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Abstract. Spectroscopy has shown capabilities of predicting certain soil properties. Hence, it is a 
promising avenue to complement traditional wet chemistry analysis that is costly and time-
consuming. This study focuses on the comparison of two Vis-NIR instruments of different 
resolution to assess the effect of the resolution on the ability of an instrument to predict various 
soil properties. In this study, 798 air dried and compressed soil samples representing different 
agro-climatic conditions across Québec (Canada) were analyzed using Vis-NIR spectroscopy. 
Vis-NIR spectra of all soil samples were collected using a laboratory setup of a field spectrometer 
operating in the range from 350 - 2200 nm (P4000, Veris Technologies, Salina, Kansas, USA) 
and the ASD FieldSpec® 4 Standard-Res Spectroradiometer (Malvern Panalytical Ltd, Malvern, 
United Kingdom) operating from 350 - 2500 nm. In addition to the analytical techniques, 
successful prediction of soil properties depends on sensor calibration. In this research, three 
spectral pre-processing methods were compared (standard normal variate, first and second 
derivatives, all with a Savitzky-Golay filter), the results were produced using partial least squares 
regression (PLSR) and the models were selected according to the R2 of a 15-fold cross-validation. 
The results of each combination of soil property (extractable P, K, Ca, Mg, Al, SOM and CEC), 
data calibration method and instrument were assessed in terms of RMSE of the prediction and 
the R2 for the linear regression between measured and predicted values. FieldSpec gave better 
predictions for K (R2 = 0.34, RMSE = 145 kg/ha), Al (R2 = 0.60, RMSE = 164 ppm), SOM (R2 = 
0.69, RMSE = 0.97%) and CEC (R2 = 0.62, RMSE = 2.94 cmolc/kg) and Veris gave better 
predictions for P (R2 = 0.11, RMSE = 142 kg/ha), Ca (R2 = 0.63, RMSE = 1260 kg/ha) and Mg   
(R2 = 0.58, RMSE = 232 kg/ha). It was not possible to conclude which instrument performs better. 
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Introduction 
Soil analysis is at the heart of precision agriculture applications and there is a need to find 
alternatives to, or complementary methods for, traditional laboratory analysis. Spectroscopy is a 
promising avenue for soil analysis that has the advantage of being rapid, cost-effective and 
versatile. Logiag (Châteauguay, Québec, Canada) is an innovative agronomic support company 
providing services to growers and agribusinesses across Eastern Canada and Northeastern USA. 
Through cooperation with the National Research Council (NRC, Boucherville, Québec, Canada), 
they have developed LaserAg technology, a novel method to analyze soil properties using air-
dried and compressed soil samples employing Laser-Induced Breakdown Spectroscopy (LIBS). 
This technology allows a significant reduction of soil laboratory analysis costs and improves 
logistics. Although the application of LIBS to measure soil properties has been evaluated by a 
number of researchers (Viscarra Rossel et al., 2011), the technological cycle implemented by 
Logiag has been adopted for commercial use and was certified through ISO 17025. At the same 
time, other technology developers are engaged in diffuse soil reflectance (Viscarra Rossel et al., 
2016) and machine vision. To this day, there is no reported analysis on the complementarity of 
LIBS and other spectral analytics performed on the same set of soil samples; this is essential to 
employ sensor fusion concepts and enhance the reliability of soil test results. This results in two 
research questions: 1. Are there alternative technologies that have compatible analytical 
capabilities? 2. Can it be determined that adding less challenging spectral measurement 
techniques to LIBS will increase the accuracy of soil properties assessment? It is known that 
sensor fusion allows for the removal of bias for indirect data inference, which is typical to 
chemometrics methods (Adamchuk et al., 2011).  
The three main regions of the electromagnetic spectrum that are used for soil analysis are the 
visible (Vis, 350 - 700 nm), the near-infrared (NIR, 700 – 2 500 nm) and mid-infrared (MIR, 2 500 
- 25 000 nm). Vis spectroscopy involves energy absorption through electronic transitions. NIR 
and MID electromagnetic waves are too low in energy to induce electronic transitions. MID 
spectroscopy studies fundamental vibrations of covalent bonds whereas NIR involves overtones 
and combinations of those vibrations. Various qualities of instruments exist for each spectroscopic 
method. In addition to the analytical technique, successful prediction of soil properties depends 
on sensor calibration. The main methods employed in soil spectroscopy are partial least squares 
regression (PLSR), support vector machines (SVM), random forest (RF), multivariate adaptive 
regression splines (MARS), and regression trees (CART).  
The ultimate goal of this research was to assess the compatibility of LaserAg with other 
technologies to improve the process. This is done in three major steps: measurement of soil 
spectral characteristics using instruments of varying quality and spectral ranges (color, Vis-NIR 
and MIR), analysis and comparison of different data processing techniques (PLSR, SVM, RF, 
MARS and CART), and dissemination of the results obtained and development of the plan for 
implementation of the research findings in the Logiag business structure. The present study 
focuses on the comparison of the performance of two Vis-NIR spectrometers for the prediction of 
extractable phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), aluminum (Al), soil 
organic matter (SOM) and cationic exchange capacity (CEC) using PLSR for the calibration. More 
specifically, the objectives of this paper are to (i) determine which pre-processing among standard 
normal variate, first derivative and second derivative works the best for every combination of soil 
property and instrument, (ii) build models with PLSR to predict seven soil properties (P, K, Ca, 
Mg, Al, OM and CEC) and (iii) determine which instrument performs the best predictions based 
on the root mean squared error (RMSE). 
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Materials and Methods 

Experimental Data 
Soil Samples and Reference Data 

The 798 soil samples used in this study were collected on various farms throughout the province 
of Quebec, Canada. The samples were analyzed in two different laboratories to provide the 
reference values of extractable phosphorous (P), potassium (K), calcium (Ca), magnesium (Mg), 
aluminum (Al), soil organic matter (SOM) as well as cation exchange capacity (CEC): EnvironeX 
Group (Québec, Québec, Canada) and GEOSOL Laboratory (Synagri, Saint-Hyacinthe, Québec, 
Canada). Table 1 presents the properties analyzed, the methods employed, and the number of 
samples for each laboratory. 

Table 1 - Laboratory methods of soil analyses 
 

Soil properties 
GEOSOL Laboratory 

401 samples  Environex Group 
397 samples 

Method Units  Method Units 

P Mehlich III with plasma kg ha-1  Mehlich III with plasma kg ha-1 

K Mehlich III with plasma kg ha-1  Mehlich III with plasma kg ha-1 

Mg Mehlich III with plasma kg ha-1  Mehlich III with plasma kg ha-1 

Ca Mehlich III with plasma kg ha-1  Mehlich III with plasma kg ha-1 

Al Mehlich III with plasma ppm  Mehlich III with plasma ppm 

SOM Wackley−Black %  Loss on ignition % 

CEC Calculated based on K, Mg and 
Ca values meq 100g-1  Calculated based on K, Kg, Ca 

and buffer pH values. cmolc kg-1 

The dataset had high variability and all the distributions were positively skewed. Table 2 shows 
the distribution parameters of each soil property. Reference values over 1200 kg/ha for P, 1500 
kg/ha for K, 15 000 kg/ha for Ca, 3000 kg/ha for Mg, 2000 ppm for Al, 15 % for SOM and 45 
cmolc/kg for CEC were considered as outliers and discarded from the sample set for the 
processing.  

Table 2 – Distribution parameters of the reference soil properties 

Parameter P  
(kg ha-1) 

K  
(kg ha-1) 

Ca  
(kg ha-1) 

Mg  
(kg ha-1) 

Al  
(ppm) 

SOM  
(%) 

CEC  
(cmolc kg-1) 

Minimum 12 40 285 15 188 0.60 7.2 

Maximum 1660 2050 17588 3635 2169 54 61 

Mean 212 302 4858 535 1111 5.0 19 

Median 144 259 4746 391 1085 4.2 18 

Standard Deviation 225 218 2249 444 293 4.2 5.8 

Skewness 3.0 2.4 0.72 1.7 0.36 7.2 1.4 

Number of values 791 797 797 795 798 798 798 

To eliminate the bias due to moisture content and bulk density, the samples were air dried, placed 
in individual plastic cups resistant to high-pressure loads (diameter of 4.2 cm) and compressed 
under a force of approximately 20 t (196 kN), resulting in 35 MPa pressure. Logiag (Châteauguay, 
Quebec) acquired the soil spectra with the LIBS method, which left 24 burns concentrated in the 
middle of each sample. 
Spectral Scanning 

Among seven different spectral instruments, two systems were used to measure diffuse light 
reflectance in the Vis-NIR part of the electromagnetic spectrum: Veris® P4000 hydraulic probe 
(Veris Technologies Inc., Salina, Kansas, USA), hereinafter called Veris, and ASD FieldSpec® 4 
Standard-Res Spectroradiometer (Malvern Panalytical Ltd, Malvern, United Kingdom), hereinafter 
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called FieldSpec. Veris has a spectral range of 342 - 2220 nm with 384 spectral bands and an 8 
nm resolution. Veris is designed for field measurements, but for the present application it was 
installed indoors for laboratory measurements. The probe is 102 cm long and is equipped with a 
sapphire window and fiber optics. Two detectors acquire the spectrum: Toshiba TCD1304AP 
Linear CCD Array covering 342 - 1023 nm with 128 bands and InGaAs Linear image sensor 
G9206-02 covering 2070 - 2220 nm in 256 bands. The light source is a halogen bulb. To minimize 
the instrument noise, each spectrum was recorded as an average of 30 scans and the calibration 
was performed on every 20 samples using Avian Reflectance Standards (Avian Technologies 
LLC, New London, New Hampshire, USA). The other spectrometer used, the FieldSpec, has a 
spectral range of 350 - 2500 nm and a spectral resolution of 3 nm at 700 nm and 10 nm at 1400 
and 2100 nm. Three elements are used to complete the spectrum of 2151 narrow bands: 512 
pixels silicon array (350 - 1000 nm) and two Graded Index InGaAs Photodiode for 1001 - 1800 
nm and 1801 - 2500 nm. The FieldSpec Contact Probe was used to acquire the spectra. It is 
equipped with a halogen light bulb, a sapphire window, and optical fiber to transfer the signal to 
the spectrometer. Each spectrum recorded was the average of 50 scans and a calibration was 
done every 7 minutes with a Spectralon® panel (Labsphere Inc, North Sutton, New Hampshire, 
USA).  

Spectra Pre-processing 
Spectral pre-processing techniques are used to reduce the un-modeled variability in the data and 
to reduce noise and enhance the features sought in the spectra (Gholizadeh et al, 2015; Rinnan 
et al, 2009; Buddenbaum & Steffens, 2012). There is not a single good avenue when it comes to 
pre-processing; the latter depends on the dataset (Stenberg et al, 2010). Since applying the wrong 
type of pre-processing or applying too severe ones can remove important and valuable 
information, multiple methods were applied to the dataset using the prospectr R package and the 
one giving the best results was selected for each soil property and spectrometer combination. 
The Savitzky-Golay (SG) (Savitzky & Golay, 1964) filter was present in all pre-processing. SG 
filter is a ubiquitous smoothing method allowing noise reduction (Rinnan et al, 2009) that fits a 
least squares polynomial to a number of data points. Using more data points in the filter window 
increases the smoothing whereas using higher-degree polynomial as the fitting function 
decreases the smoothing. A window of 11 bands and a second-order polynomial were used for 
each pre-processing method since it those settings showed good results for Gholizadeh et al 
(2015), Hong et al (2017) and Rinnan et al (2009).   
 
The first method employed was the SG filter followed by a Standard Normal Variate (SNV) 
(Barnes et al, 1989). SNV is a scatter correction method that aims to reduce the physical variability 
between samples due to multiplicative interferences of light scatter and particle size by centering 
and scaling each spectrum individually: 
 𝑥" =

𝑥$ − 𝑎'
𝑎(

 (1) 

where xi and xf are the original and the corrected spectra, a0 is the average value of the sample 
spectrum to be corrected and a1 is its standard deviation. The second pre-processing method 
used was the First Derivative (FD) and it was done via SG smoothing. Finally, a Second Derivative 
(SD) was also done via SG smoothing.  

Chemometric Analysis 
Partial Least Squares Regression (PLSR) 

PLSR is a method that relates two data matrices, X of predictors and Y of responses, by a linear 
multivariate model. PLSR is used in spectroscopy because it can analyze data with strongly 
collinear, noisy and numerous X-variables. PLSR is close to Principal Component Regression 
(PCR). Unlike PCR, PLSR models the structure of Y and integrates compression and regression 
steps to select the successive orthogonal factors that maximize the covariance between X and Y 
(Wold et al, 1983; Wold, 2001). The number of factors used in the model was determined by 
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cross-validation (CV).  The chemometric analysis was done using the pls R package. 
Model Development 
Selecting the calibration samples based on their spectra is a good way to capture as much as 
possible of the variation in the larger dataset (Wetterlind et al, 2013). The set of 798 samples was 
separated into training (70%) and test (30%) sets using Kennard-Stone sampling on the X matrix, 
with Mahalanobis distance to describe the X-space and three principal components. This method 
allows the creation of a training set that has a flat distribution over the spectral space (Kennard & 
Stone, 1969). Since all samples have 3 replicates (except for 18 samples in the Veris set that has 
only 2 replicates), and since all replicates of a sample must remain in the same set, the Kennard-
Stone sampling was done on the average of the sample spectra.  
Once the averaging and the sampling were done, a PLSR was run on the non-averaged pre-
processed spectra. Using an excessive number of factors contributes to overfit the model and 
describing noise in the data (Buddenbaum & Steffens, 2012), thus, a maximum of 10 PLS latent 
factors wes used in the regressions. The averaged coefficient of determination (R2) of the 15-fold 
CV wes used to select the number of PLS latent variables:  
 

𝑅* =
∑ 	-
$.( (𝑦1$ − 𝑦2)*

∑ 	-
$.( (𝑦$ − 𝑦2)*

 (2) 

where 𝑦$ is the measured soil property, 𝑦1$ is the predicted soil property, 𝑦2 is the mean of measured 
soil properties and n is the number of spectra used in the validation. To ensure the independence 
of the calibration and validation sets, all replicates of a sample were kept in the same fold. For 
each soil property and instrument, a parsimonious and a more complex model were selected if 
possible. The number of latent variables for each model was selected visually with the break in 
the graph. 
Model Performance Assessment 

Once the optimal pre-processing and the number of factors were selected for the simple and 
complex models, the test sets were used to perform the predictions. The performance of the 
predictions was assessed with the adjusted coefficient of determination (R2

adj) and RMSE: 
 

𝑅456* = 1 −
𝑁 − 1
𝑁 − 𝑘

(1 − 𝑅*) (3) 

 

𝑅𝑀𝑆𝐸 = =∑ (𝑦1$ − 𝑦$)*>
$.(

𝑁
	 (4) 

where N is the number of spectra and k is the number of predictors. 

Results and Discussion 
PLSR Model Optimization 

Once the 15-fold CV was practiced for each model, the CV R2 according to the number of factors 
was plotted for the three pre-processing techniques, for each soil property and for each instrument 
(Figure 1). For FieldSpec, except for the K and CEC (at two factors) where SNV gave the best 
R2, FD gave a better R2 for all properties, followed by SNV and SD that arrived last. For Veris, 
there was no pre-processing that was generally better than the others, it depended on the soil 
property and the number of factors. The 15-fold CV showed better R2 with FieldSpec, especially 
with K, Al and SOM.  The smallest CV R2 was obtained with P and K and were under 0.4, except 
for K with FieldSpec beyond 7 factors. The highest CV R2 was obtained with FieldSpec for CEC 
where it goes over 0.7 at 5 factors.  
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Figure 1. Coefficients of determination (R2) of the partial least squares regression’s 15-fold cross-validations with 
three pre-processing techniques: first derivative (FD), second derivative (SD) and standard normal variate (SNV). Veris 

and FieldSpec results are presented for (a) extractable phosphorus, (b) soil organic matter and (c) cation exchange 
capacity.  

Predictability of Soil Properties 

For every property and every instrument, a parsimonious (S) and a more complex (C) model in 
terms of the number of PLS factors were selected for the predictions. Table 3 shows the pre-
processing methods and the number of factors selected for those two models, as well as the R2 
and RMSE of the CV and the R2

adj and RMSE of the prediction. The best models for every 
property, marked in bold, were the ones with the lowest RMSE.  
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Table 3 – Results of predictions 
 

 
Soil 

Property 
Model 

Veris  FieldSpec 

PP N R2 CV RMSE CV R2
adj RMSE   PP N R2 CV RMSE CV R2

adj RMSE 

P S FD 3 0.21 181 0.11 142  FD 3 0.25 160  0.24 172 
(kg ha-1) C SD 4 0.24 173 0.23 144  FD 4 0.26 159 0.26 169 

K S FD 3 0.21 174 0.2 171  SNV 2 0.25 175 0.19 161 
(kg ha-1) C - - - - - -  SNV 7 0.4 156 0.34 1445 

Ca S FD 3 0.45 1642 0.43 1576  FD 4 0.58 1470 0.53 1297 
(kg ha-1) C FD 7 0.57 1441 0.63 1260  - - - - - - 

Mg S FD 3 0.59 280 0.56 276  FD 2 0.63 275 0.52 260 
(kg ha-1) C FD 5 0.66 266 0.58 232  - - - - - - 

Al S SNV 5 0.38 226 0.41 221  FD 3 0.59 191 0.52 179 
(ppm) C FD 6 0.58 189 0.54 184  FD 5 0.66 174 0.6 164 

SOM S FD 4 0.47 1.51 0.52 1.4  FD 3 0.52 1.48 0.56 1.15 
(%) C SNV 6 0.46 1.6 0.55 1.19  FD 5 0.67 1.22 0.69 0.97 

CEC S SNV 2 0.53 3.97 0.42 3.76  SNV 2 0.62 3.64 0.4 3.46 
(cmolc kg-1) C FD 3 0.56 3.71 0.63 3.36  FD 4 0.69 3.27 0.62 2.94 

 
Results of the predictions according to the model (S or C), the pre-processing technique (PP) and the number of PLSR factors (N). 
R2 CV and RMSE CV are the cross-validation’s coefficient of determination and root mean squared error. R2

adj and RMSE the 
prediction’s adjusted coefficient of determination and root mean squared error. The model presenting the lowest RMSE for each soil 
property is in bold.  

Veris gave better RMSE results for P, Ca and Mg, whereas better results were obtained with 
FieldSpec for K, Al, OM and CEC. For three factors with P, Veris obtained an RMSE of 142 kg/ha 
and an R2

adj = 0.11 using a FD pre-processing whereas FieldSpec gave a better R2
adj of 0.26 but 

a smaller higher RMSE=169 kg/ha also with FD. This is under results previously obtained by other 
researchers with R2

adj of 0.48 and 0.73 (Maleki et al, 2006; Wetterlind et al, 2010), but is higher 
than the R2

adj = 0.01 obtained by Viscarra Rossel et al (2006). The lowest RMSE for P was 
obtained with the model that had the highest CV RMSE (181  kg/ha) and the lowest CV R2

 (0.21). 
For K, FieldSpec gave the best RMSE=145 kg/ha with SVN and 7 factors. With an R2

adj = 0.34, 
this result for K is comparable to the 0.33 and 0.47 previously obtained by Janik et al (1998) and 
Viscarra Rossel (2006). K and P are the only soil properties that had an R2 below 0.40. For Ca, 
Veris gave the best prediction (RMSE=1260 kg/ha, R2

adj=0.63) with 7 factors and FD, which is 
under the R2 found in the literature that vary between 0.67 and 0.90 (Chang et al 2001; Cozzolino 
& Moron, 2003; Islam et al, 2004). Mg also obtained a better prediction with Veris with RMSE = 
232 kg/ha and R2

adj = 0.58 (5 factors, FD), which is again under the R2 varying from 0.59-0.90 
found in the literature (Chang et al 2001; Cozzolino & Moron, 2003; Islam et al, 2004). FieldSpec 
gave better predictions for Al, SOM and CEC, obtaining respective RMSEs of 164 ppm (5 factors, 
FD), 0.97 % (5 factors, FD) and 2.94 cmolc/kg (4 factors, FD). The Al R2

adj
 of 0.60 is similar to 

previous results obtained by Viscarra Rossel (2006) for the NIR (0.61) and Janik et al (1998) 
(0.64), but under Buddenbaum and Steffens (2012) results (0.73-0.76). For the SOM, the R2

adj of 
0.69 is in the range of previous findings varying from 0.49-0.94 (Nawar et al, 2016; Kodaira et al, 
2009, Wetterlind et al. 2010, Kodaira and Shibusawa, 2013). Finally, the R2

adj = 0.62 obtained for 
the CEC is also in the range of previous findings varying between 0.13 and 0.89 (Viscarra et al, 
2006; D'Acqui et al, 2010; Kodaira & Shibusawa, 2013). Figure 2 shows the measured versus the 
predicted P, SOM and CEC values of simple and complex models for both Veris and FieldSpec.  
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Figure 2. Model testing for Veris and FieldSpec. i. shows the simpler model (S) and ii. shows the more complex model (C). 

a), c) and e) show the P, SOM and CEC prediction results for Veris. b), d) and f) show the P, SOM and CEC prediction 
results for FieldSpec. 
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Figure 2 - Continued 

Except for the particular case of P, the simplest models (S) never gave better results than the 
ones including more factors (C). The best model selected between Veris and FieldSpec was the 
one including more factors for K (7 with FieldSpec vs 3 with Veris), Ca (7 with Veris vs 4 with 
FieldSpec), Mg (5 with Veris vs 2 with FieldSpec) and CEC (4 with FieldSpec vs 3 with Veris). 
Also, the R2 of CV continued to increase beyond the number of factors selected. Therefore, a 
higher number of factors could have been used in the regressions and could have given better 
results. Indeed, while the present research used between 4 and 7 factors, numerous researchers 
used between 10 and 30 factors to predict soil properties in the Vis-NIR region (Reeves et al, 
1999; Reeves & McCarty, 2001; Walvoort & McBratney, 2001; McCarty et al, 2002; Viscarra et 
al, 2006; Viscarra et al, 2009; Vohland et al, 2014). 

Conclusions  
The performances of two spectrometers in the Vis-NIR range were compared in this study for the 
prediction of seven soil properties. FieldSpec gave better results for four of the properties (K, Al, 
SOM, CEC) and Veris for the three other properties (P, Ca, Mg). FD was the best pre-processing 
method for six of the properties (P, Ca, Mg, Al, OM, CEC) and SNV for K. Even if FieldSpec gave 
better predictions for four out of seven properties, it is not possible to state that it is better than 
Veris since the number of factors seemed to have more influence on the quality of the predictions 
than the instrument itself. Further research should be conducted to properly compare the 
performance of FieldSpec and Veris. In that research, the spectrometer sensors junctions could 
be excluded of X and a variable selection technique, such as Variable Importance in Projection, 
could be used to retain only the significant wavelength in X (Mehmood et al, 2012; Farres et al, 
2015). Also, the method to determine the number of PLSR factors could be done using the 
minimum RMSE obtained through the CV ( Viscarra et al, 2006; Vohland et al, 2011; Kodaira & 
Shibusawa, 2013; Nawar et al, 2016; Hong et al, 2017). Finally, a combination of pre-processing 
methods might be tested in different sequences to see if the combination of normalizations and 
derivatives could provide better results.  
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