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Abstract. Most current crop models are point-based models, i.e. they simulate agronomic 
variables at the spatial footprint on which they were initially designed (e.g. plant, field, region 
scale). Spatialization (i.e. using point-based crop models on a different scale than its native spatial 
footprint) represents a solution to use these crop models on a different scale. This is particularly 
interesting in a precision agriculture context where downscaling processes are involved to model 
agronomic variables on finer scale (e.g. within-field scale). To assess their performances, many 
indicators based on the comparison of estimated vs observed data, can be used. However, the 
use of classical, aspatial indicators may not be relevant to evaluate spatialized crop model 
performances. The objective of this work was to compare how different model performance 
indicators are able to evaluate the performance of a spatialized crop model at various within-field 
scales. The crop model spatialization processes were based on a spatial calibration of model 
parameters. This work focused on a case study using the crop model WaLIS (Water baLance for 
Intercropped Systems) to simulate vine water restriction (estimated through the predawn leaf 
water potential - ΨPD) for a vineyard in the South of France. The WaLIS model was employed at 
different spatial scales (field, site, within-field zone) to generate ΨPD maps. The management 
zones were generated from soil and vine ancillary data that are correlated with or directly influence 
vine water stress. Aspatial (RRMSE and D-index) and spatial (Cambardella index and Z-score) 
indicators were used to evaluate model performances at these different spatial scales. Results 
showed that these different indicators generated different ‘best’ simulation scales and there was 
no clear result of model performance from the spatial and aspatial indicators. This confirmed that 
current approaches to crop model evaluation were not well suited to evaluation the performance 
of spatialized crop models in a precision agricultural context. Evaluation in an operational context 
through decision-making evaluation and map comparison approaches provided a clearer 
understanding of model behavior and appeared to be a relevant method for evaluating 
downscaled spatialized crop model predictions for tactical, in-season and differential crop 
management. 

Keywords. Spatialization, Spatial calibration, Downscaling, Evaluation indicators, Vine water 
restriction   
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Introduction 
Most current crop models are point-based models, i.e. they simulate agronomic variables at the 
spatial footprint on which they were initially designed (e.g. plant, field, region scale) (Heuvelink et 
al., 2010). However, shifting model use from a strategic objective to tactical in-season 
management is becoming a significant issue for the agronomic community, especially in a 
precision agriculture context. Spatialization (i.e. using point-based crop models on a different 
scale than its native spatial footprint) represents a solution to address crop model use in a tactical 
and operational context. Calibration is an inevitable process to improve crop model performances 
(Seidel et al., 2018). This is especially true when using crop models over large areas (Jagtap & 
Jones, 2002), thus calibration is a critical step for models used in a spatialization context. In the 
case of precision agriculture applications that involve downscaling processes, it is important to 
consider how to calibrate crop models at the within-field scale. In this study, spatialization is based 
on a spatial calibration led at different spatial scales. 
To assess crop model performance, many indicators based on the comparison of observed and 
modeled data, can be used, such as the relative root mean square error (RRMSE) or Willmott 
index of agreement (D-index) among others (Bennett et al., 2013; Wallach et al., 2019). However, 
the use of these indicators to evaluate spatialized crop models raises questions, and these 
indicators may not be relevant to evaluate their performances (Pasquel et al., 2022). Evaluation 
on the raw error of the crop model (error between observed and simulated data) using these 
indicators may not be sufficient to assess the spatial efficacy of calibration and/or prediction. 
Preliminary results using simulated data have indicated that the indicators currently used to 
evaluate spatialized crop models performance are not the most relevant (Pasquel et al., 2022). 
However, an evaluation and comparison of spatial and aspatial indicators on a real-world case 
study in a precision agricultural context has not yet been done, nor has there been any 
investigation of the effect of scale change (increasing levels of downscaling) on model 
performance. Note that if a spatialized crop model is used in an operational context associated 
with site-specific decision-making, it should be possible to mathematically define an error on the 
decision made using the simulations. Such indicators would clearly be the most adapted to assess 
model performances with respect to the targeted model use, but have not been strongly 
advocated to date. 
Therefore, the objective of this work is to compare the evaluation of spatialized crop model 
performances using different indicators (aspatial: e.g. RRMSE or D-index; and spatial: e.g. 
Cambardella index or Moran index) for different simulation scales. The study is done on a vine 
water status crop model, WaLIS (Celette et al., 2010). As well as the different model statistics, 
the error on the decision taken is also used to evaluate the spatialized crop model performance. 
Model performance is defined by relationships between the observed and modeled data and the 
preservation of the spatial structure of the modeled variable in relation to the observed variable. 
It should be noted that the preservation of the spatial structure of the model output(s) is important 
in a precision agriculture objective. 

Material and Methods 

Field description and observed predawn leaf water potential (ΨPD.obs) 
The predawn leaf water potential (ΨPD) of the vine was considered as the reference data in this 
case study. ΨPD measurements were carried out on a 1.2 ha Syrah vineyard block at INRAE’s 
Pech Rouge estate (Gruissan, Aude, France) on 49 within-field sites (Fig. 1A) using a pressure 
chamber, these measurements were the observed data (ΨPD.obs). The ΨPD.obs measurements were 
done for 7 dates in 2003 (ΨPD.obs.n-1) and 6 dates in 2004 (ΨPD.obs.n) (see Acevedo-Opazo et al. 
(2010) for full details on this data set). 
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Fig 1. Experimental field with A. Locations of observed predawn leaf water potential (ΨPD.obs) within-field measurements in  
a 1.2 ha Syrah vineyard at INRAE Pech Rouge (Gruissan, Aude, France). B. Interpolated (kriged) maps of ancillary data 

used to define within-field zones: normalized difference vegetation index (NDVI) (a.), soil apparent electrical resistivity (ER, 
expressed as apparent electrical conductivity (ECa)) (b.) and trunk circumference (TC) (c.) for the Syrah vineyard. 

Three ancillary data were considered: soil apparent electrical resistivity (ER), trunk circumference 
(TC) and normalized difference vegetation index (NDVI). The ER and TC were both measured at 
the ΨPD.obs measurement sites (Fig. 1A) in March 2006. The NDVI values were derived from an 
airborne multispectral image obtained in August 2006. Note that these ancillary data were used 
for their spatial pattern and not for their absolute values. The ancillary data were not measured in 
the same year as the ΨPD.obs; however, for a perennial crop like grapevine, it has been shown that 
NDVI and ER spatial patterns in this vineyard are temporally stable over short-time periods (3-5 
years) (Kazmierski et al., 2011; Tisseyre et al., 2008). Thus, these ancillary data are assumed to 
present the same spatial pattern even in a different year. Ancillary data were interpolated by 
ordinary kriging using GeoFIS (Leroux et al., 2018) (Fig. 1B). 

WaLIS and modeled predawn leaf water potential (ΨPD.mod) 
The modeled predawn leaf water potential (ΨPD.mod) at multiple dates were simulated using a 
predictive model of vine water stress: Water baLance for Intercropped Systems – WaLIS (Celette 
et al., 2010). To run WaLIS, weather data for the years 2003 and 2004 were acquired through the 
weather station 11170004 (Gruissan) of the INRAE network via the Climatik application (Fig. 2). 
Measurements realized in 2003 were used to calibrate WaLIS and measurements realized in 
2004 were used to evaluate modeling performances. Note that weather conditions for both years 
were relatively close. Daily mean temperature (Tmean) and daily precipitation (P) were recorded 
and daily evapo-transpiration (ET) was computed using the Penman-Monteith equation (Allen et 
al., 1989; Pereira et al., 1999). In reality, WaLIS simulates the fraction of transpirable soil water 
(FTSW) and, by using a conversion, FSTW was transformed into ΨPD.mod (Eq. 1) (Lebon et al., 
2003). However, this conversion contains a logarithmic expression and FTSW can be equal to 0, 
so a realistic ΨPD.mod minimum had to be defined. The same ΨPD.obs minimum for the field and year 
was used, -1.1 MPa. 

Ψ!".$%& =
'%((*+,-)/'%(	(1!)

1"
                                                  (1) 

with Ca is a constant equal to 1.0572 and Cb is a constant equal to 5.3452. 
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Fig 2. Weather conditions for 2003 (a.) and 2004 (b.) for the period of measurement dates used for respectively model 
calibration (2003) and performance evaluation (2004). The red line corresponds to daily mean temperature (Tmean) and the 

blue columns correspond to daily precipitation (P) events. Dates of measurement of predawn leaf water potential for 
calibration (ΨPD.obs.n-1) in 2003 were June 18th, June 26th, July 8th, July 16th, July 23rd, July 30th and August 12th. Dates of 

measurement of predawn leaf water potential for evaluation (ΨPD.obs.n) in 2004 were June 9th, July 8th, August 5th, August 
18th, August 23rd and September 10th. 

Spatial calibration of WaLIS 
The intent of this study is to run the WaLIS model at different scales (at the measurement site-
scale and at different within-field zone scales) than its native spatial footprint (i.e. field scale), thus 
WaLIS will be used in a spatialization process (Pasquel et al., 2022). The ER, TC and NDVI data 
were used for the realization of within-field zones via a segmentation algorithm (Pedroso et al., 
2010) included in the GeoFIS software (Leroux et al., 2018) with the aim to define a base grid for 
the analyses. All three types of ancillary data were considered as potential surrogate to explain 
ΨPD spatial variability. The field was divided into 2 to 5 zones by the segmentation algorithm with 
these ancillary data (Fig. 3). Therefore, the spatial scales considered in this analysis are the 
individual measurement sites (n = 49) (Fig. 1A), the different zoning levels (z ∈ [2;5]) (Fig. 3) and 
the whole field (single value). The ΨPD is modeled by WaLIS (ΨPD.mod.n) on each of these 
considered spatial scales. 

Fig. 3 Maps of different within-field zones defined with ancillary data using a segmentation algorithm; 5 zones (a.), 4 zones 
(b.), 3 zones (c.) and 2 zones (d.) for the Syrah vineyard. Note that the 1 zone solution is equivalent to the whole field scale. 

Defining sub-units (zones) using ancillary data to apply crop models in order to spatialize the 
model is a process already seen in the literature (Basso et al., 2011; Cammarano et al., 2019, 
2021; Guo et al., 2018). Spatial calibration for spatialization of the crop model is driven by the 
zoning process based on ancillary data, a process that is seldom seen in the literature. In an 
operational context here, a minimal size zone has been defined at 500 m², i.e. this is the minimum 
surface for which it is possible to set up a specific management action. With this constraint, 5 
zones was the maximum number of zones that the segmentation algorithm was able to make 
(Fig. 3). Beyond 5 zones, the segmentation algorithm was unable to find a solution with the 
minimum surface constraint. 
To enable spatialization, within each delineated zone at each spatial scale, an aggregation of the 
ΨPD.obs from the measurement sites was performed to generate mean ΨPD.obs values at larger 
spatial scales (zoning levels for z ∈ [2;5] and the whole field scale). The local WaLIS calibration 
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was performed at either the original observation scale (for site-scale modeling) or after these 
aggregations (for modeling at scales larger than the site-scale), i.e. this is a kind of spatial 
calibration (Fig. 4). The calibrated parameters in the WaLIS model were the total transpirable soil 
water (TTSW) and the maximum crop coefficient of the vine (Kc). Other WaLIS parameters were 
kept at their default value for a Mediterranean context. Thus, only TTSW and Kc have been 
calibrated differently at the different scales because these parameters are known to be variable 
from one vineyard to another even at within-block scales (McClymont et al., 2019; Verdugo-
Vásquez et al., 2022). The TTSW and Kc were calibrated with the data from the previous year 
(ΨPD.obs.n-1), and an optimization was performed with TTSW values ranging from 55 to 210 mm 
and Kc values ranging from 0.35 to 0.5 to identify optimal parameter values. The retained 
parameter values were those that minimized the mean absolute error (MAE) when compared to 
ΨPD.obs.n-1. For all the analyses, the output scale is disaggregated to the site-scale to assess the 
model performance (Fig. 4). 

Fig. 4 Different modeling cases of predawn leaf water potential (ΨPD) by WaLIS according to different spatial scales defined 
at the observation scale, the whole field scale or intermediate zonal scales (2 to 5 zones) based on ancillary data. The 

native WaLIS spatial footprint is shown in blue and corresponds to the field scale. Site-scale corresponds to the original 
observation scale. The grey arrows correspond to the upscaling process associated with aggregations of the observed 

data to a higher spatial scale as model input. The spatial calibration is performed at this input scale. 

Simulation performance evaluation using aspatial and spatial indicators 
In order to estimate the WaLIS performance for the different simulation scales a set of aspatial 
indicators: relative root mean square error (RRMSE) (Eq. 2) and the Willmott index of agreement 
(D-index) (Eq. 3); and spatial indicators: Cambardella index (Ci) (Eq. 4) and Z-score (Eq. 6) were 
computed. RRMSE and D-index are assessment indicators of the fit between observed and 
simulated data. If the D-index is equal to 1, there is a perfect match between observed and 
simulated data, if D-index is equal to 0, there is no match at all. The Ci and Z-score are indicators 
of the spatial structure of the data. These indicators were calculated on both the observed and 
modeled data and on the residuals between the observed and modeled data. The Ci is derived 
from variographic analysis of ΨPD.obs and ΨPD.mod, with values of Ci < 0.25 corresponding to a 
strong spatial structure, values between 0.25 and 0.75 corresponding to a moderate spatial 
structure and values > 0.75 corresponding to a weak spatial structure (Cambardella et al., 1994). 
Global Moran's index test (I) (Eq. 5) was also used to estimate spatial autocorrelation (Moran, 
1948) and the values of I were then transformed into a Z-score. The Z-scores were interpreted to 
assess the magnitude and significance (α = 0.05) of the spatial autocorrelation of ΨPD and 
residuals, knowing that -1.96 < Z-score < 1.96 corresponds to a non-significant spatial 
autocorrelation i.e. there is no clearly identifiable spatial structure. 

RRMSE =
2#
$
∑ (4%/,%)&$
%'#

45
              (2) 
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D-index	= 1 − ∑ (4%/,%)&$
%'#

∑ (|,%/45|7|4%/45|)&$
%'#

                                               (3) 

where Oi is the observed value, Si is the corresponding simulated value, n is the number of 
observations (n = 49) and Ō is the average of observed values. 

C8 =
1(

1(71#
. 100                                            (4) 

where C0 is the variogram nugget and C1 is the variogram partial sill. 

I =
9	∑ ∑ :%)(;%/;5)(;)/;5)$

)'#
$
%'#

∑ ∑ :%)
$
)'#

$
%'# 	∑ (;%/;5)²$

%'#
                                                   (5) 

Z-score = =/>(=)
?@(=)

                                              (6) 

where yi and yj are the variable of interest at different spatial locations (i and j), ȳ is the mean of 
the variable of interest, wij is a matrix of spatial weights quantifying the influence of j on i, n is the 
number of units indexed by i and j, E(I) is the average of I and V(I) is the variance of I. 

Simulation performance evaluation from an operational context 
The model outputs and the results of the indicators used to evaluate the performance of the 
modeling were also interpreted through the decision process to irrigate (or not) the vineyard at 
the within-field scale. The decision to irrigate was based on different ΨPD thresholds depending 
on the vine phenological cycle (Ojeda, 2007). The ΨPD thresholds were determined from the vine 
phenological stage assigned to the approximate corresponding dates (Fig. 5). Thus, the intent 
was not to compare the ΨPD values (modeled vs. observed) but to compare the decision made 
(to irrigate or not). The balanced accuracy statistic (BA) was used to summarize if the set of 
decisions taken at the site-scale to irrigate with ΨPD.mod corresponded to the set of decisions taken 
based on ΨPD.obs (Eq. 7). When BA is equal to 1 there is a perfect classification. 
 

BA = 	 ,A9B8C8D8C;7,EAF8G8F8C;
H

= I
H
8 +!
+!7*J

+ +J
+J7*!

:                              (7) 

where TP is true positive, TN is true negative, FN is false negative and FP is false positive. 

Fig. 5 ΨPD values below which irrigation is required over the season. The equation between June and August is 
ΨPD = -0.0033.Day number + 0.1 and is constant after August 1st at -0.65 MPa (adapted from Ojeda 2007). 
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Results and Discussion 

Calibration values at varying spatial scales 
Table 1 presents the results of the calibration optimization performed for the TTSW and Kc model 
parameters at different spatial scales. They represent the calibration of the model to the mean 
observation within each zone for the different levels of zoning (z ∈ [2;5]). The field-scale equated 
to a 1 zone scenario. The site-scale is not shown because it is too large to show here. However, 
for the site-scale calibration, the Kc values ranged from 0.368 to 0.5 and TTSW values ranged 
from 55 to 107.7 mm. The zone in the northern tip of the field (Fig. 3) was constant to all zonal 
modeling approaches and returned constant parameter values for all calibrations. However, it was 
interesting to notice that for each zone resulting from the merging of two other zones (Fig. 3), the 
calibrated parameter value was not necessarily an intermediate value of the parameter values of 
these two zones (Table 1). Notice that different zones within a spatial scale could have the same 
parameter values. 

Table 1 Calibration values for each scale simulation (except site-scale) and for each WaLIS calibrated parameters: 
maximum crop coefficient of the vine (Kc) and total transpirable soil water (TTSW). 

5 zones 4 zones 3 zones 2 zones Field 
N° Kc TTSW N° Kc TTSW N° Kc TTSW N° Kc TTSW Kc TTSW 
1 0.494 67.4 1 0.494 67.4 1 0.494 67.4 1 0.494 67.4 

0.467 70.5 
2 0.458 67.4 2 0.5 73.6 2 0.5 73.6 

2 0.485 73.6 3 0.5 86 
4 0.491 89.1 3 0.491 89.1 3 0.5 89.1 5 0.5 86 4 0.5 86 

Spatial structure preservation between ΨPD.obs and ΨPD.mod 
The ΨPD.obs (in 2004) was moderately spatially structured over time in the Syrah vineyard (Fig. 
6a), with the exception being the August 8th observation that exhibited no spatial structure. This 
measurement occurred shortly after a large (17.5 mm) and unusual precipitation event that will 
have had a short-term effect of homogenizing the vine water status within the vineyard. Two 
weeks after the event, the spatial structure in these data had returned. Therefore, the spatial 
structure was present when the vines were differentially stressed due to the different soil types in 
the vineyard that permit access to more or less soil water. The spatial structure of ΨPD.obs and 
ΨPD.mod realized at site-scale were comparable until early August, after which, the ΨPD.mod no 
longer showed any spatial structure while the ΨPD.obs continued to exhibit a moderate spatial 
structure. The WaLIS model tended to simulate more negative ΨPD.mod than the ΨPD.obs, which 
tended to homogenize the ΨPD.mod and, consequently, it did not preserve the spatial structure. The 
Ci and Z-score interpretations were complementary and presented the same trends, with the Z-
score allowing for an assessment of the significance of the spatial autocorrelation. The spatial 
structure estimated by Ci should be discussed with the significance of the spatial autocorrelation 
estimated by I (through the Z-score), as the two principles cannot exist without each other 
(Tiefeldorf, 2000). 

Fig. 6 Comparison between spatial structures of observed predawn leaf water potential (ΨPD.obs) and modeled predawn leaf 
water potential (ΨPD.mod) using the Cambardella index (Ci) (a.) and Z-score (b.). The grey area on the Z-scores plot refers to 

an area of non-significance of spatial autocorrelation. Blue columns correspond to daily precipitation (P) events. 
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Which modeling scale is the most relevant regarding aspatial and spatial indicators? 
Depending on the modeling date (seasonal timing), the model performance was not constant. At 
the beginning of the season, the RRMSE values were relatively close regardless of the modeling 
scale considered (Fig. 7a). For late summer, when water stress was the highest, the RRMSE 
values increased because WaLIS underestimated the vine water restriction (overestimated ΨPD). 
In late summer, the RRMSE values were still the highest for the 2-zone and field scale simulations 
with 34% and 71% respectively. For the ΨPD.mod generated at finer scales (3+ zones including 
individual sites), lower and similar RRMSE values were observed, showing a better agreement 
between ΨPD.obs and ΨPD.mod. When using the D-index for assessing the agreement between 
ΨPD.obs and ΨPD.mod, the finer the modeling scale at the beginning of summer, the better the 
agreement. However, this trend had disappeared by late summer (Fig. 7b) with the site-scale 
modeling dropping from the highest D-index to one of the lowest values in mid-August. The D-
index for the field scale simulations were always equal to 0, i.e. there was no agreement between 
ΨPD.obs and ΨPD.mod. 

Fig. 7 Evaluation of the WaLIS simulations of the predawn leaf water potential (ΨPD) according to the different spatial 
scales along the measurement period. The RRMSE (a.) and D-index (b.) are calculated between observed and modeled 

data. The Cambardella index (Ci) (c.) and Z-scores (d.) are calculated on the residuals between observed and modeled data. 
The grey area on the Z-scores plot refers to an area of non-significance of spatial autocorrelation. Blue columns 

correspond to daily precipitation (P) events. 

The spatial structure of the residuals is an indication of how well the model has been correctly 
spatialized. The target variable, ΨPD.obs, is spatially structured during some periods of the season 
(especially during dry periods) (Fig. 6a). If the modeling is able to replicate this, then the residuals 
should be spatially random (i.e. exhibit only a nugget effect). In the other extreme, as is the case 
for the whole field simulation, the removal of a constant (modeled) value from the observed data 
should retain the spatial structure in the ΨPD.obs within the residuals. Therefore, a higher Ci value 
would indicate that the residuals were not spatially structured. A Ci value equal to 100 corresponds 
to a nugget effect of the variogram (random effects). Concerning the preservation of spatial 
structure with respect to ΨPD.obs, two trends were interesting to note. 
The first trend concerned the period up until the beginning of August, with the spatial structure of 
the model residuals becoming less and less structured over time for all modeling scales, i.e. Ci 
increases (Fig. 7c). Thus, the residuals were randomly distributed by early August, as indicated 
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by an absence of spatial structure, and it appeared that the spatialized model was performing 
well. However, note the non-significance of the spatial autocorrelation with respect to the residuals 
(Fig. 7d). The same trend was observed for the spatial structure of ΨPD.obs and ΨPD.mod (Fig. 6), 
this loss of spatial structure was likely influenced by the precipitation events, which occurred just 
before the measurement dates, and had a homogenizing effect on the ΨPD.obs values within the 
field. 
The second result concerned the late summer period (mid-August to mid-September), when the 
residuals were randomly distributed for the site-scale modeling but spatially structured for 
modeling at higher spatial scales (zonal or whole field). The residual spatial structure at the higher 
spatial scales can be explained by the fact that the ΨPD.obs were spatially structured and the ΨPD.mod 
were not for this period (Fig. 6). The ΨPD.mod were not structured because for all sites constituting 
the within-field zones and the whole field simulation scale, the ΨPD.mod values were the same for 
all sites. Thus, modeling was not able to replicate the ΨPD.obs spatial structure except for the case 
of the site-scale modeling, which seemed to be the best simulation scale regarding spatial 
indicators for this period. 
The spatial structures of ΨPD.obs and ΨPD.mod were quite different, except at the beginning of the 
modeling period when the spatial structures were comparable, but a period that coincided with 
low vine water stress that is considered of little importance to producers. Additionally, even if the 
spatial structures reflected by the Ci were similar, it is important to note that the level of 
semivariance for ΨPD.obs and ΨPD.mod were not of the same magnitude. The ΨPD.mod semivariance 
was nearly 75% lower than ΨPD.obs semivariance, indicating a much smaller range of values in this 
dataset. The variance differences were not shown with the Ci value because it is a result of the 
ratio between the nugget and sill values. Another point of interest is the range of the variograms 
used to calculate the Ci. The ΨPD.obs variogram range was twice that of the ΨPD.mod variogram 
range. Thus, the ΨPD.mod spatial patterns (using the site-scale modeling) were smaller than the 
ΨPD.obs spatial patterns. 
Looking holistically at the aspatial and spatial indicators, there is no clear pattern to identify the 
best modeling scale. The site-specific and 5-zone modeling (finer spatial resolution models) 
tended to indicate the best model spatialization, for example lower Ci and higher Z-score values 
in mid-August), but this was not supported by better aspatial metrics (lower RRMSE and higher 
D-Index) at this time and at these finer spatial resolutions (Fig. 7). Thus, the evaluation of model 
performance cannot be estimated by looking at only one or a combination of the indicators, i.e. 
different indicators point to a different best modeling scales, and none can be selected with 
certainty. For this reason, the metrics have also been interpreted relative to the decision process 
for within-field irrigation. This aimed to be able to decide which modeling scale was the most 
relevant, such that the ΨPD.mod indicated the correct decision to be made (i.e. the decision that 
would have been taken with the ΨPD.obs data). 

Which modeling scale is the most relevant in regards to an operational context? 
Figure 8 shows the translation of the model output, at each date and at each spatial scale, into 
an irrigation decision based on the date and the recommendation of Ojeda (2007) (Fig. 5). Note 
that the dates up until and including August 5th had a consistent non-irrigation decision for the real 
data and the modeling at all spatial scales regardless of the actual quality of the prediction (e.g. 
with the indices shown in Fig. 7). The operational decision-making to change the irrigation 
situation evolved in mid to late August, and the observed data indicated that the northern tip of 
the vineyard should be irrigated from August 18th 2004, and by September 10th the majority of the 
vineyard, except the southern third, should be receiving irrigation. For dates on or after August 
18th, the scale at which the crop model was applied affected the quality of the irrigation decision. 
The whole field and 2-zone scale modeling flipped the whole field from non-irrigated to irrigated, 
although on same dates. The WaLIS model tended to simulate ΨPD more negative than ΨPD.obs, 
so all sites were predicted as requiring irrigation. By August 23rd, the overestimation of vine water 
stress by the WaLIS model led to an effective irrigation decision for the entire field for modeling 
at all spatial scales. Consequently, the remainder of this discussion will focus on the August 18th 
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results. The highest balanced accuracy statistic (BA) was obtained with modeling at the 5-zone 
scale, which outperformed the site-scale modeling according to the BA (Fig. 8). The BA was also 
higher for the 3 and 4-zone modeling than the site-scale modeling. These results showed that 
modeling at a spatial scale between 3 and 5 zones generated a better decision. It was not possible 
to identify this when using the proposed aspatial and spatial indicators. Evaluation in an 
operational context allowed an identification of which scale was the most relevant to model ΨPD 
as close as possible to the ΨPD.obs decision. 

Date Observed ΨPD Modeling ΨPD 
site site 5 zones 4 zones 3 zones 2 zones field 

09.06.2004 
08.07.2004 
05.08.2004 

 

      

BA - 1 1 1 1 1 1 

18.08.2004 

     

  

BA - 0.56 0.83 0.77 0.77 0.47 0.52 

23.08.2004 

  

  
 

 

 
BA - 0.43 0.46 0.46 0.46 0.46 0.46 

10.09.2004 

 

     

 

BA - 0.48 0.48 0.48 0.48 0.48 0.48 

Fig. 8 Maps of within-field irrigation according to the date and the value of predawn leaf water potential (ΨPD) for the 
observed point data and the modeled data at each considered scale of simulation. BA = Balanced Accuracy. Observed and 

site-scale modelled data maps were interpolated using inverse distance weighting. 

Conclusion 
In a precision agriculture context, using crop models at a finer scale than the model’s native spatial 
footprint is of principal interest. Spatialization using downscaling processes is one of the methods 
that could be used to achieve this goal. Resulting spatialized crop models are currently often 
evaluated using aspatial and spatial indicators. However, interpreted individually, these indicators 
indicated different best simulation scales, thus, this study showed that using these indicators was 
not the most relevant method for assessing this kind of model application. The evaluation of 
spatialized crop models for precision agriculture in an operational context seemed to be a better 
evaluation method. Based on a decision-making approach, identifying the best simulation scale 
that was closest to the observed data was much easier and more relevant for assessing model 
performance. Ideally, a spatial indicator able to indicate if the zoning level is more relevant than 
another level to simulate an agronomic variable could be a great improvement. The spatial 
indicators used in this study are blind to this goal, which is why evaluation in an operational context 
was more relevant in this case. Spatial calibration is the process key here in the spatialization 
process, it would also be interesting to see to what extent the spatial structure of the agronomic 
variable also influences the relevance of this spatialization method. 
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