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Abstract. This study aims at evaluating the performance of seven highly spatial 
resolution remote sensing data in litchi canopy nitrogen content estimation. The litchi 
canopy reflectance were collected by ASD field spectrometer. Then the canopy 
spectral data were resampled based on the spectral response functions of each 
satellite sensors (Geo-eye, GF-WFV1, Rapid-eye, WV-2, Landsat 8, WV-3, and 
Sentinel-2). The spectral indices in literature were derived based on the simulated 
data. Meanwhile, the successive projection algorithm (SPA) was used to extract the 
sensitive variables. The partial least square regression (PLSR) was used to develop 
the nitrogen estimation model. The results indicated that the Worldview-3 and Sential-
2 provided the better prediction of nitrogen content (R2c=0.60, RMSEc=0.18, 
R2cv=0.55, RMSEcv=0.20) than the other simulated satellite data. The bands in visible 
and near infrared region played an important role in nitrogen estimation since the 
absorption of chlorophyll. And the usage of bands in SWIR together with bands in VNIR 
can improve the performance of nitrogen estimation model.  
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Introduction 
Nitrogen is the mineral nutrient in greatest demand in litchi growth, which has an 

important effect on litchi growth, flowering and fruit development (Jia et al., 2015; 
Zheng et al., 2001). The fast and effective monitoring the nitrogen status and making 
fertilizer plan are very important to maintain the stable and high yield (Chen et al., 
1999). The nitrogen inversion based on remote sensing data is one key point of 
quantitative remote sensing (Yamdagani et al., 1980; Yao et al., 2017; Knyazikhin et 
al., 2013). Previous studies have presented some successful implementation of 
nitrogen remote sensing from a variety of vegetation. The physical model, statistical 
regression model, and vegetation index model are the most three used methods in 
nitrogen estimation (He et al., 2016; Jay et al., 2017）. The physical model is general 
and has explicit physical meaning. While many input parameters and complicated form 
limit its application. And the nitrogen status is estimated indirectly by the variation of 
the relationship between Chlorophyll and nitrogen (Chen et al., 2017). The estimation 
error of nitrogen is large when there is no significant correlation between nitrogen and 
Chlorophyll (Li et al., 2016). The regression model is simple and easy to use, but poor 
general performance. The sensitive bands may lack physical significance. The 
authenticity of the estimation model is difficult to guarantee under high signal to noise 
ratio conditions. The spectral index is the combination of specific spectral bands. The 
model is vulnerable to vegetation types, growing environment, growth stages and so 
on. While it is simple and easy to use with the high accuracy in nitrogen estimation and 
a physical meaning. Thus, the spectral index is the widest used methods in nitrogen 
estimation.  

Many researchers have evaluated the ability of canopy structure vegetation 
indices and pigment vegetation indices in nitrogen estimation, and tried to construct 
the new spectral indices based on canopy curve shape characteristics (such as, the 
red edge, canopy double peak) (Chen et al., 2010; Feng et al., 2016; Guo et al., 2017). 
Meanwhile, considering the useful of bands in SWIR in nitrogen estimation as some 
researchers proved, some nitrogen spectral indices were also proposed by using the 
combination of bands in SWIR (Herrmann et al., 2010) . While seldom studies 
investigated the ability of satellite remote sensing data to estimate litchi nitrogen status. 
Thus, in this study, we compared the performance of the several high spatial resolution 
satellite remote sensing data by spectral indices and PLS models.   

Materials and Methods 
2.1 Experimental datasets 

Experimental datasets obtained in Guangdong Province were used for this study. 
The canopy leave around the litchi canopy were evenly collected after the canopy 
spectra measurement. About 20 pieces leave were sampled as one sample to analyze 
the N content. Experiments were conducted in experimental fields in yangdong county, 
Huidong County and Baiyun District in Guangdong Province under a wide range of 
agricultural management practices and environmental conditions during periods in 



2006, 2011, 2013 and 2014 (Li et al., 2016).  
Table 1 Descriptive statistics for canopy nitrogen contentof litchi at each 

growth stage. 
Growth Stage n Min. Max. Range Mean SD CV 

Terminal autumn shoot maturation 
stage 15 1.43 1.76 0.33 1.54 0.09 0.01 

Flower bud differentiation stage 15 1.39 1.89 0.50 1.61 0.15 0.02 
Flower spike growing stage 16 0.98 1.84 0.86 1.29 0.26 0.07 
Flowering stage 20 1.36 1.97 0.61 1.70 0.16 0.03 
Fruit maturation stage 8 1.39 1.89 0.50 1.61 0.15 0.02 

SD, standard deviation; CV, coefficient of variation. 
2.2 Ground-based hyperspectral and plant measurements 

Canopy reflectance spectra were obtained under clear-sky conditions around 
midday (10:00-14:00 LST) using portable spectroradiometers (Fieldspec-FR 3, ASD). 
The spectral range of sensor was 350-2500 nm, with a field of view of 25°. Spectral 
resolution (full width at half maximum, FWHM) was 3 nm for the region of 350–1000 
nm and 10 nm for the region of 1000–2500 nm for the FieldSpec-FR. The resembling 
interval was 1nm. Reflectance measurements were taken at a nadir-looking angle from 
2m above the canopy. More than 15 measurements were made in each observation 
by moving over each canopy, to derive the representative reflectance spectra for each 
canopy. Spectral reflectance was derived as the ratio of reflected radiance to incident 
radiance estimated by a calibrated white reflectance (Spectralon, Labsphere). After the 
spectral measurements, the leave at the litchi canopy were put in a paper bag. Plant 
nitrogen content was determined by Micro-Kjeldahl method.  
2.3 Analytical methods 

Hyperspectral signatures will be analyzed using some published spectral indices 
that are particularly useful in other plant and ecosystem (Table1). The PLS regression 
will be used to develop the nitrogen estimation model. The determination coefficient 
and RMSE in calibration and leave one cross validation were used to evaluate the 
ability of spectral indices. The best performance model has the smaller RMSE and the 
larger R2 at the same time. The field hyperspectral data were resampled based on the 
seven sensors (Geo-eye, GF-WFV1, Rapid-eye, WV-2, Landsat 8, WV-3, and 
Sentinel-2). 

Table 2 The spectral indices used in this study 

Type Spectral 
index Equation Reference 

Structural 
vegetation 
index 

NDVI  Baret et 
al., 1989 

OSAVI  Baret et 
al., 1989 

RVI  Broge et 
al., 2001 

TVI  Broge et 
al., 2001 

EVI  Main et 
al., 2011 
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GNDVI  Maire et 
al., 2004 

WDRVI  
Herrmann 
et al., 
2010 

Nitrogen 
vegetation 
index 

MTVI  Hunt et 
al., 2013 

NDRE  Fitzgerald 
et al.2010 

Wang  Wang et 
al., 2007 

Chlorophyll 
vegetation 
index 

MCARI  Hunt et 
al., 2013 

NPCI  Maire et 
al., 2004 

PSRI  
Sims & 
Gamon, 
2002 

SPVI  
Main et 
al., 2011 

CCCI  Fitzgerald 
et al.2010 

 GI  Maire et 
al., 2004 

Results and Discussions 
The performance of PLSR models developed by the each simulated satellite 

bands were listed in Table 3. Since spectral indices can improve the response of 
reflectance to the variation of biochemical (Yu et al., 2014). The spectral indices listed 
in Table 2 were calculated for each type of satellite sensor. These spectral indices are 
all derived by the reflectance in visible and near infrared spectral region. For each 
dataset, the PLSR model of nitrogen estimation was developed based on the derived 
spectral indices. And the performance of these models were presented in Table 4. 

The nitrogen estimation models via combining spectral indices and simulated 
satellite bands were presented in Table 5. Meanwhile, considering the data 
redundancy of dataset in which the spectral indices and simulated bands were used 
together, we proposed to select the sensitive variable to the nitrogen variation by SPA. 
The sensitive variables for each dataset and the performance of PLSR models by the 
sensitive variables were showed in Table 6.  

Table3 The PLS models developed by the simulated bands 
Data Set R2c RMSEc R2cv RMSEcv 
All spectra 0.499 0.203 0.412 0.222 
WV-3 0.483 0.206 0.401 0.226 
Geo-eye 0.367 0.228 0.298 0.242 
GF-WFV 0.361 0.229 0.305 0.240 
Rapid eye 0.366 0.228 0.345 0.236 
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Landsat 8 0.489 0.205 0.413 0.223 
Sentinel-2 0.481 0.206 0.415 0.221 
WV-2 0.444 0.214 0.388 0.228 

Table 4 The PLS models developed by the spectral indices 
Data Set R2c RMSEc R2cv RMSEcv 
WV-3 0.616 0.178 0.487 0.209 
Geo-eye 0.359 0.229 0.296 0.241 
GF-WFV 0.439 0.215 0.223 0.258 
Rapid eye 0.361 0.229 0.252 0.254 
Landsat 8 0.376 0.226 0.272 0.248 
Sentinel-2 0.376 0.227 0.325 0.238 
WV-2 0.423 0.217 0.299 0.244 

Table 5 The PLS models developed by the simulated bands and spectral 
indices 

Data Set R2c RMSEc R2cv RMSEcv 
WV-3 0.65 0.170 0.507 0.204 
Geo-eye 0.39 0.223 0.309 0.241 
GF-WFV 0.44 0.215 0.217 0.260 
Rapid eye 0.36 0.229 0.296 0.243 
Landsat 8 0.51 0.201 0.367 0.23 
Sentinel-2 0.43 0.22 0.351 0.232 
WV-2 0.45 0.21 0.381 0.227 
Table 6 The PLS models developed by the spectral variables selected by SPA. 
Dataset Spectral variable R2c RMSEc R2cv RMSEcv 

WV-3 NDRE，Wang，CCCI，R482，
R1661 

0.60 0.18 0.55 0.197 

Geo-eye GNDVI，NPCI 0.32 0.236 0.29 0.244 
Rapid-
eye OSAVI,TCARI, SPRI, SPVI, GI 0.40 0.22 0.35 0.23 

GF-WFV OSAVI, SPRI, SPVI, GI, R655 0.37 0.227 0.298 0.243 
Landsat 
8 GNDVI, R442, R863, R1609 0.497 0.210 0.423 0.221 

Sentinel-
2 NDRE，R444， R1613 0.498 0.203 0.428 0.218 

WV-2 Wang, PRSI, SRPI, R721 0.33 0.23 0.25 0.25 
From Table 3-6, we found that all seven datasets didn’t provide the accurate 

nitrogen estimation. The performance of all nitrogen estimation model couldn’t perform 
well. The R2c and R2cv were relatively low (R2cv max= 0.55). The dataset contained 
the data collected in different growth stages, cultivars, and planting environments. The 
relationships among nitrogen and other biochemical which have the specific absorption 
features varied with these factors, which affect the ability of spectral data in nitrogen 
estimation (Li et al., 2016). Meanwhile, the nadir viewing of canopy can only provide 
the top information of canopy, which cannot give the whole information of canopy (He 
et al., 2016). And the distribution of canopy nitrogen is varied with canopy height (Yu 
et al., 2014). Both two factors makes the inconformity of canopy spectra and nitrogen 
status, which have the influence of nitrogen inversion accuracy (Jay et al., 2017; Chen 
et al., 2017).  

By comparing the performance of nitrogen estimation model, we found that WV-3 
had the best performance among seven type simulated data. Sentinel-2 showed the 
relatively better performance than the other five datasets. We concluded the relatively 



good performance of WV-3 and Sentinel-2 to the contribution of the absorptions of 
chlorophyll in VIR and the absorptions of nitrogen, cellulose, etc. in SWIR. In Table 4, 
there were no significant difference of the nitrogen models among the six dataset 
except WV-3. Since the spectral indices are mainly calculated by the bands in visible 
and near infrared region. And the useful of bands in visible and near infrared region 
are mainly related to the important role of nitrogen in chlorophyll (Maire et al., 2004).  

The performance of model developed by simulated Landsat 8 OLI data is lower 
than those of Sentinel-2 and WV-3, while is higher than those of Geo-eye and GF-
WFV. Which indicated that the bands in SWIR is useful in litchi nitrogen estimation. 
From Table 6, we found that the variables selected by SPA are mainly related to the 
absorption features of chlorophyll in visible and near infrared region. Meanwhile, the 
bands in SWIR were also selected for Landsat 8, WV-3 and Sentinel-2, which also 
indicated the important role of SWIR in litchi nitrogen estimation (Li et al., 2016).  

Conclusions:  
We collected the canopy reflectance spectra and canopy leaf nitrogen 

concentration from different growth stages of litchi, planting environment, and cultivars. 
The simulated bands of seven satellite sensors were derived by the each spectral 
response function. Then the spectral indices were calculated by the reflectance in 
VNIR region. The nitrogen estimation models were developed by the simulated bands, 
and spectral indices, respectively. The results indicated that the bands in visible and 
red edge regions are important in nitrogen estimation. While, the usage of the bands 
in SWIR, together with the bands in visible and red edge region can improve the 
performance of nitrogen estimation. The nitrogen estimation models are related to the 
absorption features of chlorophyll in visible and near infrared regions and those of 
protein, cellulose, etc. in SWIR. Although the accuracy of nitrogen estimation model is 
relatively low, SPA is useful in feature selection. Which can reduce data redundancy 
and improve the modelling efficiency and performance to a certain extent. In further 
study, the usage of multi-angular remote sensing data can be used to improve the 
accuracy of nitrogen estimation.  
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