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Abstract. In semi-humid climate, spatially resolved analysis of water deficit was carried out in apple 
orchard (Malus x domestica 'Pinova'). The meteorological data were recorded daily by a weather 
station. The apparent soil electrical conductivity (ECa) was measured at field capacity, and twenty 
soil samples in 30 cm were gathered for texture, bulk density, and gravimetric soil water content 
analyses. Furthermore, ten trees were defoliated in different ECa regions in order to estimate the 
leaf area ratio (LAR). 
The crop evapotranspiration (ETc; mm/d) was computed by multiplying the actual 
evapotranspiration (ETa; mm/d) and considering the soil water stress coefficient (Ks), soil surface 
evaporation coefficient (Ke) and LAR. These values were implemented in the Geisenheimer 
irrigation model for calculating the water deficit using crop coefficient (Kcb) in the crucial 
developmental stages: full bloom, cell division stage, and harvest. A positive correlation was 
observed between the ECa and total available water content in the root zone (r = 0.78, p<0.05). 
Furthermore, the influence of LAR on the water balance was quantified, pointing to the reasonability 
of spatially resolved water balance. 
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Abbreviations 
Dr, i   Water depletion in the root zone at the end of day i [mm] 
De Daily cumulative depth of water depleted from the surface [mm] 
ECa Apparent soil electrical conductivity [mS/m]  
ETa Actual evapotranspiration [mm] 
ETc Crop evapotranspiration [mm] 
ETo Potential evapotranspiration [mm] 
h   Mean tree height [m] 
Kcb  Crop coefficient 
Kcb,ini Crop coefficient during bud break and full bloom 
Kcb,mid Crop coefficient during full bloom and harvest 
Kcb,end Crop coefficient after harvest 
Kcb, min  Minimum crop coefficient for bare soil 
Kcb, full,mid Crop coefficient based on daily weather conditions and h during bud break 

and full bloom 
Kcb,full,end Crop coefficient based on daily weather conditions and h after harvest 
Kcb,full,max Maximum value of Kcb during the cultivation period 
Ke  Soil surface evaporation coefficient 
Ks  Soil water stress coefficient 
Kr  Soil evaporation reduction coefficient 
LAI  Leaf area index [m²/m2] 
LAR  Leaf area ratio [m2/tree] 
TAW Total available water in the root zone [mm] 
TEW Maximum cumulation of depletion from the soil surface [mm] 
RAW Readily available water content in the root zone [mm] 
REW Cumulative depth of evaporation [mm] 
p the average fraction of TAW that can be depleted from the root zone 

before the revealing of moisture stress 
P   Precipitation [mm] 
Rn  Solar radiation [W m-2] 
RH Mean daily relative humidity [%] 
T   Temperature [OC] 
u   Wind speed [m/s] 
WB Geisenheim water balance model [mm] 
Ze  Effective depth of soil evaporation layer [m]

   
zR   Average root depth [m]  
ΘFC Soil water content at field capacity [m3/m3]  
ΘWP Soil water content at wilting point [m3/m3] 
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Introduction 
 
The field of horticulture includes some of the most important cultivations worldwide. Apples are the 
most planted fruit trees in Europe with an increasing planted area to take place each year. Precision 
horticulture (PH) is the implementation of precision agriculture approaches adapted to the 
challenges in horticultural production (Zude-Sasse et al., 2016). PH application needs a detailed 
monitoring of tree spatial variability during the cultivation period (Aggelopooulou et al., 2013). 
It has been observed that soil spatial variability results in significant differences in orchards 
(Fountas et al., 2011; Uribeetxebarria et al., 2018 among others). Soil attributes commonly 
measured in PH are soil texture, water and nutrients, and apparent electrical conductivity (ECa). 
An integrative illustration of soil properties could be achieved with the measurement of ECa 
(Humphreys et al., 2005; Shaner et al., 2008). It provides valuable information for soil texture due 
to the fact that is affected by many parameters: soil humidity, salinity, soil texture, roots, nutrients 
and organic matter (Corwin and Plant, 2005). Previous studies have reported significant 
correlations between ECa and fruit trees properties. High spatial variability was indicated between 
ECa, soil properties and yield in small scale apple and pear orchards (Aggelopoulou et al., 2011; 
Vatsanidou et al., 2017). Käthner (Käthner and Zude-Sasse, 2015) observed that ECa and soil 
properties are related to tree growth, yield and quality related fruit size in plum trees. 
Another significant factor that should be considered is the water needs of the trees in the orchard. 
This dynamic parameter is, again, depended from soil properties, but also microclimate and tree 
physiology. Thus, it is necessary to understand the spatial variability of soil texture as this remains 
the most stable property and could be interpreted as a key parameter for the computation of water 
needs (Hedley et al., 2009). The knowledge of temporal and spatial variability of readily available 
water content (RAW) is a factor of major significance as it indicates the threshold before the 
beginning of water stress (Jensen et al., 1990; Allen et al., 1998). The calculation of water needs 
during the cultivation period could improve the management in orchards (Alexandridis et al., 
2014).The spatial variability of total available water content  in the root zone (TAW) was calculated 
based on the ECa and soil texture in cereals  (Haghverdi et al., 2015) and vineyards, where Hedley 
and Bradbury (Hedley and Bradbury, 2010) developed a variable rate model which was based on 
ECa and TAW maps in order to optimize irrigation in the field.  
However, tree water needs are affected also by morphological and physiological parameters, such 
as the fruit development stage, tree height and leaf area. The effect of canopy size and more 
specifically of leaf area index (LAI) on evapotranspiration has been well documented. It should be 
noted that the canopy volume in fruit trees, is influenced by the tree water supply through the 
cultivation period (Naor et al., 2006; Bustan et al., 2016). Furthermore,  a positive relationship of 
leaf area and evapotranspiration rate was found in citrus and olive trees (Ayyoub et al., 2017). 
Thus, these and the weather variables need to be considered during the calculation of crop 
evapotranspiration (ETc) and, subsequently, in the water balance model. Additionally to the yield, 
fruit quality can potentially be influenced by the spatial variability of TAW (Hunsaker et al., 2015). 
The interaction of soil water status and tree growth parameters has been specified in arid and semi-
arid conditions (Blum, 2017; Käthner et al., 2017). However, no spatially resolved water balance 
has been calculated in orchards so far. 
The objectives of the present study were (i) to investigate the impact of soil patterns on the actual 
LAR in an apple orchard; (ii) to implement measured soil and simulated plant data from low, mid 
and high ECa regions in Geisenheim irrigation model in order to analyze the water deficit spatially 
in the orchard. 
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Material and methods 
Site description 
The experiment was conducted in a commercial apple orchard (5 ha) located in Brandenburg, 
Germany, during 2017. The orchard was planted with Malus x domestica 'Pinova'. Apple trees were 
trained as slender spindle at horizontally parallel wires and were spaced 6 x 1 m. The apple orchard 
was located on a plateau. The northern part had visually richer soil properties compared to the 
southern part. 
 

ECa measurement and guided soil sampling 
A Wenner electrode configuration, with four equidistantly spaced electrodes in a straight line at the 
soil surface was used for the calculation of soil resistivity (eq. 1). The depth of the measurement 
was fixed at 25 cm depth, which corresponds to the main root system. Measurements were done 
at field capacity. The calculation of ECa utilized the inversion of resistivity (eq. 2) 
 
  ρ = 2πa(ΔV/I) 
 (1)  
   
   
   
 
  ECa = 1/ρ 
 (2)  

 
Where ρ = the apparent soil resistivity [Ω*m], a = the electrode spacing [m], ΔV = the voltage [V], I 
= the current [A] from which the ECa [mS/m] was calculated. Values were saved from the data 
logger (4-Point Light, LGM, Germany) and analyzed in ArcGIS (10.2.2 ESRI, USA). The 
measurement took place for every forth tree and every second row (n = 460). Hence, a spatial grid 
of 4 x 4 m was applied for the ECa data, using Kriging interpolation. The interpretation of spatial 
variability enabled guided soil sampling. Thus, an Edelman combined soil sampler, utilized in 20 
locations, covered the whole range of ECa. The samples were analyzed with Bouyoukos method. 
60 soil cores were used for bulk density measurement at 30 cm, three for each soil sample.  
Finally, the LAR from low, mid and high ECa regions was acquired after the defoliation of 10 trees 
(figure 1). The LAR has been measured with a portable area meter (CI-203, CID Bio-Science, Inc., 
USA). 
 

Water balancing 
A weather station (IMT 280, Pessl, Austria) located inside the orchard, could record the air 
temperature (T), relative humidity (RH), wind speed (u), solar radiation (Rn) and store the datasets 
in 15 minutes interval in the following website: http://technologygarden.atb-potsdam.de. 
 
The calculation of ETc [mm] (eq. 3), requires also the estimation of crop coefficient (Kcb), soil surface 
evaporation coefficient (Ke), soil water stress coefficient Ks and the potential evapotranspiration 
(ET0).  ET0 was calculated using the Penman–Monteith equation (Allen et al., 1998), and the 
coefficients were estimated according to the methods proposed earlier (Allen et al., 1998; Jensen 
et al., 1990). 
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  ETc = (Ks Kcb + Ke) ETo  (3) 
 
The Kcb tabulated in FAO-56 from bud break to full bloom (Kcb,ini),  has been set at 0.8 (Allen et al., 
1998; table 12). Whereas the coefficients between full bloom till harvest (Kcb,mid) and end-season 
(Kcb,end) were adjusted to the local soil, crop parameters and daily climatic conditions. 
 
 Kcb,mid = Kcb,min + (Kcb,full,mid − Kc, min )(1− exp[−0.7 LAR])  (4) 
  
 Kcb,end = Kcb,min + (Kcb,full,end − Kc, min )(1− exp[−0.7 LAR])  (5) 
 

 Kcb,full,mid = Kcb,mid(tab) + [0.04 (u-2)-0.4(RH-45)] (
h
3
)
0.3

 (6) 
 

 Kcb,full,end = Kcb,end(tab) + ([0.04 (u-2)-0.4(RH-45)] (
h
3
)
0.3

 (7) 

 
The Kcb,min was set at 0.15 assuming a bare soil surface. The measured range of LAR for the ECa 
regions have been implemented (eq. 4, 5) for simulation of relevant range of LAR. The values of 
Kcb,mid(tab) (1.20) and Kcb,end(tab) (0.85) were proposed earlier (Allen et al., 1998; table 12). The 
Kcb,full,mid  and  Kcb,full,end were estimated based on daily weather conditions and a mean tree height 
h = 3 m (eq. 6, 7). The RHmin addresses the entire cultivation period.  
The Ks was estimated (eq. 8, 9, 10), only when the Dr exceeded the RAW.    

 
  Ks = 

TAW-Dri
TAW-RAW

  (8) 
  TAW = 1000(ΘFC-ΘWP) ZR  (9) 
 
  RAW = TAW p  (10) 

    
As noted before, TAW is the total available soil water in the root zone; Dr, i is the water depletion in 
the root zone at the end of day i [mm]; RAW, the readily available soil water content [mm]; p, the 
average fraction of TAW that can be used by the plant in the root zone.  ΘFC is the volumetric water 
content of the soil sample at field capacity [cm3/cm3]; ΘWP is the volumetric water content at wilting 
point of the soil samples [cm3/cm3] and Z is the average root depth for the apple trees as indicated 
by FAO-56 with 0.25 m.  
For considering soil evaporation in the water balance model, the Ke for the mid or the last growth 
stage was calculated according to previous experiments (Allen et al., 2005; Paço et al., 2012) (eq. 
11). Where the Kcb,full,max, is the maximum value of Kcb during the cultivation period. The estimation 
of Ke takes place when the soil starts to dry. In other words, when the daily cumulative depth of 
water depleted from the surface (De,i) exceeds readily evaporable water (REW). This can be defined 
by the soil evaporation reduction coefficient (Kr) (eq. 12). The REW was at 8 mm (Allen et., al., 
1998; table 12). TEW (eq. 13) is the maximum evaporable water, which was defined according to 
the soil texture analyses. Furthermore, Ze is the depth of soil that can be dried from evaporation, 
which was at 16 mm (Allen et., al., 1998; table 12). 
  
 Ke = Kr (Kcb,full,max- Kcb,mid,end) (11) 
  
  Kr = 

TEW-De,i
TEW-REW

  (12) 
  
  TEW = 1000(ΘFC-ΘWP) Ze  (13) 
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Consequently, the three different ETc cases considering the low, mid, and high ECa regions and 
simulated LAR values were implemented in Geisenheim model for calculating the daily water 
balance [mm] in the orchard (eq. 14). P is the daily precipitation [mm]. 
  
  WB = ETc – P  (14) 

Data analysis 
Initially, outliers were removed and spherical semivariogram based on the least square regression 
was produced for the ECa map. Subsequently, ordinary Kriging interpolation following the 
semivariogram pattern and quantile classification was utilized for the ECa spatial variability 
interpretation into thematic map. The analysis was carried out in ArcGIS (Version 10.2.2, ESRI). 
Furthermore, the analysis of variance (ANOVA) was utilized in order to see the interaction of soil 
properties with the ECa. Finally, Kruskal and Wallis test, a non-parametrical analysis, took place in 
order to investigate the potential significance between the water balance and the different soil 
types. The last two analyses were carried out in Matlab (Version R2017a, Mathworks).  

Results and discussion  
Soil properties 
The results from soil analysis after the guided soil sampling revealed that the soil texture was 
characterized as silty sand and loamy sand. In the ANOVA analysis, with the ECa to be considered 
as a depended variable, the results showed that the ECa is affected by coarse silt, with F ratio = 
6.3 and p = 0.09. Furthermore, the ordinary Kriging interpolation revealed that the highest values 
of the ECa was located mainly in the north and south part of the field, while the lowest values have 
been depicted in the center of the orchard (Figure 1). Nevertheless, the soil texture analysis at 30 
cm showed low to middle variation (Table 1). The soil was mainly composed by sand and more 
specifically by middle sand, which also had a low coefficient of variance (CV=12%). The values of 
ECa varied between 10 to 27.26 mS m-1 characterized as low, between 27.27 to 39.22 mS m-1 as 
mid, and between 39.23 to 60 mS m-1as high ECa zone. 
 

Table 1. Descriptive statistic of soil texture (N = 20) providing standard deviation (SD), and coefficient of variance (CV). 
 Mean SD Range Minimum Maximum CV% 

Fine silt [mg kg-1] 26.00 8.12 27.00 11.00 38.00 31 
Middle silt [mg kg-1] 40.25 11.92 39.00 22,00 61,00 30 
Coarse silt [mg kg-1] 77.75 19.33 73,00 42.00 115.00 25 
Fine sand [mg kg-1] 302.85 60.76 228.00 153.00 381.00 20 
Middle sand [mg kg-1] 395.20 47.17 146.00 323.00 469.00 12 
Coarse sand [mg kg-1] 117.75 63.64 245.00 40.00 285.00 54 
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Figure 1. Thematic map of apparent soil electrical conductivity at 25 cm  [mS m-1]. The locations of guided soil samples at 30 
cm are illustrated with crosses throughout the orchard. The locations of guided soil samples at 30 cm and LAR 

measurement are illustrated with stars. 

 

The mean value of bulk density was 1.08 g cm-3, with mean porosity of the soil sample of 26.5%. It 
should be noted that the values of TAW varied between 7.11 and 59.47 mm between sand and silt 
soils according soil texture analyses. At significance level of 5% using Pearson correlation, the soil 
texture partially correlated with the ECa: silt related positively (r = 0.52), while the sand was 
correlated negatively (r = -0.51 Furthermore, a significant correlation was observed between the 
ECa and the TAW (r = 0.78) simply indicating that enhanced ECa areas can hold increased amount 
of water in the root zone. Recently, Lo investigated and correlated the spatial patterns of the 
available water in the root zone and the ECa (McCutcheon et al., 2006, Lo et al., 2017) confirming 
our results. Considering the plant response, the mean value of LAR was 5.42 m2 (Table 1). in low 
ECa region the LAR was 1.5 m2, in mid ECa regions varied between 3 m2 and 5.5 m2, and in high 
ECa zone between 8 m2 and 12 m2., Consequently, the ECa was correlated with the LAR in the 
present study (r = 0.80). 
 
Table 2. Descriptive statistics for apparent soil electrical conductivity (ECa), total available water in the root zone (TAW) in 25 

cm, porosity, bulk density (BD), and leaf area index (LAR).  The number of samples (N), standard deviation (SD), and 
coefficient of variance (CV) are presented. 

 N Mean SD Range Minimum Maximum CV% 

ECa [mS/m] 461 35.83 16.13 98.18 8.15 60 45 
TAW [mm] 20 38.36 12.68 52.36 7.11 59.47 33 
Porosity [%] 20 26.4 17.17 56.08 11.23 67.13 65 
BD [g cm-3] 20 1.08 0.19 0.60 0.87 1.47 18 
LAR [m2] 10 5.42 3.50 9.69 1.50 11.19 65 

  

Water balance 
The precipitation rate remained low during the bud break. During full bloom, frosts occurred, while 
the air relative humidity fluctuated between 65% and 80%, whilst in the rest of the season a 
decrease in fluctuation was noted with values around 90% at harvest (Figure 2). 
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Figure 2. Daily weather conditions during the cultivation period considering air humidity (closed circle), temperature (closed 

square) and precipitation rate (closed triangle). 

 
The Geisenheim model was employed in order to estimate the water needs in each month. The 
determination of the threshold according to the soil water properties and the influence of canopy 
size in the different ECa regions on the ETc enabled the understanding of variance of spatially 
resolved daily water balance.  
Low irrigation threshold was found for low ECa region and high irrigation threshold for high ECa 
area, since high ECa corresponds to enhanced volumetric water content and vice versa expressed 
as RAW.  These two thresholds were kept for all three ECa cases found in the orchard (Figures 3-
5). Furthermore, five values of LAR, according to the range from the measured values, have been 
applied in the calculation of Kcb values in order to evaluate the effect of LAR on the water needs in 
low, mid and high ECa soils.  
In regions with low ECa values, the LAR of 12 m2 and 8 m2 depict steep fluctuations always above 
the thresholds, indicating water stress, with the highest water deficit of 180 mm after harvest period 
(Figure 3). The water deficit for LAR below 5.5 m2 remained lower with the highest value reaching 
80 mm during July. Furthermore, the reduced LAR of 1.5 m2 and 3 m2 exceed the high threshold 
corresponding to enhanced RAW, mainly during June and July. 
 

  
Figure 3.  Simulation of LAR values (1.5, 3, 5.5, 8 and 12) in Geisenheim model in low ECa regions [mm]. Readily available 
water content (RAW) in 80% field capacity  from low ECa regions considered as two orchard-uniform thresholds values. 
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The trees from mid ECa showed reduced water deficit with the maximum value to be observed at 
52.5 mm (Figure 4). More specifically, as a consequence of enhanced precipitation rate, two steep 
decreases have been noted during June and July in all models. The water needs of 5.5 m2 LAR 
and above reveal drought stress during June, July and late September. However, the trees with 
diminished LAR of 1.5 m² had reduced water needs and only 3 m2 exceeded the high and the low 
threshold during June, July. It should be noted that during May none of the LAR values exceeded 
the thresholds, a fact which signifies that the trees did not face water stress in full bloom considering 
this mid ECa region of the orchard. 
 

 
Figure 4. Simulation of LAR values (1.5, 3, 5.5, 8 and 12) in Geisenheim model in mid ECa regions [mm]. Readily available 
water content (RAW) in 80% field capacity  from low ECa regions considered as two orchard-uniform thresholds values 

 
Trees from high ECa areas show slightly enhanced water deficit compared to the mid ECa regions 
with maximum value around 63 mm. Similarly as in the previews graph, the patterns of water deficit 
for the LAR remained the same. However, a slight increase in water needs of LAR 5.5 m2 and 
above was observed. Consequently, the water balance for these values point to drought stress 
between June and July and during August, which escalated during harvest period.  
 

 
Figure 5. Simulation of LAR values (1.5, 3, 5.5, 8 and 12) in Geisenheim model in high ECa regions [mm]. Readily available 
water content (RAW) in 80% field capacity  from low ECa regions considered as two orchard-uniform thresholds values. 

 
The average monthly values from each ECa region were compared for each model. This was 
performed utilizing Kruskal and Wallis test, a non-parametric model used to test the differences 
among the models (Table 2). The model of 1.5 m2 and 3 m2 LAR were statistical different between 
low–mid ECa and low-high ECa regions (p<0.05), whereas no statistical significance have been 
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observed in mid–high regions (p=.429, p=.148). However, the water balance of 5.5 m2, 8 m2 and 
12 m2 LAR were different in all ECa regions.  
 

Table 3. Kruskal-Wallis non parametric analysis among the water balance models for low, mid and high ECa region. 

Region 
WB 

LAR=1.5 

WB  

LAR=3 

WB 

LAR=5.5 

WB 

LAR=8 

WB 

 LAR=12 

Low ECa [mS/m]-  

Mid ECa [mS/m] 

     

.000 .000 .000 .000 .000 
     

Low ECa [mS/m]- 

High ECa [mS/m] 

     

.000 .000 .000 .000 .000 
     

Mid ECa [mS/m]- 

 High ECa [mS/m] 

     

.429 .148 .008 .024 .024 
     

 
The water deficit rapidly increased from bud break till the canopy is fully developed by the end of 
April. In parallel, the temperature rise and enhanced LAR resulted in increased evapotranspiration 
demands. During June and July, the maximum water use takes place by the tree. A water balance 
experiment was utilized in citrus orchard, the researchers examined the differences on water 
balance of a non-irrigated area and an irrigated area at the same field (Petillo and Castel, 2007). 
They suggested that the variation in daily ETc values, even in short intervals, in the same month 
could be due to lack of water availability to the trees or the influence of climatic conditions. Odi-
Lara and co-workers (Odi-Lara et al., 2016), in a remote sensing water balance model in apple 
trees, suggested that possible peaks in the water balance can be minimized by the daily monitoring 
of Kcb value. Furthermore, Ferreira, (2017), stressed that due to the fact that woody plants are 
adapted to soil conditions, the modeling of water balance taking into account the RAW and Ks need 
to be considered for an irrigation scheduling. The present findings on the influence of varying LAR 
confirm these assumptions. 

Conclusion 
The outcomes of this study reveal differences in the water balance when considering the spatial 
variability of the soil and the leaf area. In the center of the orchard, the ECa values mainly were 
lower than in the south or in the north, while lower LAR values also detected in the center of the 
field. According to the soil texture analysis regions of high ECa hold enhanced amounts of water 
content resulting in varying, here two, thresholds. 
Considering the trees with high LAR, enhanced water deficits were found particularly in low ECa 
regions. However, the orchard had a light soil profile with high amounts of sand and silt, a fact 
which assist high soil evapotranspiration within the orchard, an effect which might be reduced in 
heavier soils.  
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