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Abstract. From a Precision Agriculture perspective, it is important to detect field areas where 
variabilities in the soil are significant or where there are different levels of crop yield or biomass. 
Information describing the behavior of the crop at any specific point in the growing season typically 
leads to improvements in the manner the local variabilities are addressed. The proper use of 
dense, in-season sensor data allows farm managers to optimize harvest plans and shipment 
schedules under variable plant growth dynamics, which may originate from soil spatial variability 
and management conditions. Sensing of crop architectonics has been used as a diagnostic tool 
in this context. Moving from the subjective visual estimation of farm workers to automated sensing 
technologies allows for improved repeatability and savings in cost, time, and labor. The goal of 
this paper is to report on the evaluation of a prototype sensor system embedded in a portable, 
low-cost instrument for green vegetable production. The prototype system is currently in its 
second iteration, featuring improvements for issues found in a previous experiment. The system 
involves circular scanning of crop canopies to identify crop biomass yield using laser triangulation. 
The results of these scans are height profiles along an angular position from 0° to 360°, which 
are the input for the biomass estimation. Two approaches for processing the laser-based height 
profiles are discussed: regression of profile-representative features and inference of a canopy 
density function. An experiment was conducted in a spinach field of a commercial farm in 
Sherrington, Quebec, Canada. The coefficient of determination (R2) for regression between 
measured and predicted biomass was 0.78 and 0.94. The root mean square error (RMSE) was 
in turn 4.18 and 2.16 t/ha. The results indicate that the developed sensor system would be a 
suitable tool for rapid assessment of fresh biomass in the field. Its application would be beneficial 
in the process of optimizing crop management logistics, comparing the performance of different 
varieties of crops, and detecting potential stresses in a field environment. 
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Introduction 
Crop biomass is used as an indicator of plant growth in plant phenotyping and as an estimator of 
yield in agriculture (Golzarian et al., 2011; Van Henten, 1994). Crop biomass refers to the mass 
of the crop composed of live cells. In the present document, when biomass is mentioned, it refers 
to aboveground biomass. From the perspective of precision agriculture (PA), it would be useful to 
identify zones of the field where there are variabilities in the soil or where the crop produces 
different levels of biomass. This information could provide an improvement in the way in which 
local heterogeneities are addressed. 
According to Catchpol & Wheeler (1992), aboveground biomass is usually measured by 
destructive methods. Several plants are wasted using this procedure to provide sufficient data to 
determine plant growth in the field. Non-destructive methods for measuring biomass are 
desirable, especially with a sensor-to-plant concept, as stated by Golzarian et al. (2011). Such a 
procedure would make high-throughput data collection possible, where the final users could take 
advantage of a practical implementation. 
Most of the current non-destructive alternatives exploit the relationship between crop 
aboveground biomass and canopy properties like plant height, total volume or Leaf Area Index 
(LAI), all of which can be reliably measured without harming the crop (Tumbo et al., 2001; Biskup 
et al., 2007; Freeman et al., 2007; Ehlert et al., 2008; Reusch, 2009; Rosell et al., 2009; Keightleya 
and Bawdenb, 2010; Moorthya et al., 2010; Eitel et al., 2014; Kjaer and Ottosen, 2015; Tilly et al., 
2015; Schaefer and Lamb, 2016; Su, 2017). With this approach, high accuracy can be achieved, 
depending on the technology used and the number of degrees of freedom involved in the 
measurement. The main limiting factor for this scenario is cost, driven by the increasing 
complexity of the developed systems. 
The present work is relevant for considering the integration of lasers with other sensors and for a 
comparison with ultrasonic measurements; furthermore, its use is justified as a possible way to 
avoid the increased costs of 3D laser devices. Also, the application of this technique in lettuce 
and other horticultural crops is seldom found in the literature. It is direct continuation of Buelvas 
& Adamchuk (2017).  
The objective of this study was to develop and evaluate a laser-based sensor system for the 
indirect measurement of aboveground crop biomass suitable for in situ deployment. The 
completion of this objective would be a step closer to the ultimate goal of equipping farmers with 
a tool for the rapid, non-destructive, reliable, and affordable assessment of their crops. Specific 
objectives were: (1) to develop the system prototype, (2) to evaluate the performance of the 
system in field growth environments, and (3) to study the most significant methods for retrieving 
the biomass estimate from the laser measurements. 

Materials and methods 

Design and construction of the device 
The device combined laser, ultrasonic, thermal infra-red (IR), and ambient moisture 
measurements from the following commercially available sensors: IL-600 (Keyence Corporation, 
Itasca, IL, USA), ToughSonic14 (Senix Corporation, Hinesburg, VT, USA), SSS-LT (Process 
Sensors Corporation, Milford, MA, USA), and DHT22 (Adafruit Industries, New York, NY, USA) 
respectively1. The idea was to position these sensors above the crop at a determined height in 
nadir view and move them in a circular path parallel to the ground plane. Because of this, and to 
maintain the general setup of a hand-held device, a tripod was selected as the main frame for the 

                                                
 
1 Mention of a trade name, proprietary product, or company name is for presentation clarity and does not imply endorsement by the 
authors or McGill University, nor does it imply exclusion of other products that may also be suitable. 
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entire system (AX620B100 62-Inch Proline, Dolica, Rancho Cucamonga, CA, USA). 
A stepper motor (T-NM17C04, Zaber Technologies, Vancouver, BC, Canada) was located below 
the top of the tripod. The sensors were mounted in a 3D-printed holder connected from an edge 
to the shaft of the controlled stepper motor. The connector featured a fixed angle of 20° with 
respect to the vertical axis, as shown in Figure 1. In this configuration, the sensors were arranged 
to spin in a circular path with a specific radius in the range from 60 mm to 150 mm. The motor 
itself had another 3D-printed holder that was attached to the tripod. Both holders were designed 
in Inventor 2017 (Autodesk Inc., San Rafael, CA, USA) and their strength was validated with a 
Finite Element Analysis simulation under the expected loads. The testing field laps were taken 
with alternating clockwise and counter clockwise directions to avoid stress on the wiring. 
 

 
Fig. 1. Picture illustrating the 3D-printed sensor holder 

 
The included laser, ultrasonic, and thermal IR sensors had analog output, received by two Analog-
to-Digital Converters (ADC) ADS1115 (Adafruit Industries, New York, NY, USA). These ADCs 
offer each two differential 16-bit channels that communicate with a Raspberry Pi 2 Model B 
(Raspberry Pi Foundation, Cambridge, UK) via I2C protocol. A Python script was used to read 
and log the sensors’ measurements along with the corresponding angular position and send 
commands to the motor. The moisture sensor had digital output that was read directly by the 
Raspberry Pi. This sensor was not mounted in the spinning sensor holder, because only one 
measurement was desired per location, contrary to the other three, where a profile of 
measurements was required.  
A Bluetooth serial communication protocol was enabled to allow the user to send commands to 
the Raspberry Pi with a smartphone, as well as to receive information from it. Any of the free serial 
monitor apps available for smartphones can be paired with the Raspberry Pi. In particular, Serial 
Bluetooth Terminal v1.12 (Kai Morich, Hockenheim, Germany) was used on an Android 6.0.1 
smartphone during the production field experiment. On the Raspberry Pi side, a HC-05 Bluetooth 
module (Dilson Enterprises, Maharashtra, India) was added for this purpose. More recent 
versions of the Raspberry Pi come with a built-in Bluetooth transceiver. The block diagram is 
shown in Figure 2. The sensors and their accompanying circuitry, as well as the motor, were 
powered by a 6-cell LiPo battery with voltage converters. A box was adapted to contain the 
circuitry. Figure 3 shows the complete arrangement. 
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Fig. 2. Block diagram of the developed device 

 
Fig. 3. Picture illustrating built device in the field 

Data collection 
Test data were collected in a field of VegPro International near Sherrington, Quebec, Canada on 
October 4th, 10th, and 11th, 2017. The field featured raised beds in organic soil with Stanton 
spinach (Spinacia oleracea Hyb. Stanton) at different growth dates. The presence of several 
growth dates allowed for the data collection over a short time span. A 500 mm x 500 mm frame 
was used to denote each zone for sampling. A total of 30 of these zones were measured manually 
and with the device over the three days. The manual measurements consisted of cutting all the 
plants inside the square frame and weighing them using an electronic scale MXX-612 (Denver 
Instrument Inc., Bohemia, NY, USA). This provided the fresh biomass. By dividing by the area of 
the square frame, the fresh biomass yield is obtained. 
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The laser, ultrasonic, and thermal IR sensors included in the device provided a measurement 
every 0.8°, creating a profile of 450 points per lap, along a circumference with a radius of 150 
mm. The motor was set with a constant speed of 20°/s. For each location, about 6 laps were 
recorded, around 3 different centers inside the frame. The moisture sensor provided one 
measurement for each location. 

Analysis methods 

The estimation of biomass 𝑀 is usually based on canopy characteristics, e.g. plant height 𝐻, as 
presented in Equation (1). A regression, either linear or nonlinear, can be used to test how well a 
certain type of function fits the data. Some error 𝜀 is always present, but by testing several 
functions from a set of candidate functions, the best representative can be found by selecting the 
one which minimizes the error. 
 

𝑀 = 𝑓&(𝐻) + 𝜀& (1) 
 
The idea behind the device’s design is to define a relationship from several height values, i.e. the 
height profile 𝒉, and improve the ability to accurately predict biomass. This is expressed in the 
following equation. 
 

𝑀 = 𝑓,-𝒉𝒍𝒂𝒔𝒆𝒓, 𝒉𝒖𝒍𝒕𝒓𝒂𝒔𝒐𝒏𝒊𝒄: + 𝜀, (2) 

 
Furthermore, it may be the case that the biomass model described in Equation (2) can be 
improved by including other sensor measurements 𝑥, like the thermal IR or moisture, as stated 
by the following equation. 
 

𝑀 = 𝑓=-𝒉𝒍𝒂𝒔𝒆𝒓, 𝒉𝒖𝒍𝒕𝒓𝒂𝒔𝒐𝒏𝒊𝒄, 𝑥&,… , 𝑥?: + 𝜀= (3) 

 

The goal is then to find some 𝑓,:ℝC × ℝC ↦ ℝ or 𝑓=: ℝC × ℝC × ℝ× …×ℝ ↦ ℝ such that 
𝜎&, > 𝜎,, > 𝜎=,, under the assumption that the errors are normally distributed 𝜀&~𝑁(0, 𝜎&,), 
𝜀,~𝑁(0, 𝜎,,), and 𝜀=~𝑁(0, 𝜎=,); where 𝑚 is the number of points recorded in a lap by either laser 
or ultrasonic sensors. One disadvantage of this approach is that the existence of a physical 
interpretation for the chosen 𝑓 cannot be guaranteed. 
The data were imported into MATLAB R2017a (MathWorks Inc., Natick, MA, USA). A pre-
treatment was performed on the height profiles. First, points considered outliers were removed. 
Second, the replicates of the same location were averaged to produce a more significant profile. 
All the measurements taken around the same center point produced one height profile. 
Two approaches were taken to analyze the data from the production field experiment. In the first 
approach (regression of profile-representative features), the functions were built based on the 
features listed in Table 1, which resulted in scalar values that could be transformed by linear, 
exponential or polynomial transformations, leaving certain constant parameters to be determined 
later by regression, typically non-linear. The last two features are analogous to the processing 
methods by Su (2017). Cases where only one of the features was used at a time were considered, 
as well as combinations of several of them to evaluate what produced the best fitting.  
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Table 1. Definition of features used in first analysis approach 
Short name or abbreviation Brief description 

Integral Compute numeric definite integral 
Average recorded crop height Compute arithmetic mean 

Max Find the maximum value 
Energy Compute numeric definite integral of the square 

Variance Compute sample variance 
Average trimmed crop height Compute arithmetic mean only in-between 5 to 95-percentiles 

Trimmed variance Compute sample variance only in-between 5 to 95-percentiles 
Energy wavelet Compute Energy after applying a wavelet filter 
Lower envelope Find lower envelope and compute arithmetic mean 

Lower envelope integral Find lower envelope and compute Integral 
Lower envelope energy Find lower envelope and compute Energy 

Upper envelope Find upper envelope and compute arithmetic mean 
Upper envelope integral Find upper envelope and compute Integral 
Upper envelope energy Find upper envelope and compute Energy 

Derivative Estimate derivative and compute arithmetic mean 
Derivative variance Estimate derivative and compute sample variance 
Derivative energy Estimate derivative and compute Energy 

Count Find the number of points where abrupt changes happen 
Peak count Find the number of local maxima 
Frequency Estimate the median normalized frequency of the power spectrum 
Bandwidth Estimate bandwidth of the power spectrum 

SFDR Estimate ratio between fundamental frequency and first spurious peak in 
power spectrum 

SNR Estimate Signal-to-Noise Ratio 
THD Compute Total Harmonic Distortion 

Mean of max Find the maxima between sets of 10 points, then average them 
Pseudo-max Find the value of 95-percentile 

 
The second approach (inference of a canopy density function) relied on the formulation indicated 
in Equation (4), as follows. A cylindrical coordinate system was used because it relates directly 
with the circular paths followed by the device. In this case, the z axis was perpendicular to the 
ground plane and aligned with the center point of the circular path, while the angular position 𝜃 
corresponds to the placement of the sensors by the stepper motor and the radius 𝑟 to the distance 
between any point in the ground plane to the center of the circular path. The key assumptions 
were that the height profile measured along the circular path was representative of the entire 
frame and that the density of the crop only varies on a noticeable scale with the height. About the 
former, one way that the assumption could be included was by considering concentric circles 
where the height profile was repeated, so that the height of the ith plant (labeled 𝐻N) depended 
only on the angular position, and not on the radius. 
 

𝑀N = O𝜌	𝑑𝑉 = O O O 𝑟	𝜌(𝑧, 𝜃, 𝑟)	𝑑𝑧

UV(W,X)

Y

	𝑑𝜃
,Z

Y

	𝑑𝑟

[\

Y

= O O O 𝑟	𝜌(𝑧)	𝑑𝑧

UV(W)

Y

	𝑑𝜃
,Z

Y

	𝑑𝑟

[\

Y

+ 𝜀N

= O 𝑟	𝑑𝑟

[\

Y

∗ O O 𝜌(𝑧)	𝑑𝑧

UV(W)

Y

	𝑑𝜃
,Z

Y

+ 𝜀N =
𝑅_,

2 ∗ O O 𝜌(𝑧)	𝑑𝑧

UV(W)

Y

	𝑑𝜃
,Z

Y

+ 𝜀N	 (4)

 

 

where 𝑀N denotes the mass of the ith plant, 𝑅_ is the maximum radius used for the lap 
measurements, 𝜌 is the density, and 𝜀N the error produced from the assumptions in the ith plant. It 
is worth noting that Equation (4) can be rewritten as Equation (5) based on the Fundamental 
theorem of calculus. 
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𝑀N =
𝑅_,

2 ∗ O O 𝜌(𝑧)	𝑑𝑧

UV(W)

Y

	𝑑𝜃
,Z

Y

+ 𝜀N =
𝑅_,

2 ∗ O 𝑓-𝐻N(𝜃):	𝑑𝜃
,Z

Y

+ 𝜀N (5) 

 

for some function 𝑓:ℝ ↦ ℝ such that 𝑓b(𝑥) = 𝜌(𝑥). This step allows for a single integration instead 
of a double integration. Different candidates for this function f were tested. To compare with the 
manually measured biomass, which was sampled within the square frame, the biomass yield can 
be found by dividing over the area, which for the case of each measurement was that of the circle 
with the largest radius. Thus, Equation (5) becomes Equation (6). 
 

𝐷N =
𝑀N

𝐴 =
𝑅_,
2 ∗ ∫ 𝑓-𝐻N(𝜃):	𝑑𝜃

,Z
Y + 𝜀N

𝜋𝑅_,
=

1
2𝜋

O 𝑓-𝐻N(𝜃):	𝑑𝜃
,Z

Y

+ 𝜀N
(g) (6) 

 
Finally, it is worth mentioning that this approach can be analogous to the first approach taken, 
depending on the selection of the function 𝑓. For example, assuming 𝜌(𝑧) = 𝜌 → 𝐷N =
j
,Z ∫ 𝐻N(𝜃)	𝑑𝜃

,Z
Y = 𝑎 ∗ 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 + 𝑏, where Integral refers to one of the processing methods from 

the first approach, which was used in a linear regression model to relate to 𝐷N, with some 
parameters a and b, taking 𝑎 = j

,Z
 and 𝑏 = 0. Another example, taking 𝑓(𝑥) = 𝑥, → 𝐷N =

&
,Z ∫ [𝐻N(𝜃)],	𝑑𝜃

,Z
Y = 𝑎 ∗ 𝐸𝑛𝑒𝑟𝑔𝑦 + 𝑏, where the same situation is found to occur with a different 

processing method. The advantage of this second approach was that it guarantees the existence 
of a physical interpretation for the model once an appropriate function f has been selected. 
For both approaches, the coefficient of determination (R2) and root mean squared error (RMSE) 
were calculated as indicators of the system performance related to the ability to predict fresh 
biomass and used to compare methods. For cases where the number of parameters varied, the 
adjusted R2 was used as the decision criteria. Finally, when a working model was achieved, the 
mean absolute percentage error (MAPE) was computed to indicate the precision of the system 
using the following equation. This was not used as a criterion to choose between different models. 
 

𝑀𝐴𝑃𝐸 =
100
𝑛 xy

𝑎𝑐𝑡𝑢𝑎𝑙N − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒N
𝑎𝑐𝑡𝑢𝑎𝑙N

y
?

N�&

(7) 

  

Results and discussion 
Figure 4 presents the fresh biomass yield manually measured within the square frame for all 
dates. This yield is simply the biomass divided by the area of the square frame (0.25 m2) and 
transformed to t/ha units. This data has a mean value of 10.77 t/ha and a standard deviation of 
7.93 t/ha. The difference between the maximum and minimum values is 32.9 t/ha, proving that a 
varied range of biomass yield has been recorded. It seems as if it is not normally distributed, but 
rather similar to a log-normal. Whatever the case, the exact distribution is not relevant for the 
analysis. A drawback of the experiment is the absence of samples in the range of 20 t/ha to 30 
t/ha. 
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Fig. 4. Normalized histogram of fresh biomass yield 

 
Taking the first approach with the laser measurements, Table 2 was built with the features 
described in Table 1. The RMSE values are in t/ha. The best performing method was the Lower 
envelope integral with linear regression. Figure 5 illustrates the best performing regression at this 
stage. 
 

Table 2. Summary of results from regressions by processing method 
 Linear Quadratic Exponential 

Name in MATLAB R2 R2adj RMSE [t/ha] R2 R2adj RMSE [t/ha] R2 R2adj RMSE [t/ha] 
Integral 0.54 0.52 5.94 0.56 0.52 5.96 0.56 0.54 5.76 

Average recorded crop height 0.53 0.51 5.96 0.55 0.51 5.98 0.56 0.54 5.78 
Max 0.01 <0 8.67 0.02 <0 8.82 0.01 <0 8.66 

Energy 0.51 0.49 6.10 0.52 0.48 6.19 0.52 0.50 6.07 
Variance 0.01 <0 8.69 0.01 <0 8.88 0.01 <0 8.69 

Average trimmed crop height 0.53 0.51 5.99 0.55 0.51 5.98 0.56 0.54 5.76 
Trimmed variance 0.00 <0 8.72 0.02 <0 8.82 0.00 <0 8.72 

Energy wavelet 0.54 0.52 5.89 0.54 0.50 6.02 0.53 0.51 5.99 
Lower envelope 0.62 0.60 5.39 0.62 0.59 5.48 0.61 0.59 5.45 

Lower envelope integral 0.62 0.60 5.38 0.62 0.59 5.48 0.61 0.59 5.45 
Lower envelope energy 0.61 0.59 5.46 0.61 0.57 5.56 0.59 0.57 5.58 

Upper envelope 0.44 0.42 6.54 0.46 0.41 6.55 0.48 0.46 6.31 
Upper envelope integral 0.44 0.42 6.54 0.46 0.41 6.56 0.48 0.46 6.32 
Upper envelope energy 0.12 0.08 8.21 0.13 0.05 8.34 0.10 0.06 8.26 

Derivative 0.00 <0 8.73 0.00 <0 8.92 0.00 <0 8.73 
Derivative variance 0.00 <0 8.72 0.15 0.07 8.25 0.00 <0 8.73 
Derivative energy 0.00 <0 8.73 0.14 0.06 8.29 0.00 <0 8.73 

Count 0.02 <0 8.64 0.24 0.17 7.76 0.01 <0 8.67 
Peak count 0.00 <0 8.72 0.03 <0 8.77 0.00 <0 8.72 
Frequency 0.13 0.09 8.15 0.18 0.11 8.09 0.18 0.14 7.92 
Bandwidth 0.15 0.11 8.04 0.15 0.07 8.22 0.14 0.10 8.08 

SFDR 0.27 0.24 7.44 0.32 0.26 7.36 0.33 0.30 7.15 
SNR 0.13 0.09 8.14 0.14 0.06 8.30 0.11 0.07 8.22 
THD 0.04 0.00 8.54 0.06 <0 8.66 0.05 0.01 8.51 

Mean of max 0.44 0.42 6.52 0.46 0.41 6.52 0.48 0.46 6.28 
Pseudo-max 0.37 0.34 6.90 0.43 0.38 6.75 0.44 0.42 6.50 
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Fig. 5. Linear regression of biomass and lower envelope integral 

 
The resulting RMSE of 5.38 t/ha with that processing method is still relatively high. Because of 
this, new factors that included combinations of the mentioned processing methods were 
considered. The combination of processing methods gave rise to an improved fitting, but to avoid 
overfitting, the number of parameters was limited to a maximum of 6. This constraint in the 
complexity of the model would prove useful in a validation experiment. Table 3, Figure 6, and the 
following equations summarize the most reliable solutions. 
 

Table 3. Summary of results from regressions by equation 
Equation number R2 R2adj RMSE [t/ha] Number of parameters 

(12) 0.68 0.65 5.06 3 
(13) 0.83 0.81 3.72 4 
(14) 0.92 0.90 2.71 5 
(15) 0.93 0.91 2.55 6 

 

𝑓-𝒉N_���X: = 𝑎 + 𝑏
[𝐿𝑜𝑤𝑒𝑟	𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒	𝑒𝑛𝑒𝑟𝑔𝑦]
[𝑈𝑝𝑝𝑒𝑟	𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒	𝑒𝑛𝑒𝑟𝑔𝑦]

+𝑐[𝑀𝑒𝑎𝑛	𝑜𝑓	𝑚𝑎𝑥]
[𝐿𝑜𝑤𝑒𝑟	𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒	𝑒𝑛𝑒𝑟𝑔𝑦]
[𝑈𝑝𝑝𝑒𝑟	𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒	𝑒𝑛𝑒𝑟𝑔𝑦]

(8)
 

 

𝑓-𝒉N_���X: = 𝑎 + 𝑏[𝑆𝐹𝐷𝑅] + 𝑐[𝐿𝑜𝑤𝑒𝑟	𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒	𝑒𝑛𝑒𝑟𝑔𝑦], + 𝑑[𝑆𝐹𝐷𝑅], (9)  

 

𝑓-𝒉N_���X: = 𝑎
[𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙],

[𝑀𝑎𝑥], + 𝑏
[𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑	𝑐𝑟𝑜𝑝	ℎ𝑒𝑖𝑔ℎ𝑡],

[𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒],

+𝑐
[𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙],[𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑	𝑐𝑟𝑜𝑝	ℎ𝑒𝑖𝑔ℎ𝑡]

[𝑀𝑎𝑥],[𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒]

+𝑑
[𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙][𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑	𝑐𝑟𝑜𝑝	ℎ𝑒𝑖𝑔ℎ𝑡],

[𝑀𝑎𝑥][𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒],

+𝑒
[𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑	𝑐𝑟𝑜𝑝	ℎ𝑒𝑖𝑔ℎ𝑡]=

[𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒]=
(10)
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𝑓-𝒉N_���X: = 𝑎[𝐿𝑜𝑤𝑒𝑟	𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒	𝑒𝑛𝑒𝑟𝑔𝑦] + 𝑏[𝐿𝑜𝑤𝑒𝑟	𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒	𝑒𝑛𝑒𝑟𝑔𝑦],

+𝑐[𝐿𝑜𝑤𝑒𝑟	𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒	𝑒𝑛𝑒𝑟𝑔𝑦]= + 𝑑[𝑆𝐹𝐷𝑅] + 𝑒[𝑆𝐹𝐷𝑅], + 𝑓[𝑆𝐹𝐷𝑅]= (11)
 

 
Fig. 6. Best fit achieved with the first approach 

 
The best fitting regression, expressed in Equation (11) and used to build Figure 6, relies on 2 
processing methods that are relatively hard to find physical meaning. Nonetheless, an intuition 
about what SFDR and Lower envelope energy mean can be provided in this context. SFDR is a 
ratio between the power at the fundamental frequency of a signal and the power at a significant 
higher frequency. This ratio is then a measure of how important the higher frequency components 
are, where typically the spurious peak is due to noise. On the other hand, the envelope of a signal 
provides information about the low frequency components. By considering low frequency and high 
frequency components separately, the processing method can produce a more reliable 
estimation. In the context of height profiles, low frequency components refer to large-scale 
sections of the canopy, rather than the sections of the profile with larger local variability. 
With the second approach, inference of a canopy density function, the performance of different 
density functions is summarized in Table 4. To achieve results comparable to those of the first 
approach, a relatively large number of parameters is required. For example, the best fitting of a 
density function uses 9 parameters, as specified in Equation (12). Figures 7 and 8 illustrate this 
density function, while Figure 9 shows the fitting of the data using this approach. It was expected 
that the density at lower parts of the canopy was higher, because the stems are heavier than the 
leaves. The elements of this approach have a clear physical meaning. 
 

Table 4. Summary of results from density functions 
Density function R2 R2adj RMSE [t/ha] Number of parameters 

Constant 0.44 0.44 6.27 1 
Linear 0.45 0.43 6.21 2 

Quadratic 0.49 0.44 5.98 3 
Cubic 0.50 0.43 5.94 4 

Exponential 0.44 0.42 6.25 2 
Gaussian 0.48 0.43 6.03 3 
Sinusoidal 0.50 0.45 5.90 3 
Rational 0.52 0.48 5.80 3 
Rational 0.54 0.47 5.70 4 
Logistic* 0.49 0.44 5.98 3 

Generalized logistic* 0.49 0.42 5.97 4 
Rational tanh* 0.63 0.58 5.10 4 

Modified logistic* 0.74 0.61 4.24 9 

*: referring to the cumulative density, of which the density function is the derivative 
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𝑓-𝐻N(𝜃): = 𝑎 ∗ 𝑡𝑎𝑛ℎ�𝑏 ∗
𝐻N(𝜃) + 𝑐
𝐻N(𝜃) + 𝑑

�
𝐻N(𝜃) − 𝑒
𝐻N(𝜃) + 𝑓

+ 𝑔 ∗ 𝑠𝑖𝑛-𝑝(𝐻N(𝜃) + 𝑙): (12) 

 

 
Fig. 7. Best fit for cumulative density function 

 

 
Fig. 8. Best fit for density function 
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Fig. 9. Best fit achieved with the second approach 

 
At this point, it was considered the effect of the measurements where the biomass yield was 
above 30 t/ha, which could be regarded as outliers. It is important to consider that with the current 
results, removing these higher yield points from the computation of RMSE would turn the value 
of this indicator into 2.70 t/ha. By removing the higher yield points and using the second approach 
to retry the fitting of the density function, Table 5 was built. For all the considered cases, the fitting 
improved, resulting in a reduction of the gap among the best and worst density functions. These 
results seem to show that removing the higher yield points is convenient for simpler models, which 
could be explained by considering that the whole range of the function is significantly reduced. 
The case of having a logistic cumulative density function produces the best results in terms of 
adjusted R2, and the RMSE is lower than the corresponding best case when the higher yield 
points were included. Nonetheless, in spite of the convenience of these results, this process 
proved itself inconclusive in the determination of the outlier status of the higher yield points. Thus, 
it will be assumed that the higher yield is produced by the natural variability of the crop, and will 
be retained in the final analysis.  
 

Table 5. Summary of results from density functions without higher yield points 
Density function R2 R2adj RMSE [t/ha] Number of parameters 

Constant 0.65 0.65 2.72 1 
Linear 0.67 0.65 2.62 2 

Quadratic 0.69 0.66 2.57 3 
Cubic 0.69 0.64 2.57 4 

Exponential 0.66 0.64 2.65 2 
Gaussian 0.69 0.66 2.54 3 
Sinusoidal 0.69 0.66 2.55 3 
Rational 0.58 0.54 2.97 3 
Rational 0.58 0.51 2.97 4 
Logistic* 0.70 0.67 2.52 3 

Generalized logistic* 0.70 0.65 2.52 4 
Rational tanh* 0.71 0.66 2.23 4 

Modified logistic* 0.78 0.65 2.14 9 

*: referring to the cumulative density, of which the density function is the derivative 
 
Finally, Table 6 compares the best case of both approaches. The percentage error is considerably 
high for both cases, which is troubling, but is partially explained by the large range covered by the 
measured biomass. Whatever the case, the coefficient of determination is significant, showing 
that the laser measurements explain the biomass behavior. There is a possibility that the 
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uncertainty of the manual biomass measurement is also playing a role in this discrepancy. The 
moisture sensor information remains a good complement for the laser measurements. The 
moisture was linearly combined with the current estimations made with the first and second 
approaches by themselves, as stated by the following equation. 
 

[𝑓𝑖𝑛𝑎𝑙	𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒] = 𝑎 ∗ [𝑓𝑖𝑟𝑠𝑡	𝑜𝑟	𝑠𝑒𝑐𝑜𝑛𝑑	𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ] + 𝑏 ∗ [𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒] + 𝑐 (13) 
 

Table 6. Summary of best results by approach 
Approach R2 R2adj RMSE [t/ha]  MAPE [%] 

Regression of profile-representative features 0.93 0.91 2.55  34.08 
Inference of a canopy density function 0.74 0.61 4.24  35.82 

Regression of profile-representative features + Moisture 0.94 0.92 2.16  31.44 
Inference of a canopy density function + Moisture 0.78 0.62 4.18  32.09 

 

Conclusion 
Two different approaches were considered, providing R2 of 0.94 and 0.78, respectively. Though 
the first approach resulted in significantly better fitting, there might have been some overfitting, 
even when the complexity of the model was constrained. The second approach had the 
advantage of having a distinct physical meaning and could be considered more conservative. The 
large values of RMSE and MAPE could be due to the high variability intrinsic to the biomass 
measurement, but still raised concerns about the repeatability of the measurements prepared with 
the device. This issue could be addressed by taking repeated measurements inside the same 
frame. 
For both approaches, the results were comparable to those of the reviewed literature, showing 
that the performance was not diminished by the use of the developed low-cost prototype in an 
open field environment. These results proved that the developed device is a viable tool for 
measuring biomass in an easy and fast way. This would result in faster and more frequent 
sampling becoming available for users. There were strong indicators that the device is not only 
more convenient than the traditional manual measurement of plant height, i.e. with ruler or 
measuring tape, but also more accurate in the estimation of biomass. 
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