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Abstract.  
Microclimate variables like temperature, humidity are sensitive to land surface properties and 
land-atmosphere connections. They can vary over short distances and even between sections 
of the farm. Getting the accurate microclimate around the crop canopy allows farmers to 
effectively manage crop growth. However, most of the weather forecast services available to 
farmers globally, either by the meteorological department or universities or some weather app,  
provide weather forecasts for larger areas. To address this issue we developed a ~100 m 
spatial resolution AutoML framework that predicts hourly temperature and humidity over a 
period of 24 hours. The system uses one year of historical data from both IoT sensors and local 
weather forecasts for training and predicts temperature and humidity using individual models. 
The models were developed using a gradient boosting machine (GBM) approach. To account 
for model drift and data drift, an autoML framework was developed to automate model training 
on a monthly basis. The autoML framework uses i) a Bayesian optimization-based Hyperopt 
library to automate hyperparameter selection for the GBM models and ii) MLflow for model 
training, logging, and deployment purposes. For continuous deployment of the models, the 
autoML framework was integrated with Kubeflow for production-level serving. The models were 
developed using historical data from 6 different districts of Maharashtra, India and the accuracy 
was tested for over 50 grape farms (~50 ha) from that region via live deployment. Compared to 
local weather forecasts, the models showed a 15% and 30% decrease in mean error for 
temperature and humidity prediction, respectively. The developed microclimate framework also 
outperformed in predicting extreme temperature and humidity conditions by ~30%. Timely 
prediction of extreme weather conditions would be helpful in effective crop protection and crop 
management. Though the AutoML Microclimate framework was developed and tested for grape 
farms in the Maharashtra region of India, it can be easily extended to other regions and crops as 
well. 
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Introduction 
Agricultural productivity is at high risk due to global warming and climate change especially in the 
tropical and subtropical regions. Crops are sensitive to climate change, including changes in 
temperature and humidity (Rukhsana et al., 2021). Among the changes, temperature increase 
has the most likely negative impact on crop yields as rising temperatures causes shortened crop 
duration and increased respiratory losses (Zhao et al., 2017). On the other hand, extreme 
humidity increases the likelihood of pests and diseases, thereby, affecting both crop productivity 
and quality (Rabbi et al., 2019). One way to overcome challenges faced due to these extreme 
weather conditions is to accurately forecast the weather in advance. Since climatic parameters 
can vary  even between sections of the farm, local weather forecasts require microclimate 
consideration to improve forecast accuracy and for better crop management. Most of the local 
weather forecasts available to farmers are at a regional level. Without high resolution hyperlocal 
microclimate predictions, effective crop management becomes a challenge for the farmers. The 
objective of this study is to develop a ~100 m spatial resolution AutoML framework that predicts 
hourly temperature and humidity over a period of 24 hours with higher accuracy that can help with 
effective crop management. 

Material and Methods 
Data collection 
The study was conducted for 50 grape farms located across 6 different districts of Maharashtra, 
India. Each of these farms were installed with the Fasal IoT (https://fasal.co/) device on or before 
January 2020. The microclimate data was collected using the Fasal IoT device (Fig. 1) that is 
equipped with 12 sensors. The devices measure several microclimate parameters like 
temperature, humidity, air pressure, soil moisture (primary and secondary root zone), soil 
temperature, leaf wetness, solar intensity (lux), rainfall, wind speed and wind direction. The data 
is recorded in hourly frequency and uploaded to a cloud database using 4G cellular service. The 
BME sensors used to measure temperature and humidity were placed at plant canopy level (~2 
meter from ground). Along with the IoT data, local forecast data from several weather service 
providers were also collected. Forecast data was collected using their paid API service. The 
forecast data was updated four times in a day and stored in our cloud database. All the data 
collection, data preprocessing and model development were done using Python 3.7 and 
supported libraries. 
Data preprocessing 
For developing the data we used 1.3 years (December 2019 to March 2021) of historical 
temperature and humidity forecast data as well as the IoT sensor data from the region. For 
forecast data, we used the data from 2 services based on their accuracy and service reliability 
(very less or no API failures). Due to errors in data collection, we performed data cleaning by 
removing outliers using the Interquartile Range (IQR) approach (Wanga and Yong, 2021). Post 
data filling, missing values were imputed using the  k-Nearest Neighbor (KNN) algorithm. The IoT 
data and forecast data were normalized with respect to datetime as well as units. accelerate the 
training speed of the model, and make the model more accurate than before, min-max 
normalization was used to transform all numerical features to zero and one.  
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Fig 1. Fasal IoT device used for data collection. The device has 12 sensors and data from the device is uploaded to Fasal 
Cloud every hour. 

 

Model development 
Microclimate parameters like temperature and humidity are associated with some time features. 
Therefore, we created some time features, such as the hour of day and month. In addition to 
these, we also used time lag features like the temperature and humidity 24 hour or 48 hour before. 
We used the Pearson correlation coefficient for feature selection followed by feature importance 
to further filter features. We used one year of historical data (December 2019 to December 2020) 
for training and 2 months of data (January 2021 to February 2021) for testing separate models 
for temperature and humidity. Both training and testing data went through the same preprocessing 
process as described above. We used XGBoost algorithm for training the models. Ten-fold cross-
validation was used to test algorithm accuracy and adjust the parameters for higher accuracy. 
Hyperparameter optimization was performed using the Hyperopt library that uses a Bayesian 
optimization algorithm to select the best set of hyperparameters. We used both MAE (mean 
absolute error) and RMSE (root mean squared error) as metrics for model performance analysis. 
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Model Productization 
Post model development, Flask was used to develop an API to use the model for prediction. The 
Flask API was containerized using Docker and then deployed using Google Cloud Run. We used 
Airflow to schedule data collection and feature engineering that was cached using Redis. This 
data was the input for the API request. MLFlow was used to store models and run the training 
pipeline. The forecasted temperature and humidity from the developed API was stored in 
BigQuery. BigQuery was also used to store training data. 

Results and Discussion 
We developed two separate models for temperature and humidity. Table 1 compares the 
accuracy of the developed model post deployment from March 2021 and April 2021 in comparison 
to the forecasted from two weather service apps that were also used in developing the model. We 
used several metrics to compare the model performance. MAE (mean absolute error) and RMSE 
(root mean squared error) to get an understanding of average error distribution and any outliers 
in prediction. Both MAE and RMSE were lower for the model forecast in comparison to the two 
sources. However, both the MAE and RMSE values were very similar in case of the model 
prediction suggesting fewer outliers in the prediction error for the model output. Therefore, to 
further understand the forecast improvement, we looked into what percentage of unfavorable 
conditions were correctly predicted by the model vs the two sources. During the fruit ripening 
stages of grapes (March 2021 to April 2021), high temperature >32 °C and humidity <50% or 
>85% have been shown to be unfavorable and affect harvest quality (Mori et al., 2007). For 
temperature prediction, prediction error <1°C was considered acceptable whereas for humidity it 
was <2%. Compared to the forecast data from external sources, the developed AI models showed 
almost 30% improvement in predicting unfavorable weather temperature and humidity conditions.  

Table 1. Comparison between the temperature and humidity forecast from the developed model (Model) vs two different 
commercial weather forecast service providers (Forecast source 1 and Forecast source 2).  

Parameter Forecast source MAE RMSE 
% of extreme conditions 

captured with threshold error 

Temperature 
Model 3.08 3.96 86% 

Forecast source 1 4.24 6.44 54% 
Forecast source 2 3.96 6.18 57% 

Humidity 
Model 5.65 5.88 79% 

Forecast source 1 7.26 12.63 42% 
Forecast source 2 7.88 13.27 39% 

 
After May 2021 we observed model drift or a degradation in the temperature model’s accuracy or 
an increase in RMSE (Fig. 2). When we re-trained the model and incorporated data from March 
and April 2021, we observed the model performance to be improved as shown in Fig. 2. Similar 
pattern was also observed for humidity model prediction.  
Model drift is a common phenomenon and occurs due to alteration in the environment. To address 
this we have developed an AutoML framework (Fig. 3) where anytime a degradation in a model's 
performance occurs, the system will trigger re-training of the model. We used RMSE as a 
parameter to track model performance since it captures any outlier in the prediction accuracy as 
shown in Table 1. The training pipeline (including model testing) was developed using the same 
approach described earlier. MLFLow with Google Cloud Platforms’s (GCP) Cloud Storage and 
data backend was used to store all the models and artifacts. Kubeflow was used to deploy the 
training pipeline for automating training processes or for long running training. 
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Fig 2. Model drift in temperature model v1 prediction (dashed line) as displayed with an increase in RMSE value from May 

2021 onwards. When the model was re-trained the RMSE values were again decreased (line with square points).  
 

 
Fig 3. AutoML framework to automate training of the models whenever the model’s accuracy degrades below a certain 

threshold. We used RMSE as a metric to trigger the training pipeline. 
 

Conclusions 
This study shows that microclimate forecasts can be significantly improved by combining IoT and 
machine learning technology. The degradation observed in most machine learning’s models over 
time due to model drift, can be corrected using an AutoML framework. The AutoML framework 
should encompass a training pipeline for continuous model training and development as well as 
CI/CD pipeline to continuously deploy the model to production servers.  
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