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Abstract.  
Many agronomic input decisions are based on data from previous production years. Data from 
the gap in time between a previous harvest and the point that an input (e.g. fertilizer) decision is 
made may improve crop response predictions. This research was designed to study the potential 
value of using the extra data in decision making, by comparing the uncertainty in predictions from 
agronomic models derived solely from data from previous production years (PY) versus data 
collected until immediately before the need for top-dress nitrogen fertilizer application decisions 
(DP). As there is additional uncertainty in the appropriate functional form of agronomic models 
related to crop responses to fertilizer, this research utilized two models: generalized additive 
models (GAMs) and random forest regression (RF). The ultimate objective was to evaluate 
differences in management recommendations and ability to accurately predict rain-fed winter 
wheat responses to nitrogen fertilizer rates under the two data constraints (PY vs. DP). To 
evaluate differences in management recommendations, a wet and dry year were selected from 
the historical record in which site-specific (precision) rate recommendations for nitrogen fertilizer 
were simulated. A difference in the accuracy of predictions between the PY and DP data 
constraint was observed in 5 out of 28 cases across both model types. Functional form of the 
model used to predict responses to variable N rate fertilizer played a more important role in 
characterizing uncertainty surrounding recommendations than did the PY or DP data constraint. 
Where inclusion of more recent data only occasionally influenced model accuracy, accuracy was 
never sacrificed with its inclusion. Thus, the potential value of more recent data in decision making 
and its inclusion in decision support systems should consider using models fit with all available 
data up to the point a crop manager must make decisions. 
 
Keywords.   
List both specific and general terms that will aid in searches.  
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Introduction 
Decision support for site-specific inputs is typically based on empirical models that predict crop 
responses such as crop yield, or quality, and covariate data collected from sensors and satellites. 
These models are commonly parameterized based on fits to data across experiments and/or 
farms that are pooled to generate a generalized model for informing field-specific management. 
However, crop responses vary across space and time, within and between fields, even those 
fields that share a border (Hegedus & Maxwell, 2022a). This variation also influences differences 
in the most appropriate functional form of crop response models for a given crop (Hegedus & 
Maxwell, 2022b). Thus, field-specific management should logically be informed by the now 
available field specific data (Cook, Cock, Oberthür, & Fisher, 2004; Hegedus & Maxwell, 2022a; 
Lacoste et al., 2022).  
Field-specific experiments have potential to locally optimize input rates, which overcomes the 
uncertainty introduced by potentially non-representative data from off-site experimentation, and 
to reveal the role of field-specific variables influencing crop production and farmer net-returns 
(Luschei et al., 2001; Hegedus & Maxwell, 2022a). Uncertainty associated with crop response 
variability over time becomes the primary concern for using empirical models to convert site-
specific information into decision recommendations. A common approach for developing 
empirical predictive models is to calibrate a model with data from previous years, quantify the 
quality of that calibrated model by comparing its predictions with observations gathered in 
subsequent years, and to retrain and amend the model as necessary (Hair, 2007). This process 
is then repeated over time, with each passing year providing a new dataset to test and improve a 
model. For example, a range of crop responses in each field over different weather and economic 
conditions is required to predict the most profitable input level before the next year, assuming the 
next year is average for these variables and the past years sampled represent the range of 
possible conditions. The backlog of conditions and responses can be used to simulate the 
probability of an outcome given a particular treatment if the past responses and economic 
variability (i.e., training data) are applied to making a current year decision (i.e., validation data). 
Simulation models have determined that high degrees of certainty in probabilities of net return 
can be achieved by conducting experiments on a field with a given crop for about 6-8 years 
(Lawrence, Rew, & Maxwell, 2015). Future anomalous weather conditions due to climate change 
may introduce further uncertainty in decision support recommendations based on any 
assumptions of stationarity in this empirical approach. However, incorporating strategic sampling 
of past years in which to simulate projected climate changes increases the power of decision 
support systems by allowing farmers to examine outcomes in years of the past that may represent 
anomalous future conditions of an upcoming year.  
Technology has given producers data sources not conventionally used in agronomic decision 
making (given the recency of the agricultural data revolution) that allow the application of data 
gathered immediately before the crop manager decides on the amount of input to buy and apply 
(decision point). Simulating management outcomes in a decision support system requires 
empirical predictive models that utilize weather data, however one element of uncertainty for 
constructing field-specific models is determining what data to include to make the best prediction 
of crop response. More specifically, uncertainty surrounds the question of what portion of past 
weather and crop reflectance data to include in analysis, e.g., whether covariate data is 
constrained to only past years, includes data from past years plus weather data into the growing 
season up to the decision point, or whether covariate data from further into the growing season 
is included. Many studies have been conducted to predict crop responses, such as yield, using 
in-season covariate data. However, estimates of future yield from within-season measurements 
after a decision point are not appropriate for use in decision support systems (Croft et al., 2020; 
Gaso et al., 2019; Gonzalez-Sanchez et al., 2014; Stepanov et al., 2020). 
In a rain-fed winter wheat (Triticum aestivum) production system, response models of grain yield 
and protein concentration to nitrogen (N) fertilizer are hypothesized to predict crop responses 
more accurately when the cumulative influence of weather and early-season growth prior to a 
decision point in mid-growing season are included in the model, compared to just using 
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information from previous years (Fig. 1). A rainfed crop would logically be influenced by weather 
conditions during the growing season as well as previous seasons, thereby providing increased 
predictive power if included in the crop response models. Mid-growing season application of N 
fertilizer is thought to boost yields, but especially increase grain protein concentrations that can 
receive a price premium (Jaynes & Colvin, 2006; Jones, 2013; Qianqian et al., 2021; Zeng et al., 
2012).    
 

 
Fig 1. Timeline of the data constraints for non-water and water related covariates. Water related covariates are based on 

water years, while non-water related covariates follow calendar years. The two situations for collecting data correspond to 
when in relation to harvest the data are collected, where the difference between the approaches is indicated by the red 

bars. 

This study attempts to address a critical component of the agronomic data revolution by 
addressing how constraints on data used to fit models of crop production and quality influence 
the ability of a model to support effective application decisions. Multiple models for characterizing 
crop responses to N fertilizer and covariate data were used in recognition of the uncertainty 
surrounding the appropriate functional form of crop response models between fields (Hegedus & 
Maxwell, 2022b). Two models were selected, based on prior investigations into the adequacy of 
modeling crop responses: a generalized additive model (GAM) and a random forest regression 
(RF) model. Both models were fit to characterize winter wheat yield and grain protein 
concentration response to variable N fertilizer rates with climate, environmental, and vegetation 
index covariates to assess the influence of data constraints on predictions of crop responses. 
Model performance when data were constrained to previous calendar years was compared to 
performance with data collected up to a March 30th (current growing season) decision point for 
top-dress N fertilizer (Fig.1). Assessing performance between the same type of model fit under 
the two data constraints was the main objective of this paper, where performance was defined as 
the ability of the model to predict responses in test datasets and measured by root mean square 
error (RMSE). In addition, assessments of the crop model performance were repeated under 
simulated wet and dry weather conditions to assess how nitrogen application recommendations 
are influenced by interannual uncertainty in weather. 

Methods 
The objectives were evaluated using seven dryland fields from three farms distributed 

across Montana that had at least three years of on-field N fertilizer experimentation (Fig. 2, Table 
1). The response variables of interest were crop productivity (yield in kg ha-1) and quality (grain 
protein concentration), both of which are gathered from monitors mounted on farmers’ combine 
harvesters. Data from yield monitors were gathered on average every three seconds. All yield 
monitors were calibrated every spring by the farmers, according to their respective manufacturing 
instructions. Grain protein concentration (%) was measured with a CropScan 3000H near infrared 
monitor (Clancy, 2019). Beyond data collected from the machines on the field, remotely sensed 
covariate data from open sources were gathered (Table 2). These data were obtained or derived 
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from Google Earth Engine (Gorelick et al., 2017). Note that while elevation, aspect, slope, TPI, 
and OpenLandMap data were collected every year, they did not vary from year to year. Temporal 
covariate data included Normalized Difference Vegetation Index (NDVI), Normalized Difference 
Water Index (NDWI), precipitation, and growing degree days (GDD). Yield and protein datasets 
were created by aggregating the response variable data, as-applied N, and remote sensing data 
to the centroids of a 10m grid laid across each field.  
 

 
Fig 2. Map of OFPE farm boundaries for the three selected farmer collaborators with Montana State University. Colors 

represent different farmers, while shapes represent general areas in which their respective fields are located.  

 

Table 1. Crop histories, field sizes, and years in VRA treatment for each field for given farmers. The farm identifier 
corresponds to the map above and is used instead of the farmer’s name for privacy. 

 

 
  

Farm Field Field size (ha) 
Crop History1: 

 2014 / 2015 / 2016 / 2017 / 2018 / 2019 / 2020 / 2021 
Years N rate 

treatment  

B B1 79 SF / WW / CF / WW / CF / WW / CF / WW 2017, 2019, 2021 

 B2 94 WW / CF / WW / CF / SF / WW / CF / WW 2016, 2019, 2021 

 B3 64 SW / CF / WW / CF / WW / CF / WW / CF 2016, 2018, 2020 

D D1 46 CF / WW / CF / WW / CF / WW / CF / WW 2017, 2019, 2021 

 D2 48 WW / SW / WW / CF / WW / CF / WW / CF 2016, 2018, 2020 

 D3 20 SW / SW / WW / CF / WW / CF / WW / CF 2016, 2018, 2020 

I I1 94 SW / CF / WW / CF / WW / CF / WW / CF 2016, 2018, 2020 
1 WW = winter wheat, CF = chemical fallow, SW = spring wheat, SF = safflower 
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Table 2. Table of covariates gathered from Google Earth Engine to enrich the crop yield and protein datasets gathered 
from farms. In some cases, multiple sources are used, however only one data source is used when aggregating to yield 

and protein. 

 
  

Data Type Data 
Sources Resolution Years Collected Description 

Normalized 
Difference 

Vegetation Index 
(NDVI) 

Sentinel 2, 
Landsat 5/7/8 10m, 30m 

S2: 2016-present 
L5: 1999-2011 
L7: 2012-2013 

L8: 2014 - present 

Sentinel 2 is from the European Space 
Agency as part of the Copernicus program. 

Landsat is an ongoing USGS and NASA 
collaboration. 

Bands (NIR, red) 
S2: B8 and B4 

L5/L7: B4 and B3 
L8: B5 and B4  

Normalized 
Difference Water 

Index (NDWI) 

Sentinel 2, 
Landsat 5/7/8 10m, 30m 

S2: 2016-present 
L5: 1999-2011 
L7: 2012-2013 

L8: 2014 - present 

Sentinel 2 is from the European Space 
Agency as part of the Copernicus program. 

Landsat is an ongoing USGS and NASA 
collaboration. 

Bands (NIR, red) 
S2: B3 and B5 

L5/L7: B2 and B4 
L8: B2 and B5 

 
Normalized 

Difference Red 
Edge (NDRE) 

Sentinel 2 20m S2: 2016-present  Bands B5 and B6 

Red Edge 
Chlorophyll Index 

(CIRE) 
Sentinel 2 20m S2: 2016-present  Bands B7 and B5 

Elevation USGS NED 
~10m (1/3 arc 

second), ~23m (3/4 
arc second) 

1999-present USGS National Elevation Dataset. 
Measured in meters. 

Aspect USGS NED ~10m (1/3 arc 
second), 30m 1999-present 

Direction the surface faces, function of 
neighboring elevations, in radians. Also 

calculated for each E/W and N/S direction 
as cosine and sine. 

Slope USGS NED ~10m (1/3 arc 
second), 30m 1999-present Rate of change of height from neighboring 

cells, in degrees. Measured in degrees. 
Topographic 

Position Index (TPI) USGS NED ~10m (1/3 arc 
second), 30m 1999-present Measure of divots and low spots as a 

function of neighboring elevation.  

Precipitation DaymetV3 1km 1999-present 
Estimates from the NASA Oak Ridge 

National Laboratory (ORNL). Measured in 
mm. 

Growing Degree 
Days (GDD) DaymetV3 1km 1999-present Estimates from the NASA Oak Ridge 

National Laboratory (ORNL). 

SMAP susm 10km 2016-present Surface (0-5cm) and sub-surface (5-
100cm) soil moisture content.  

OpenLandMap grtgroup 250m 1999-present Predicted USDA soil taxonomy great group 
probabilities. 

OpenLandMap texture 250m 1999-present 
Soil texture classes (USDA system) 

averaged over 6 soil depths (0, 10, 30, 60, 
100 and 200 cm). 

OpenLandMap bulkdensity 250m 1999-present 
Soil bulk density (fine earth) 10 x kg / 

m3 averaged over 6 standard depths (0, 
10, 30, 60, 100 and 200 cm). 

OpenLandMap claycontent 250m 1999-present 
Clay content in % (kg / kg) averaged over 6 

standard depths (0, 10, 30, 60, 100 and 
200 cm). 

OpenLandMap sandcontent 250m 1999-present 
Sand content in % (kg / kg) averaged over 
6 standard depths (0, 10, 30, 60, 100 and 

200 cm). 

OpenLandMap pH (phw) 250m 1999-present Soil pH in H2O averaged over 6 standard 
depths (0, 10, 30, 60, 100 and 200 cm). 

OpenLandMap watercontent 250m 1999-present 

Soil water content (volumetric %) for 33kPa 
and 1500kPa suctions predicted and 

averaged over 6 standard depths (0, 10, 
30, 60, 100 and 200 cm). 

OpenLandMap carboncontent 250m 1999-present 
Soil organic carbon content in x 5 g / kg 
averaged over 6 standard depths (0, 10, 

30, 60, 100 and 200 cm). 
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All temporal covariates from Google Earth Engine were collected under two constraints, 1) the 
first, hereafter labeled PY, included all previous years of information, and 2) hereafter labeled DP, 
included all previous years plus the current year to the mid growing season when the decision 
point for top-dress fertilizer rates is determined for winter wheat. The PY data were collected up 
to December 31st of the year prior to upcoming harvest for vegetation index and GDD data and 
October 31st of the year prior to upcoming harvest for precipitation to follow the water year. Data 
collected to the decision point included the extra three months from January 1st to March 30th of 
the harvest year for vegetation index and GDD data and the extra five months from November 1st 
of the previous year to March 30th of the harvest year for precipitation (Fig. 1). A rainfed crop 
would logically be influenced by weather conditions (precipitation and temperature) during the 
winter portion of the growing season and therefore provide increased predictive power if included 
in the crop response models  
The first model type fit to the yield and protein datasets was a GAM. Generalized additive models 
have been used in the literature for estimating crop responses to variable rates of N fertilizer and 
were chosen in our case because of their flexibility and ability to characterize the response of 
observed data (Chen et al., 2019; Estes et al., 2013; Joshi et al., 2021; Liew & Forkman, 2015). 
A gamma family distribution was used due to the realistic constraint that yield and protein of a 
crop cannot be negative. To account for non-constant variance found in initial model fits, a log 
link function was used. Thin plate shrinkage splines were used for all variables to allow the 
estimated degrees of freedom of parameters to shrink to zero, combining the process of model 
fitting and selection. To account for spatial autocorrelation, coordinates were included as 
smoothing terms with a Gaussian process basis function (Gotway & Stroup, 1997; Guisan et al., 
2002; Holland et al., 2000; Zuur & Camphuysen, Kees, 2012). The exception to using thin plate 
shrinkage splines was the use of a Gaussian process for the interaction of coordinates accounting 
for spatial autocorrelation between observations within the field. While time is not explicitly 
included in the model, the singularities within years for variables that vary across time, such as 
precipitation and growing degree days, mean these variables serve as proxies for the effect of 
time. Models were fit using the mgcv package in R (Wood, 2003; Wood et al., 2016). 
The second model used was a RF where the number of trees and the number of covariates 
sampled at each node were optimized during the fitting process. To account for spatial 
autocorrelation, the coordinates were included as covariates (Janatian et al., 2017; Langella et 
al., 2010; Walsh et al., 2017; Y. Wang et al., 2017). Random forest regression has also been used 
to fit crop responses to agricultural inputs (Everingham et al., 2016; Jeong et al., 2016; Lawes et 
al., 2019; Mariano & Mónica, 2021; Marques Ramos et al., 2020; Paccioretti et al., 2021; L. Wang 
et al., 2016), and initial testing of various model forms indicated that the predictive ability of the 
random forests outcompeted parametric and Bayesian empirical models (Hegedus & Maxwell, 
2022b). The ranger package in R was used for fitting and generating predictions (Wright & Ziegler, 
2017). 
Predictors that did not vary across time were centered by taking the difference between each 
value and the mean value for the predictor to reduce discrepancies in scale between covariates. 
Covariates that varied across time (vegetation indices and weather data) were left uncentered 
because the distribution and subsequent mean of these predictors could vary across time. The 
covariates used for both models for both crop responses (yield and protein) under the two data 
constraints are shown in Table 3.  

Table 3. Covariates used under the two data constraints. Units and sources are in Table 2. CY indicates data from the 
harvest year, PY indicates data from the year prior to the harvest year, 2PY indicates data from two years prior to the 

harvest year. 
PY DP 

As-Applied N As-Applied N 
UTM Coordinates UTM Coordinates  
Aspect Aspect 
Slope Slope 
Elevation Elevation 
Topographic Position Index Topographic Position Index 
Precip. from November 1st (2PY) to October 31st (PY)  Precip. from November 1st (2PY) to October 31st (PY) 
 Precip. from November 1st (PY) to March 30th (CY) 
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GDD from January 1st (PY) to December 31st (PY) GDD from January 1st (PY) to December 31st (PY) 
 GDD from January 1st (CY) to March 30th (CY) 
NDVI from January 1st (PY) to December 31st (PY) NDVI from January 1st (PY) to December 31st (PY) 
NDVI from January 1st (2PY) to December 31st (2PY) NDVI from January 1st (2PY) to December 31st (2PY) 
 NDVI from January 1st (CY) to March 30th (CY) 
NDWI from January 1st (PY) to December 31st (PY) NDWI from January 1st (PY) to December 31st (PY) 
NDWI from January 1st (2PY) to December 31st (2PY) NDWI from January 1st (2PY) to December 31st (2PY) 
 NDWI from January 1st (CY) to March 30th (CY) 
Bulk Density averaged over 0cm – 200cm  Bulk Density averaged over 0cm – 200cm  
Clay Content averaged over 0cm – 200cm Clay Content averaged over 0cm – 200cm 
pH of water averaged over 0cm – 200cm pH of water averaged over 0cm – 200cm 
Water Content averaged over 0cm – 200cm Water Content averaged over 0cm – 200cm 
Carbon Content averaged over 0cm – 200cm Carbon Content averaged over 0cm – 200cm 

 

Data analyses was performed using R (R Core Team, 2021) where data management, 
aggregation, cleaning, and analysis with the two model types used the OFPE package (Hegedus, 
2020). Comparison of the performance of a given model using the PY or DP data was assessed 
by 5x2 cross validation (CV) developed by Dietterich (1998) for each field, crop response (yield 
and protein), and for both model types (GAM and RF). The dataset was split 50/50 into a training 
and test set, and the model using both the PY and DP constraints were fit on the training set and 
RMSE was calculated on the test set. Then the training and test sets were swapped and both 
models were fit on the new training set (previously the test set) with RMSE calculated on the test 
set (previously the training set). This was repeated five times, and a 5x2 CV t statistic was 
calculated (Dietterich, 1998). Thus, for each field, response, and model type, a t statistic and 
corresponding two tailed p-value were computed to compare the predictive accuracy (RMSE) of 
the model fit using data solely from previous years (PY) and data using covariates up to the 
decision point of the harvest year (DP).  
After fitting each model type for both grain yield and protein concentration for each field under 
both data constraints, crop responses at every location in the field under varying weather 
conditions were simulated to derive a site-specific N fertilizer recommendation optimized to 
maximize net-return. For each field, two weather conditions were simulated based on data for a 
given field: the wettest year from 1999-2021, and the driest year from 1999-2021.This resulted in 
eight simulations per field, where the yield and grain protein models of each type (GAM or RF) for 
each data constraint (DP or PY) were used to find optimized N fertilizer rates in the two selected 
types of years (wet or dry). Selecting the year defined the data fed into the models. For simulations 
in the given year under the DP data constraints, data were collected up until March 30th of the wet 
or dry year and used in the DP models to make predictions. For simulations with the PY data 
constraints, the models fit with PY data were used to predict crop responses and find optimized 
N fertilizer rates using data collected to January 1st of the year selected. Thus, temporal covariate 
data based on the years selected were supplanted into each dataset to perform the simulation 
under the different weather conditions for each field. Crop yield and grain protein concentration 
were predicted at the centroid of a 10m grid across the field for N rates ranging from 0 to 168 kg 
ha-1. For every point and N rate, the predicted yield and protein concentration were used to 
calculate a net-return using the economic conditions from the simulated weather year, beginning 
with a calculation of the amended price received based on base price and the protein 
concentration of a given observation;  

 𝑃 = 𝐵𝑝 + (𝐵0𝑝𝑑 + 𝐵1𝑝𝑑 ∗ 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 + 𝐵2𝑝𝑑 ∗ 𝑝𝑟𝑜𝑡𝑒𝑖𝑛!) (1) 
where P is the final price received ($ kg-1), Bp is the base price received ($ kg-1), B0pd is the 
intercept of the protein premium/dockage function set by the grain elevator, B1pd is the coefficient 
on the grain protein concentration (protein, %) and B2pd is the coefficient on the squared protein 
term. Using this price, net-return was calculated as; 

 𝑁𝑅 = 𝑦𝑖𝑒𝑙𝑑 ∗ 𝑃 − 𝐶𝐴 ∗ 𝐴𝐴 − 𝐹𝐶 − 𝑠𝑠𝐴𝐶 (2) 
where NR is the net-return ($ ha-1) received and a function of the product of the yield (kg ha-1) and 
P, minus the cost of the applied input (CA) multiplied by the as-applied rate of the input (AA), the 
fixed costs (FC) associated with production ($ ha-1) that do not include the input, and the cost per 
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hectare of the site-specific application (ssAC). The net-return at each point was used to identify 
the N rates across the field that maximized farmer net-returns and generate a N fertilizer 
recommendation on a 10m scale.  

Results 

Model Performance Comparison 
The 5x2 CV was performed first using the GAM to simulate yield responses for each field to 
compare the error estimates relative to observed data between the GAM fit with PY rather than 
the GAM fit with the DP, measured by RMSE. In two (B1, D2) out of seven fields there was strong 
evidence against the null hypothesis that there was no difference in the predictive ability between 
a GAM fit with PY or DP data (a < 0.05), with the GAM for yield responses resulting in a higher 
predictive accuracy under the DP constraint than the PY constraint (Table 4). In two (B2, I1) out 
of seven fields, there was moderate evidence (a < 0.15) against the null hypothesis, and weak to 
no evidence in three (B3, D1, D3) out of seven fields against the null hypothesis (a ≥ 0.15; Table 
4). The 5x2 CV was then performed for each field using the RF to simulate yield responses in the 
same manner as the GAM to compare RMSE between a RF fit with the PY and DP. In contrast 
to the results of the GAM, there was no evidence against the null hypothesis for any field where 
either of the data constraints resulted in a difference in performance of the RF for yield responses 
(Table 5).  

Table 4. Results from 5x2 CV for the GAM fit to yield responses. The mean RMSE, in kg ha-1, were calculated across each 
split and the 5 folds. An asterisk indicates significance at an alpha level of 0.05 and bolded RMSE values indicate the data 

constraint with a lower RMSE. 

 
Table 5. Results from 5x2 CV for the RF fit to yield responses. The mean RMSE, in units of kg ha-1, were calculated across 

each split and the 5 folds. 

Assessing the comparative model performance of protein response models, only one (D1) out of 
seven fields showed a difference in the predictive ability between a GAM fit under the PY or DP 
(a < 0.05), where a higher predictive accuracy under the DP was observed (Table 6). In three 
(B2, B3, I1) out of seven fields, there was moderate evidence (a < 0.15) against the null 
hypothesis of no difference between data constraints, and weak to no evidence (a > 0.15) in three 
(B1, D2, D3) out of seven fields (Table 6). While there was no evidence in any field that data 
constraints played a role in model performance of the RF for yield responses, two (D1, D3) out of 
seven fields were identified as having a difference in the predictive ability between a RF fit with 
PY or DP data (a < 0.05), with the RF for protein responses under the DP constraint resulting in 
greater predictive accuracy compared to the RF for protein responses under the PY constraint 
(Table 7). In one (B3) out of seven fields, there was moderate evidence (a = 0.15) against the 
null hypothesis that there was no difference in the data constraints, and weak to no evidence in 
four (B1, B2, D2, I1) out of seven fields (Table 7). 
Table 6. Results from 5x2 CV for the GAM fit to grain protein concentration responses. The mean RMSE, in % protein, were 

Field 5x2 t statistic p-value Mean RMSE PY Mean RMSE DP 
B1 4.3416 0.0074* 858.8653 848.3403 
B2 2.1672 0.0824 788.9887 783.4343 
B3 0.4362 0.6809 876.8696 899.8229 
D1 -0.8908 0.4139 538.0681 536.7981 
D2 4.8024 0.0049* 719.2763 714.4325 
D3 0.1869 0.8591 762.5487 763.6518 
I1 1.9276 0.1118 812.1172 805.8488 

Field 5x2 t statistic p-value Mean RMSE PY Mean RMSE DP 
B1 -1.5857 0.1737 572.5701 578.1144 
B2 -0.5464 0.6083 533.3079 534.0513 
B3 -0.5831 0.5852 590.6175 592.1910 
D1 1.2008 0.2836 387.3872 385.2688 
D2 0.7394 0.4929 398.1208 397.2827 
D3 0.1423 0.8924 548.1305 546.6204 
I1 -0.1685 0.8728 556.0405 561.4883 
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calculated across each split and the 5 folds. An asterisk indicates significance at an alpha level of 0.05 and bolded RMSE 
values indicate the data constraint with a lower RMSE. 

 
 

Table 7. Results from 5x2 CV for the RF fit to grain protein concentration responses. The mean RMSE, in % protein, were 
calculated across each split and the 5 folds. An asterisk indicates significance at an alpha level of 0.05 and bolded RMSE 

values indicate the data constraint with a lower RMSE. 

Data Constraint Impact on N Fertilizer Recommendations 
For each field, crop yield and protein responses were simulated in the driest and wettest year 
from 1999-2021 for the field’s geographic area, using both model types with both data constraints 
to compare how the data constraint influenced the pattern of site-specific N fertilizer 
recommendations and the total N fertilizer applied when fertilizer rates were optimized on 
maximizing net-returns.  
Across all of Montana, 2021 was the driest year on record from 1999-present and used across 
farms as the dry weather year. For all other farms, the wettest year varied based on the 
geographic location. The wettest year was 2018 for farm B, 2016 for farm D, and 2006 for farm I. 
Due to constraints on data availability, the protein premium dockage scheme used for all 
simulated years was from 2021 and equaled a $0.02 increase in the base price for every half 
percent protein above 11.5% up to 14% and an $0.08 dockage to the base price for every half 
percent protein below 11.5% down to 9.5%. All the farmers that manage the fields used in the 
study were able to apply variable rate fertilizer with their own equipment, so the ssAC parameter 
in equation 2 was zero. The fixed costs (FC), base price (Bp), and cost of N (CA) from equation 
1 were derived from a survey of our farmers and the USDA Economic Research Service (ERS) 
using data from the USDA Agricultural Resource Management Survey (Table 8).  

Table 8. Economic parameters across the years used in the dry (2021) and wet (2018, 2016, 2006) simulations that were 
used to calculate net-return in equation 1. 

Economic Parameter 2021 2018 2016 2006 
Fixed Costs (FC) $181.87 ha-1 $181.94 ha-1 $169.61 ha-1 $136.08 ha-1 
Base Price (Bp) $0.27 kg-1 $0.18 kg-1 $0.13 kg-1 $0.15 kg-1 
Cost of N (CA) $0.89 kg-1 $0.71 kg-1 $0.75 kg-1 $0.95 kg-1 

 
All fields used economic conditions from 2021 to calculate net-return in the simulation of a dry 
year, while economic conditions from 2018 was used to calculate the net-return in the simulations 
of a wet year in farm B, 2016 was used in the simulation of a wet year for Farm D, and 2006 was 
used in the simulation of a wet year for farm I.  
While there was evidence of a difference in the predictive ability of the GAM between the PY and 
DP data constraint for yield responses in field B1 (Table 4), this did not appear to play a role in 
generating a difference in the pattern of site-specific profit maximizing N fertilizer rates and total 
N applied across the field in either weather year (Fig. 3). In general, across all fields of farm B 

Field 5x2 t statistic p-value Mean RMSE PY Mean RMSE DP 
B1 1.5650 0.1784 1.6953 1.6963 
B2 -2.3742 0.0636 1.3179 1.3212 
B3 1.9562 0.1078 1.3187 1.3116 
D1 4.5167 0.0063* 1.1303 1.1026 
D2 1.3191 0.2443 1.2219 1.2160 
D3 0.2611 0.8045 1.2785 1.2815 
I1 -2.4841 0.0556 1.5910 1.6007 

Field 5x2 t statistic p-value Mean RMSE PY Mean RMSE DP 
B1 1.5946 0.1717 1.6697 1.6683 
B2 0.1305 0.9013 1.2754 1.2780 
B3 1.7632 0.1382 1.2871 1.2830 
D1 2.7191 0.0418* 1.0866 1.0786 
D2 -1.3101 0.2471 1.1660 1.1684 
D3 2.9727 0.0311* 1.2420 1.2394 
I1 -0.4395 0.6786 1.4567 1.4566 
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and both weather conditions, there were minimal differences between the pattern of profit 
maximizing rates and total N applied between the data constraints for simulations using the GAM 
or RF (Fig. 3-5).  

 
Fig 3. Site-specific profit maximizing nitrogen fertilizer rates for each model type and data constraint in a simulated dry 

and wet year for field B1.  

 
Fig 4. Site-specific profit maximizing nitrogen fertilizer rates for each model type and data constraint in a simulated dry 

and wet year for field B2.  
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Fig 5. Site-specific profit maximizing nitrogen fertilizer rates for each model type and data constraint in a simulated dry 
and wet year for field B3.  

In field D1, there was a pronounced difference in the pattern of N fertilizer rates produced from 
the GAM between the DP and PY in the wet year for D1 yet no apparent differences between 
management outcomes with the GAM in the dry year between DP and PY (Fig. 6). While there 
were minimal differences in the pattern of N rates between the DP and PY for the RF model, there 
were slight differences between DP and PY in the amount of total N recommended for both the 
wet and dry years (Fig. 6). For both models fit under the DP constraint there was evidence that it 
produced more accurate predictions of protein (Tables 6 & 7), however no conclusive evidence 
is shown that a greater predictive ability for protein responses with the DP constraint contributed 
to the differences in management recommendations for either model in the wet or dry year. While 
the scaling is deceptive for field D2, there were no drastic differences in the pattern of N 
recommendations or total amount of N between DP and PY for either model in the wet or dry year, 
with the largest difference in recommendations between DP and PY occurring with the GAM in 
the dry year between PY and DP (Fig. 7). However, in field D3, we observed stark differences in 
the pattern of N fertilizer recommendations and total amount of N applied between DP and PY in 
both the wet and dry year with the GAM (Fig. 8). This occurred despite any difference in the ability 
of the GAM to predict yield or protein responses between DP and PY, furthering the conclusion 
that the ability of a model to predict responses is not conclusively correlated to differences in 
management recommendations between data constraints.  

 
Fig 6. Site-specific profit maximizing nitrogen fertilizer rates for each model type and data constraint in a simulated dry 

and wet year for field D1.  

 
Fig 7. Site-specific profit maximizing nitrogen fertilizer rates for each model type and data constraint in a simulated dry 

and wet year for field D2.  
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Fig 8. Site-specific profit maximizing nitrogen fertilizer rates for each model type and data constraint in a simulated dry 

and wet year for field D3.  

In field I1, comparisons between DP and PY of recommendations in the dry year with either model 
or the wet year with the RF model showed little to no variation in recommendations (Fig. 9). There 
was a slight difference in the pattern of profit maximizing N rates and total N applied in the 
simulated wet year between the GAM fit with PY data compared to the GAM fit with DP data (Fig. 
9). However, there was no difference in the ability of either model to predict crop responses 
between data constraints so any difference in recommendations cannot be contributed to 
differences in the predictive ability of a model between DP and PY. 

 
Fig 9. Site-specific profit maximizing nitrogen fertilizer rates for each model type and data constraint in a simulated dry 

and wet year for field I1.  

In most fields, there were only slight differences in the pattern of profit maximizing N fertilizer rates 
and total N applied between simulations generated from the two data constraints for a given model 
in a given weather year, albeit with a few exceptions. Field D3 showed the most significant 
differences in the pattern of N fertilizer rates and total fertilizer applied between data constraints, 
however this was only apparent between a GAM fit with PY compared to a GAM fit with DP data, 
but not with the RF model (Fig. 8). Across most fields, simulations using GAMs appeared to be 
most sensitive to the different data constraints, resulting in slightly different patterns of N fertilizer 
rates and total N fertilizer applied, though mostly in wet years, while dry years tended to show 
less of a difference. The RF seemed to be more robust to differences in the data constraints with 
minimal variation in either wet or dry years between management recommendations from the PY 
or DP data constraint. While not the intended comparison, differences in the pattern of profit 
maximizing N fertilizer rates and total N applied were most prevalent between simulated outcomes 
from the different model forms (GAM or RF) compared to between DP and PY data constraints 
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for a given model.  

Discussion 
Grain yield and protein response models to variable top-dress N fertilizer rates were hypothesized 
to benefit from utilizing covariate information into the crop growing season (DP) rather than relying 
only on data from the previous years (PY) because the DP contains more information on the 
current growing season. Using a glimpse of the conditions in the current growing season to predict 
crop responses at harvest was expected to increase the predictive ability of a model because 
uncertainty in what the growing conditions were at the beginning of the season would be reduced. 
It may seem obvious that training models with data up to a decision point would result in better 
predictions of crop responses at harvest compared to models fit with data from past years. Our 
analysis explicitly tested the value of utilizing previous year and well as data closer to the top-
dress fertilizer application decision point for the prediction of crop responses and generation of 
management recommendations, filling a gap in the literature. Rainfed winter wheat is a good 
system to test this difference in data use as the crop has gown for 6 months (with at least 3 months 
dormant) by the time fertilizer is applied and rates of application selected. 
Contrary to our hypothesis, there were only a few cases where using data up to a decision point 
when using either a GAM or RF model improved model predictive performance. In field B1, one 
of the few cases where utilizing data up to the mid-season reduced uncertainty in yield predictions, 
the field sharing a border (B2) did not share the same result, indicating a difference in data 
constraints in adjacent fields (Table 4). These results highlight the site-specificity of crop 
responses and justifies the use of on-field experimentation and field specific modeling to make 
decisions for a field (Hegedus & Maxwell, 2022a).  
While in two of seven fields using data up to the decision point improved yield predictions from a 
GAM compared to a GAM fit with data only from past years, there was no evidence across any 
fields that yield predictions from RF models were improved by including data up to the decision 
point (Table 4). The RF model resulted in an average 251 kg ha-1 reduction in RMSE of yield 
predictions compared to the GAM, and no observed differences in the predictive ability of the RF 
between data constraints (Table 5). This indicates that the greater general ability to predict crop 
responses of the RF resulted in less sensitivity of predictive accuracy when the RF was fit under 
different data constraints.  
Further evidence of the insensitivity of the RF to data constraints was found when simulating 
management outcomes in dry and wet years (Fig. 3-9). Even when there was no difference in the 
RMSE of a GAM (for either crop response) between the PY or DP data constraint, there were 
more differences between simulated management outcomes of a GAM fit with the PY and DP 
compared to between RF models fit with either the PY or DP constraint. Similar to how the RF 
was more robust to differences in raw predictive ability between data constraints than the GAM, 
the low degree of differences in N fertilizer recommendations from the RF between DP and PY 
further indicates how the RF is robust to differences in data constraints, even when simulating 
management outcomes in extreme weather conditions (Fig. 3-9).   
Despite the sensitivity of the GAM, there did not seem to be a clear pattern between observing a 
difference in the predictive ability of either model fit to the two data constraints from the 5x2 CV 
and observing a difference in predicted outcomes in simulated weather conditions. For example, 
in field B1, there was strong evidence that the predictive ability of a GAM was greater using data 
up to the decision point compared to data from past years (Table 4), yet in both the wet and dry 
year simulations, there was no discernable difference in the pattern of profit maximizing N rates 
or the recommended total N applied to the field between a GAM fit with DP or PY data (Fig. 3). 
On the other hand, the 5x2 CV analysis of field I1 showed no indication of a difference in predictive 
ability for the GAM between DP and PY (Table 4), yet in the wet year there were some differences 
in the recommended pattern of profit maximizing N rates and total N applied between a GAM fit 
with data up to the decision point and a GAM fit with data from past years (Fig. 9).  
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Differences in the predictive ability of a given model between PY and DP constraints did not tend 
to translate into differences in management recommendations. Across all fields, the greatest 
difference in the pattern of recommended profit maximizing N rates and total N applied for either 
a wet or dry year was between the model forms, rather than between data constraints for a given 
model.  
Management decisions for N fertilizer management require high quality data that is appropriate 
for usage under realistic data constraints. Using models under the DP constraint compared to the 
PY constraint resulted in greater predictive ability of the model in 5/28 cases. Thus, because of 
the ease of obtaining weather information, crop response models used to make N fertilizer 
management recommendations should be fit with data constrained to the point in time that 
decisions need to be made. Using models with better predictive abilities results in less uncertainty 
in predictions of yield and protein, an important objective for increasing the resiliency of farmer 
livelihoods, as their profits are predominately dictated by yield and protein (Hegedus & Maxwell, 
2022a). In the cases where there was no difference in model prediction accuracy, such as for RF 
models fit to yield data, there are only potential benefits to fitting models with all the data that the 
farmer will have available, and models should still be fit with data up to the point where the farmer 
must make management decisions. 
Open source remotely sensed satellite data was used for this study (Table 2) but using data up 
to a decision point rather than past years may have a greater benefit when collecting more 
accurate on-farm weather station data, likely to come available in the future. Data collected on 
soil moisture or weeds influencing soil moisture, for example, should be gathered up to the point 
that producers need to make decisions, so that information can be obtained in the year where 
decisions in that year affect outcomes. Only covariate data where measurements from the remote 
sensing sources varied over time (precipitation, GDD, NDVI, and NDWI) differed between the 
data constraints, while intransient edaphic and topographic variables that did not vary over time 
were held constant (Table 3). However, some of these edaphic variables realistically change over 
time, for example soil water content, which is sensitive not only to precipitation up until the 
decision point but throughout the growing season and has a large impact on crop yield and grain 
protein. This represents a limitation in the nature of the open-source data used in this study. 
Further limitations of the open-source data beyond not capturing realistic temporal changes are 
accuracy and scale. This study used the best open-source data available on hand and trusted 
that the developers of these datasets did due diligence in verifying the accuracy of measurements. 
Downscaling of remote sensing datasets from satellites constitutes a career of research itself, 
and was beyond the scope of this paper, though it must be recognized that imperfections and 
averaging across spatial scales could have contributed to the inability in discerning differences 
between the predictive ability of models between data constraints. However, despite these 
limitations, these tools still need to be applied towards the goal of improving efficiency of 
agricultural inputs. Collaboration between scientific disciplines is needed for improving the spatial 
scale and accuracy of measurements by ground truthing open-source satellite data to aid in 
informing farmer decision making at a low-cost. 
There will still be uncertainty in predicted yield and protein responses when making management 
recommendations no matter the data constraint applied to training crop response models. The 
functional form of the model, rather than the data used to constrain a model, has a greater effect 
on uncertainty in predicted outcomes, highlighting the need for evaluating the most appropriate 
crop response model form for a given field in a given year. However, no matter the functional form 
of crop response models used, accumulating data over time increases producers’ understanding 
of their fields and generates a rich backlog of data to use in precision agriculture decision support 
systems. These decisions support systems will be critical to sustaining the resources that 
agriculture relies on for production by harnessing the data from modern farms to increase 
producer net-returns and reduce pollution from inputs such as N fertilizer.  
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Conclusion  
With increasing uncertainty faced by producers, decision support systems will need to be 
developed that reduce as much uncertainty in crop response predictions as possible for farmers 
to make the most informed management decisions. In all cases where there was evidence of a 
difference between data constraints, models using data up to the decision point that a farmer 
needs to make management decisions resulted in higher accuracies of crop response predictions. 
The increased ease of scraping site-specific data from the internet within analysis code relaxes 
much of the concern of analysis efficiency and thus data inclusions is of little concern, so there is 
no reason not to include data up to a decision point. Regardless of the data constraints used to 
fit a model, the greatest uncertainty in predicted management recommendations resulted from 
the functional form of the model itself, highlighting the need for decision support systems to assess 
various model types when providing field specific farmers management recommendations. 
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