MSP3 + RTK 
and SoilOptix + RTK for clay content, SOM, soil pH, CEC, P and K for NX and ST fields. In 
general, MSP3 + RTK performed the best in terms of lower RMSEP and higher adjusted R-
squared. The only exception was the clay prediction at ST where SoilOptix + RTK performed the 
best. All prediction models resulted in model error (i.e., RMSEP) lower than standard deviation 
(denoted as s) of measurements, except the prediction of soil pH using SoilOptix + RTK for NX 
and the prediction of P using Dualem + RTK for NX field. In most cases, RTK alone as well as 
SoilOptix + RTK showed the poorest performance. As for the prediction quality, clay, pH and 
CEC predictions were excellent with the highest adjusted R2 ≈ 0.8. Yet, the four mapping 
systems poorly estimated P and K content, in particular for P with adjusted R-squared < 0.4. 
The quality of K prediction using Dualem + RTK or SoilOptix + RTK for ST was moderated with 
adjusted R2 ≈ 0.6. Except MSP3 + RTK, the quality of SOM prediction using the rest of systems 
was not great.               
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s: standard deviation 

Figure 11. Comparing the predictability of the four mapping systems 1) RTK, 2) Dualem + RTK, 
3) MSP3 + RTK and 4) SoilOptix + RTK for the six measured soil properties: Clay, SOM, pH, P 
and K.      

Conclusion  
According to the results, MSP3 with topographic attributes from RTK provided very promising 
predictability for several soil properties of interest. Although the ECa related measurements of 
both mapping systems were strongly correlated, the Dualem system with RTK did not perform 
as well as MSP3. This result suggests the advantage of fusing various types of sensor 
measurements to optimize soil characterization. Therefore, further study will focus on 
developing the calibration strategies for a MSP3 and RTK combined system to improve the 
quality of soil thematic maps.         
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