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Abstract. Cotton is an indeterminate crop; therefore, fertility management has a major impact on 
the growth pattern and subsequent yield. Remote sensing has become a promising method of 
assessing in-season cotton N status in recent years with the adoption of reliable low-cost 
unmanned aerial vehicles (UAVs), high-resolution sensors and availability of advanced image 
processing software into the precision agriculture field. This study was conducted on a UGA Tifton 
campus farm located in Tifton, GA. The main goal of this study was to correlate in-season cotton 
N status with multispectral imagery acquired with a UAV. For this study, six N treatments 
consisting of 0, 34, 67, 101, 135 and 168 kg/ha rates were applied to attain varying levels of plant 
N status within the same field. Cotton tissue samples were collected during crop growth stages 
(first, third, fifth, and seventh week of bloom) to quantify plant N status during these stages. Tissue 
analysis results provided leaf blade N (%) and petiole N (ppm) for each N treatment implemented 
in the study. Crop multispectral imagery in the spectral wavelengths of 550 nm (green), 660 nm 
(red), 735 nm (red-edge) and 790 nm (near infrared) was acquired during these crop growth 
stages by utilizing a commercially available quadcopter equipped with a high-resolution 
multispectral camera. Different vegetation indices (VIs) were selected and calculated based on 
potential correlation with plant N status and were calculated from the data acquired from the 
multispectral aerial imagery. Correlations between the indices and leaf blade N (%) and petiole N 
(ppm) as obtained from plant tissue analysis were compared. Regression equations correlating 
the VIs to actual N levels were generated to evaluate the use of different VIs for accurately 
measuring N levels in the crop at the selected growth stages. Initial data analysis indicated that 
NDVI was strongly correlated to leaf blade N (%) and petiole (ppm) from the first week of bloom 
samples, whereas, NDRE had stronger correlation for the samples that were taken in the third, 
fifth, and seventh week of bloom. These correlations may provide promise for using multispectral 
imaging to detect in-season N variability in cotton.   
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Introduction 
Upland Cotton (Gossypium hirsutum L.) is the most widely grown row crop in the state of Georgia 
with over 1.2 million acres planted in 2017 (USDA, 2017). As with other crops, proper 
management of cotton is critical to produce high quality fiber and optimize profitability. Cotton 
yield can vary spatially within a field and that variability can often be a function of soil properties 
and nutrient availability, especially Nitrogen (N). 
Georgia soils, especially in the Coastal Plain region where sandy soils are prevalent, are relatively 
infertile. Georgia soil lab tests normally do not report N content because of its mobility in these 
soils. For cotton, and other crops in Georgia, N rates are determined by yield goal, soil type, and 
field history. N is considered the most limiting nutrient (Mullins et al., 2003) used on cotton, and it 
is the most challenging to manage (Whitaker et al., 2017). Insufficient N can reduce yield and 
quality, while an excess supply of N can negatively affect plant growth and development, boll 
retention, and lint yield (Zhao et al., 2010; Porter et al., 2010; Whitaker et al., 2017). The 
recommendation from the University of Georgia is to apply N in split applications with one-fourth 
to one-third of the recommended N at planting and the remainder at sidedress (Whitaker et al., 
2017). Currently, the use of variable rate N applications in Georgia are commonly based on field 
history, yield data, and soil maps. The status of the cotton crop is not usually a factor in the 
decision process of those variable rate N applications. Precision agriculture allows for variable 
rate N application based on the crop’s current growth conditions without reducing final yield (Arnall 
et al., 2016). Over application of N, especially in combination with high late-season moisture 
availability, can delay maturity, impact harvestability, and cause boll shedding, disease, and 
damage (Boquet and Breitenbeck, 2000). A more comprehensive understanding of the current N 
status of a cotton crop would lead to better management decisions about variable rate N 
applications and increased profitability. 
N requirements change throughout the growth and development of cotton; therefore, the most 
efficient way to supply N is to have the optimal amount available for the plant to take up only when 
it needs it (Arnall et al., 2016; Porter et al., 2010; Torbett et al., 2008). The maximum daily uptake 
of N occurred between 49 and 71 days after planting (DAP) per the findings of Boquet and 
Breitenbeck (2000). Daily uptake of N from planting until 28 DAP is low (Boquet and Breitenbeck, 
2000); therefore, N applied at planting should not be excessive so that N loss is mitigated, 
especially in sandy soils. The University of Georgia recommendation for sidedress N application 
timing is between first square and first bloom depending on crop growth and color. N should not 
be applied to cotton after the third week of bloom (WOB) because studies have shown that uptake 
of N by cotton roots is ineffective after this critical point (Whitaker et al., 2017). Peak N demand 
by cotton occurs between early bloom to peak-bloom with two-thirds of the total N taken up after 
early bloom (Mullins et al., 2006). Timeliness of N application is an important consideration when 
providing the optimal amount of N for the given growth stage. Research has shown that split 
applications of N increase the nitrogen-use efficiency (NUE), which often leads to maintaining 
yields with fewer inputs, thus, increasing profitability (Arnall et al., 2016; Mullins et al., 2006; Zhao 
et al., 2010). Remote sensing can provide useful information about cotton N status that can be 
used to determine timing of split N applications. 
Remote sensing uses a combination of sensing technologies including photography, multispectral 
scanning, and infrared imaging. Studies have shown that remote sensing can be a useful tool to 
detect crop growth, environmental stresses, and yields (Zhao et al., 2010). N status can vary 
spatially within a field; however, detecting that variability by ground based data collection methods 
has many limitations, including spatial resolution. Unmanned aerial systems (UAS) have the 
capability to provide a better understanding of where variability exists in the field in a timely 
manner and with good spatial resolution (Huang et al., 2013). UASs can be equipped with many 
different sensor types that can record large amounts of data quickly. A UAS’s ability to record a 
dense amount of data that is georeferenced provides the capability of analyzing data with 
geographic information systems (GIS) software which can then be correlated to ground sampling 
data (Vellidis et al., 2004). 
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Multispectral imagery is used to record the reflectance of different bands of the electromagnetic 
spectrum. Generally, most of the spectral bands that multispectral sensors capture are between 
400 nm and 1000 nm (Huang et al., 2013; Raper and Varco, 2014; and Zhao et al., 2010). Visible 
light is between 380 nm and 750 nm, and plants use the light between 400 nm and 700 nm for 
photosynthesis. The most common multispectral bands used for remote sensing are blue (≈ 460 
nm), green (≈ 550 nm), red (≈ 660 nm), red edge (≈ 735 nm), and near infrared (≈ 790 nm). The 
bandwidths of each of these spectra captured by multispectral sensors can vary depending on 
the capability and resolution of the sensor and by the calibration. 
Spectral data recorded from plants have been used to create different ratios or vegetative indices. 
A popular vegetative index is the normalized difference vegetation index (NDVI) which has been 
used to predict mid-season N requirements for cotton (Arnall et al., 2016; Porter et al., 2010). 
NDVI uses the NIR and red spectra, and the formula is: NDVI = (NIR-red)/(NIR+red) (Arnall et al., 
2016; Porter et al., 2010; Zhao et al., 2010; and Huang et al., 2013). The strongest wavelength 
correlations with leaf N concentration, lint yield, and plant total N content were noted near 700 nm 
by Raper and Varco, (2015). N deficiency causes a decrease in leaf chlorophyll content, resulting 
in an increase in spectral reflectance between 550 nm and 710 nm (Zhao et al., 2010). One of 
the most sensitive regions to changes in chlorophyll content is the red edge, and Raper and Varco 
(2015) found that other vegetative indices that include the red edge showed stronger correlation 
to N status than NDVI. 

Objectives 
The main objective of this study was to determine the feasibility of utilizing a UAS to determine 
the mid-season tissue N content of cotton as it relates to vegetative indices.  The secondary 
objectives of this study were to determine the correlations between popular VIs and the N content 
of leaf and petiole tissue during critical N uptake growth stages, to track the changes of plant 
tissue N during the season by N rate treatment, and to determine the optimal timing for collecting 
multispectral data for making in-season fertility decisions. 

Materials and Methods 
Upland Cotton cultivar Deltapine DPL 1646 B2XF was planted on 02 May 2017 on 76.2 cm row 
centers in 12.2 m long plots under conventional tillage in Tifton, GA. Preliminary soil samples 
were collected and on 17 May 2017, base fertilizer rates were applied based on the sample results 
and by using University of Georgia extension cotton production guide fertilizer recommendations 
(Whitaker et al., 2017).  The N treatments were based on total N applied and were, 0, 34, 67, 101, 
135 and 168 kg/ha.  One-third of each N treatment was applied to the plots using ammonium 
nitrate (34-0-0) at 15 DAP.  The remaining two-thirds of the N for each treatment was applied 
using ammonium nitrate (34-0-0) at 43 DAP.  Plant tissue samples were collected during five 
growth stages, first square, 1st WOB, 3rd WOB, 5th WOB, and 7th WOB. The fourth leaf down from 
the terminal that is larger than 24 mm wide and not attached to a square was sampled. For the 
first square sampling date, only leaf blades were removed from the plant. For the 1st WOB, 3rd 
WOB, 5th WOB, and 7th WOB samples, the leaves and the petioles were removed from the plant 
and were separated within one hour of pulling the samples.  The tissue samples were dried in 
paper bags in a forced air heated drier for a minimum of 48 hours and sent to a private lab for 
nutrient analysis. Rows two and three from each plot were harvested for yield using a two-row 
cotton picker modified with a bagging attachment on 29 September 2018. The seed cotton was 
bagged, weighed and weight recorded for each plot. The bagged seed cotton from each plot was 
ginned at the University of Georgia MicroGin and lint turnout was calculated. Lint yield was 
calculated by using the plot area, seed cotton weight, and lint turnout. 
Multispectral data were collected using a Sequoia multispectral sensor (Sequoia, Micasense Inc., 
Seattle, WA, USA) mounted on a 3DR Solo UAV (3D Robotics, Inc, Berkeley, CA). The four 
discrete spectral bands collected by the Sequoia were Green (550 nm, 40 nm wide), Red (660 
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nm, 40 nm wide), Red Edge (735 nm, 10 nm wide), and Near Infrared (790 nm, 40 nm wide).   An 
autonomous flight plan was developed and utilized for every flight for the entire season by using 
the Tower app associated with the 3DR system on an android tablet. The flight altitude was set 
at 45.72 m and the speed was set to 4.47 m/s. Images were collected with 80% frontlap and 80% 
sidelap. Multispectral images were collected of a radiometric calibration panel provided with the 
Sequoia pre-flight and post-flight for proper calibration. The images were processed by utilizing 
Agisoft Photoscan Pro (Agisoft LLC, St. Petersburg, Russia) and Pix4Dmapper Pro (Pix4D SA, 
Switzerland) software.  
The calibration panel images were used to normalize the reflectance values in the images of the 
multispectral data. All individual images for each band were stitched together to create an 
accurate orthomosaic image. The orthomosaic image for each band was imported into ArcGIS 
Version 10.4.1 (ESRI, Redlands, CA) and then used to create VIs. The two VIs that were analyzed 
for this study were NDVI and NDRE. A shape file was created around each plot that placed a 
polygon over all four rows, but slightly shorter to prevent data analysis outside of the plot. The VI 
data was clipped to each plot, averaged by plot, and output in tabular format. 

Results and Discussion 
The tissue sample results (Figure 1) showed little to no differences in N% levels in the leaf blade 
N% at the first square sampling date which was 43 DAP. There were differences observed in the 
leaf blade N% and petiole N ppm tissue samples based on N treatment at the 1st WOB sampling 
date which was 66 DAP. These differences existed throughout the season, however, were not as 
prominent as the season progressed.  
The first square sampling date was not available for the petiole tissue analysis, however, similar 
trends to the leaf N% were observed (Figure 2), where the 1st WOB had the highest level of 
treatment separation of N% concentration.  However, a decrease in petiole N% was observed as 
the season progressed, and similar to the leaf N% concentration the separation between 
treatments was reduced as the season progressed.  The main difference between the leaf and 
petiole N% was that the leaf N% dropped up until the 3rd WOB and then increased, where the 
petiole N% continually dropped throughout the season. 
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Figure 1.  Leaf blade tissue N% from each of the N treatments as reported from tissue analysis 

over time. 
 

 
Figure 2.  Petiole tissue N% from each of the N treatments as reported from tissue analysis over 

time. 
Tissue data show that the levels of N applied can affect the levels of leaf blade and petiole N.  
The 1st WOB sampling date had the greatest separation in N% which was likely due to the 
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application of the remainder of the total N rate 23 days prior to that sampling date.  The data from 
the tissue results represented in Figures 1 and 2 suggest that the optimal separation in N% in 
cotton tissue occurs during the 1st WOB.  This suggested that data collected during the 1st WOB 
has the highest potential for determining when cotton is N deficient.  Thus, the 1st WOB could be 
an optimal time to collect nutrient data on cotton to make in-season decisions.   
Lint yield increased as N rate increased; however, the 135 kg/ha and the 168 kg/ha N rates 
returned very little increase in lint yield when compared to the 101 kg/ha rate. The 168 kg/ha rate 
yielded slightly less than the 135 kg/ha rate which is consistent with diminishing returns and the 
nature of cotton when excess N is applied (Arnall et al., 2016; Porter et al., 2010; Zhao et al., 
2010). Interestingly, the 0 kg/ha rate yielded 1170 kg/ha of lint; this is likely due to following peanut 
which, per University of Georgia recommendations, may account for approximately 34 kg/ha of 
residual N and the ability of cotton to translocate N to optimize boll development. 
 

 
Figure 3.  Lint yield as it is correlated to nitrogen treatment. 

 
The separation in tissue N% was correlated to the final lint yield.  The lower tissue test levels had 
lower yields while the higher tissue levels had higher yields.  This suggests that the ground 
sampling method is a good prediction for the subsequent yield.   
Multispectral data were processed in Agisoft and Pix4D. Radiometric calibration panel images 
were not used to normalize the multispectral data in Agisoft; however, the radiometric calibration 
panel images were used in Pix4D. Data were averaged by treatment. Linear regression for leaf 
blade N% versus each VI were graphed as well as petiole N versus each VI. This process was 
completed for each sampling date and R² values were plotted over time. 
The correlation of NDVI and leaf N% at the first square sampling date was much lower than the 
other sampling dates as seen in Figure 4 and Figure 5. Prior to that date, only one-third of the 
total N for each treatment was applied and the cotton was still young and had not utilized all of 
the N that was present from the first application. The differences in leaf blade N% at that time 
were not separated in order by treatment; therefore, the multispectral data and the leaf blade N% 
data were not linearly correlated as well as they were during the other sampling dates. The 
differences in the Agisoft data and the Pix4D data follow a similar trend, however, they differ due 
to the normalization of the data from the radiometric calibration used in Pix4D and not in Agisoft. 
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Figure 4.  Coefficients of determination for the N% in the leaves by NDVI plotted for the 

sampling dates.  

 
Figure 5.  Coefficients of determination for the N% in the leaves by NDRE plotted for the 

sampling dates. 
Petiole N samples were collected beginning at the 1st WOB. At this time the separation by 
treatment was similar to that found in leaf blade N. Figure 6 and Figure 7 show that the strongest 
correlation was at the 3rd WOB sampling date. Similar trends were observed from Agisoft data 
and Pix4D data. 
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Figure 6.  Coefficients of determination for the N in the petioles by NDVI plotted for the sampling 

dates. 

 
Figure 7.  Coefficients of determination for the N in the petioles by NDRE plotted for the 

sampling dates. 
As can be seen in figures 4 through 7 the difference in the multispectral data processed by the 
two software packages shows that the radiometric calibration data can affect the values of the 
multispectral data.  Thus, the authors strongly suggest utilizing the calibration panel to ensure the 
data quality has the highest integrity possible. 

Summary 
In conclusion, leaf and petiole tissue sample N results have shown to have the strongest potential 
of determining plant N deficiencies during the 1st WOB.  Future research and analyses of these 
data may provide a basis for determining the optimal time for collecting multispectral data for 
predicting plant N content.  Preliminary analysis of multispectral data show that varying levels of 
N in the tissue provide a strong correlation to NDVI beginning at the 1st WOB, whereas NDRE 
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has a stronger correlation beginning at the 3rd WOB. This may indicate that for the 1st WOB, NDVI 
may be used to predict the levels of N in the plant and for the 3rd WOB, the combined use of NDVI 
and NDRE may be used to predict the levels of N in the plant. These data may provide insight to 
aid in making corrective applications of N prior to the 3rd WOB if the N levels are less than 
sufficient. Further research will be conducted to explore the utility of other VIs and the correlation 
to N levels in cotton. The findings of this study indicate that multispectral data may be a viable 
method for detecting N levels in cotton. 
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