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Abstract. The practice of bale production, in forage agriculture, involves various machines that 
include tractors, tedders, rakers, and balers. As part of the baling process, silage material is 
placed in windrows, linearly raked mounds, to drive over with a baler for easy collection into bales. 
Traditionally, a baler is an implement that is attached on the back of a tractor to generate bales 
of a specific shape. Forage agricultural equipment manufacturers have recently released an 
operator driven, self-propelled round hay baler. This automated platform allows the driver to 
seamlessly navigate windrows while quickly and easily creating round bales. The current 
automation control involves releasing the bale at the push of a button. It is conceivable that this 
will advance to a fully autonomous baler requiring intelligent steering control along windrows and 
reduce driver fatigue. To support this advancement, we present an innovative low-cost camera-
based solution named Synchronized Windrow Intelligent Path Estimator (SWIPE). SWIPE 
provides a smooth, accurate path along a detected windrow to support seamless autonomous 
control of the platform under various lighting conditions. It applies advanced sensing, to handle 
high contrast and low light conditions, combined with artificial intelligence algorithms to predict 
the windrow center out to 12 meters. This paper details the results of applying artificial intelligence 
to stereo cameras to extract the windrow in the field. The extracted windrow is used to generate 
a smooth spline along the center in the presence of gaps, multimodal peaks, and along curves. 
The developed system is designed to interface with the navigation and control system of an 
autonomous baler. 
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Introduction 
An important process in forage agriculture is the generation of bales for feed production. The 
practice of bale production involves various machines, most importantly balers. As part of the 
baling process, silage material is collected into windrows where a baler drives over along the path 
of the windrow for easy collection into bales. Windrows are the raked rows of silage material that 
are allowed to dry prior to bale collection (Figure 1). The baling process requires traversing large 
acre fields of windrows, collecting bales. This simplified process can become routine and tedious 
leading to driver fatigue. If this process can be automated or autonomous, that would lead to a 
large improvement to this operation. Balers can be an implement attached to the back of a tractor 
or, more recently, a fully integrated self-propelled vehicle.  Recent research in the forage industry 
has led to the discovery of such a round hay baler with an integrated cab for an operator. This 
platform allows the driver to seamlessly navigate windrows while quickly and easily creating round 
bales. While this system provides added comfort and an automated bale release, driving the 
windrow is still a manual process. Having a system to detect the windrow on the ground and 
translating that into a drivable path would provide an added automated functionally to reduce the 
load on the driver. 

 
Figure 1: A field of windrows 

Current approaches to detecting a windrow use single plane lidars (Chateau, et al. 2000), (SICK 
Lidars 2022),  to measure the cross-section of the windrow at a distance in front of the vehicle. 
The lidar approach observes the windrow at a defined forward distance and provides offsets from 
the center. This approach lacks the perception of the entire windrow which can hinder the vehicle’s 
control system’s ability to smoothly navigate between offset updates. In practice, this can result 
in overcorrecting by the control system and frequent stops in the case of gaps in the windrow. In 
addition, this approach presents challenges when multiple windrows are near each other creating 
a multimodal cross-section within the lidar scan.  Infrared cameras are also used (Schellberg, et 
al. 2008) to detect windrows in grasslands for precision agriculture.  Time of Flight cameras have 
been used by Castillo-Ruiz et. al., (Castillo-Ruiz, et al. 2021)  to detect windrows in olive pruning 
tasks. 
Agricultural guidance systems like the one developed by (Fleischmann 2013) use sensors to feed 
information to a model-based detection algorithm for typical agricultural structures.  Their 
technique relies on distance information from a laser scanner which makes the detection robust 
despite varying illumination. This system used less computational power, but the data was 
restricted to individual scans that appear as a slice of the agricultural structure artifact and require 
additional computation to enable queuing up the scans into a complete point cloud which can be 
used later. Janine Ryan and team developed a lidar based windrow detection system (Ryan 2022) 
which they have used for square/cube hay baling. Guidance systems by SICK provides a windrow 
detection system using a 2D lidar system that detects windrows and provides centerline offset 
updates (SICK Lidars 2022).   
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The presented system, SWIPE, was developed and evaluated to address these challenges. 
SWIPE is an intelligent depth-based system that classifies and estimates a smooth path along 
the center of a windrow that can operate within day or low-light conditions. 

Methodology 
For this research, the authors developed a camera system to determine the center of a windrow 
as a path for automated navigation. The SWIPE system comprises the following three main 
elements: 

• a low-cost integrated camera and embedded processing system. 

• integrated artificial intelligence for robust classification of the windrow.  

• projection of the navigation path to integrate with autonomous vehicle navigation. 

Prototype System 
A benefit of lidar based systems is their ability to operate under all lighting conditions. This can 
be a limitation for cameras that often use illumination to operate in low light conditions. To 
overcome this limitation, modern cameras using back-illuminated technology have provided the 
capability to perceive a scene with additional illumination and no software processing of the image 
data. As a result, a custom stereo pair of this camera technology was integrated into a prototype 
system (Figure 2).  

 
Figure 2: SWIPE Prototype System 

The camera provides improved dynamic range over comparable cameras and generates a 
brighter image output as shown in Figure 3. This is significant for observing the environment under 
different lighting contrasts and under low light conditions.  During this cloudy dusk scene, the 
camera on the left has challenges adjusting between the brighter sky and the darker field terrain. 
The SWIPE camera system adjusts to capture the environment to clearly observe the underlying 
terrain and windrow.  

  
Figure 3: Camera comparison (left: traditional camera, right: high dynamic range low light camera). 

Artificial Intelligence System 
The developed SWIPE system integrates intelligent processing algorithms with unique cameras 
to provide a robust output for autonomous navigation.  Artificial Intelligence (AI), a subset class 
of Machine Learning, is commonly applied across various industries to solve challenging 
problems. Providing a large dataset of ground truth labeled samples to an AI model allows the 
system to optimize a mathematical relationship to predict the targeted output. This enabling 
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technology is being applied within various aspects of agriculture to support automation 
capabilities. This system leverages AI in a unique way to directly classify the center of a windrow. 
Prior to classification, a rich database of training data needs to be captured, organized, and 
labeled.  The field silage materials were previously raked into windows within the field. The data 
was captured using two surrogate systems mounted on manually driven vehicles across different 
fields. The resulting database contained over 64,000 captured left/right image and depth data 
under varying lighting conditions with windrows of different widths, densities, and curvatures. 
The database was then manually labeled by and operated to highlight the center of the windrow. 
It is important to maintain consistent labels across frames to ensure a robust dataset. Figure 4 
depicts an example view of the data labeling showing a green line along the center of the windrow. 
The unique approach for this AI system is that it directly classifies the center of the windrow 
compared to classifying which pixels correspond to the windrow. This simplifies the AI model in 
size and complexity with improved performance, enabling more seamless integration onto an 
embedded processor. 

 
Figure 4: Ground truth labeling of windrow 

The output of the AI (Figure 5) model is the direct identification of the windrow center within the 
image. The system can classify the center independent of the windrow width, curvature, and 
density. 

   
a.) b.) c.) 

Figure 5: AI windrow classification a.) AI raw output, b.) AI threshold output, c.) AI output overlay on input image 

Path Estimation 
While the AI system classifies the windrow center, this output is with respect to the input images 
pixels.  For autonomous navigation, the image path needs to be transformed into a navigational 
coordinate system. The path estimation is performed by applying an image-to-world 
transformation and corrections to refine a smooth navigational path. This utilizes the intrinsic and 
extrinsic calibration of the camera system. The intrinsic calibration transforms the image pixels 
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into 3D camera coordinates using a pinhole camera model. The extrinsic calibration transforms 
the camera coordinates to world coordinates determined by the system’s mounting location. In 
addition, stereo camera depth information is used to extract the ground surface and correlate 
resulting path estimate along the windrow (Figure 6).   

 
Figure 6: Input stereo depth (left: Left camera’s image, right: stereo depth) 

The stereo depth information is projected from the 2D image into the 3D navigation frame of the 
vehicle. This converts the path classified in image pixels to navigation points on the ground. A 
spline fit is applied to generate a smooth path along the ground in front of the vehicle (Figure 7).  
The path is estimated in front of the vehicle to the depth of the segmented ground. 

 
Figure 7: Projected path estimation on ground plane 

Results and Discussion 
This work developed a system to estimate a navigation path along the center of a windrow. The 
system was benchmarked against numerous images within an offline test database. Using the 
collection database, a subset of approximately 1000 images was annotated and divided into 
training (80%), validation (10%), and testing (10%). The training frames were used by the AI 
system to generate a classification model to predict the center along the length of the windrow. 
The database contained variations of windrow types including different sizes, turns, and gaps to 
build a robust model of these conditions. In the cases of turns and gaps, the ground truth labels 
define the expected navigation path to train the AI model. For benchmarking, the classification 
was evaluated by distance error between the ground truth and the predicted label. The resulting 
windrow path was estimated out to 12 meters with an offset less than 0.3 meters. Within the test 
database, this resulted in a 96% positive classification to accurately predict the center along the 
windrow.   
The system was demonstrated to estimate the path width of the windrow under conditions that 
include straight, curved, and offset from the center. Figure 8 shows the results of the path 
estimates in the left stereo camera’s image for these various conditions. The system is robust 
against these variants to account for operation on an automated or autonomous platform. In this 
aspect, the system must be able to initiate or regain the path during navigation. 
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Figure 8: Estimated windrow paths 

Conclusions 
This technology provided an enhanced way to estimate the path of windrows for robust 
autonomous navigation. In practice, windrows comprise various silage materials, are formed at 
different shapes, and may contain breaks for gaps. In addition, the baling operations will occur 
under various conditions including during low light. This system addresses these challenges using 
a unique low-light camera combined with AI processing to develop the SWIPE system. The 
system leverages a low-cost camera and embedded processing to deliver a solution that easily 
interfaces with navigational systems. The system achieved the direct classification of the windrow 
center with low error creating a robust approach to generate a smooth navigation path for baling 
a windrow. As the agriculture industry grows with autonomous technologies, this perception 
system provides a navigation output that can easily integrate with these systems. This technology 
will be further advanced through integration on an autonomous platform and field tested to 
validate the ability to navigate windrows. 
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