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Abstract.  
Precision Agriculture is promising to address N management issues in Western Europe. Limited 
adoption of agricultural technology reveals needs of reliable methods valuing information provided 
by sensors. This study aims to calibrate a management zone delineation method, originally 
developed on yield maps, using a vegetation index. This delineation method differentiates high 
and stable (HS), low and stable (LS) and unstable (U) zones according to spatial and temporal 
trends within the field. Different steps led to identify the index and a sensing window that best 
retrieve yield subfield distribution. NDVI was found to be an interesting candidate when sensed 
during wheat flowering stage. Index-based delineation was then compared to the original 
delineation from yield maps on six fields. Stable zones (high and low) were well predicted 
(sensitivity of 0.69 and 0.60) but U zones were not detected with the NDVI-based approach. On 
the six fields, U zones were originally reduced. We adapted the threshold differentiating HS from 
LS zones to fit the shape of NDVI distribution. Balance between HS and LS sensibilities improved 
(respectively 0.67 and 0.68) as well as global accuracy (0.66) of management zones prediction. 
These findings reveal a good potential to deploy NDVI-based delineation at the scale of a whole 
territory, which is the next step of this study.  
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Context 
European crop production is highly dependent on exogenous nitrogen (N) supplies to increase or 
even maintain yield levels (Sutton et al. 2011). Many studies have highlighted the economic and 
environmental consequences of N overuse (Fowler et al. 2013; Galloway et al. 2003; Lécuyer et 
al. 2014). For decades, scientific and technical efforts have been devoted to develop N fertilization 
methods that maximize Nitrogen Use Efficiency (NUE). In Belgium and France, the most common 
approaches consist in balancing annually the difference between soil N supply and crop N 
demand with mineral N fertilization (Meynard et al. 1997; Nysten et al. 2022; Ravier et al. 2016). 
Despite substantial improvement in NUE along the past decades, losses of N to the environment 
are still significant (Billen et al. 2013). Scientific knowledge combined with recent technological 
development in agriculture, which still requires to be fully adopted by farmers, are offering new 
opportunities to improve nitrogen management at the sub-field scale.  
Hauts-de-France (FR) and Wallonia (BE), the two territories where this study is conducted, gather 
positives conditions of success to develop precision agriculture approaches. Pierpaoli et al. (2013) 
identified different key adoption factors of agricultural technologies (e.g., productive potential, size 
of farms) that correspond to both territories’ features (Agreste 2020; SPW 2022). These factors 
haven’t impulse yet a dynamic of technology adoption in Western-Europe (Barnes et al. 2019, 
Lachia et al. 2020). Beyond economical and structural brakes of adoption, low adoption can be 
explained by necessary “ease of use” and “usefulness” of technologies. These criteria reveal need 
of methods to effectively use technologies and transform information they provide into robust 
diagnostic and decision as confirmed by Lachia et al. (2020). It also reveals the necessity for 
farmers to be able to perceive technologies interest and get access to it with limited investments 
(Pierapoli et al. 2013, Barnes et al. 2019). 
Satellite images can deliver high precision information on a large scale. Sentinel-2 missions 
launched by European Space Agency, provide freely available images embedding useful 
wavelengths for agricultural applications (Delloye et al. 2018). Estimation of yield through remote 
sensing have historically support different purposes such as N management (Marti et al. 2006; 
Raun et al. 2001).  
The use of freely available satellite images embedded in agronomic methods could be considered 
as a low-tech solution to support N management and favor adoption by farmers (Bonjean et al. 
2022; Rose & Chilvers 2018). Tough, sensing data must be processed and integrated into 
agronomic methods to be accessible and to provide robust information. In this regard, different 
Vegetation Indices (VI) have been developed to estimate plant traits such as Leaf Area Index 
(LAI) or chlorophyll content (Ollinger et al. 2011). At the canopy level, estimated LAI is often used 
as a proxy of total biomass or final grain yield (Fang et al. 2019, Revill et al. 2019). However, 
these relationships could be disturbed by external factors such as atmospheric conditions, soil 
brightness, chlorophyll content variations when the type of relationship depends on plant species 
(Fang et al. 2019). Therefore, different VIs have been designed to counteract those external 
influences (Haboudane et al. 2004). Moreover, evolution of plant traits is more or less correlated 
with final yield according to state of maturity of the crop and the different factors affecting them 
along the growing period (Marti et al. 2006). These different issues draw up a roadmap to identify 
(1) the best vegetation index, adapted to targeted species and objectives and (2) the optimal 
sensing window to retrieve subfield spatial heterogeneity of crop yield and related limiting factors.  
Yield has been included in different approaches to characterize within-field heterogeneity as it 
results from the interaction of several limiting factors and is directly linked to NUE (Hawkesford & 
Riche 2020). Early studies searched for yield map pre-processing methods to optimally catch 
within-field patterns and the link between soil and crop variability (Birell et al. 1996; Mulla & 
Khosla; Raun et al. 2001). However, spatial yield patterns evolve over time making single yield 
map an ineffective tool to derive agronomic practices (Khosla et al. 2010). An interesting method, 
developed by Blackmore (2000), delineates management zones, within the field, from yield maps 
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time-series. This approach integrates both spatial and temporal yield variations. Thus, 
management zones are defined by the degree of yield stability and of yield level. Three types of 
zones are identified, the unstable (U) where yield variations are strong over time, the low and 
stable (LS) and the high and stable (HS) zones. In the later, yield is steadily under or above annual 
mean yield. This method has been used in different research contexts. Recently, over US 
Midwest, the method supported the assessment of N fertilization efficiency, revealing large 
potential of improvement (Basso et al. 2019). 
Provided it would be adapted to the agronomic context of west-Europe, Blackmore’s method could 
help further understand and identify the limiting factors of NUE. Indeed, combination of spatial 
and temporal trends is lacking most of the time in actual N fertilization methods. Managing N with 
an explicit consideration of spatio-temporal variations (Basso et al., 2007; Blackmore 2000), in 
combination with recent knowledges on N nutrition dynamic (Lemaire et al. 2008; Ravier et al. 
2016), would contribute to create a new framework of N management, adapted to each type of 
management zone. 
The aim of this study is to calibrate Blackmore’s methodology to be used with Sentinel-2 data. 
The study is conducted on different farms of the two territories of Hauts-de-France (FR) and 
Wallonia (BE) and rely on yield maps obtained. The calibration process was divided in two parts. 
A first step focuses on the annual relationship existing between spatial crop yield distribution and 
different vegetation indices computed from images sensed over the crop growing period. In this 
step, our goal was to identify one vegetation index that best retrieve spatial yield pattern and to 
define an optimal sensing window to catch yield variability. The second step of the calibration is 
a validation step. Delineation computed with optimal vegetation index on a selected sensing 
period was compared, site by site, to Blackmore’s delineation calculated with yield maps.  
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Materials and methods: 

Study area  
The study is performed on three farms in Wallonia (BE) and Hauts-de-France (FR) from 2016 to 
2021. Agronomic and weather contexts are similar with a majority of silty soils (table 1). Crop 
rotations involve a majority of cereals. Wheat and barley are the most cultivated crops, but 
rapeseed, potatoes and sugar beet are also well present in the regional soles (Agreste, 2020; 
SPW, 2022). Soils are characterized by their high silk content and relatively high depth as 
summarized in table 1 (Dumont et al. 2015).  

Table 1 : Study sites features 
 Site A Site B Site C 

Localization Wallonia Hauts-de-France Hauts-de-France 

Soil type1 Stagnic albe-luvisol Calcosol Fluvisol 

Texture2 Loam Clay-loam Silt-loam 

Soil depth3 >125 cm 40 [25-85] cm >100 cm 

Mean annual precipitations 
(mm)4 789 680 740 

Mean annual temperature (°C)3 10.3 11.1 11.3 

Altitude (m) 300 130 25 

Number of fields 15 3 17 

Average surface (ha) 5.9 9.8 9.7 

 

Yield map data collection and preprocessing 
Yield maps were obtained from different harvest combine systems on 35 fields that represent 312 
ha (table 1). Fields were selected when uniform N supply is applied every year, thus N is 
considered as a uniform limiting factor at the sub-field scale.  
When raw data was accessible, a two-step process was performed to remove outliers. The first 
step, considered as global outlier treatment, follows a method developed by Lyle et al. (2014). 
Yield monitor uses the grain flow and machine speed to estimate grain yield. Values 
corresponding to cutting width lower than maximum were removed. Distance between records 
was filtered to keep values within first and last percentile. A last global filtering was applied on 
yield distribution to keep values within the 90 percent interval of prefiltered values. The second 
step, the local outlier treatment, used algorithm developed by Leroux et al. (2018). The algorithm 
was download from Leroux (2020) and few adaptations were applied to include an anisotropic 
treatment of data, as suggested in this study (Leroux et al. 2018). Results of outlier treatment on 
yield maps features are summarized in table 2. Spatial yield variations decreased as extremes 
yields were removed from the different maps. Mean yield increases due to removal of null yield 
values. Negative skewness decreases and distributions globally bonded to normal distribution. 
The spatial trend also evolved to reveal a closer spatial structure of the data set. This treatment 
is consistent with findings of Toscano et al. 2019 who removed approximately 25% of raw yield 
map values through filtering. Maps from “Site C” (Table 1) were already pre-processed and raw 
data wasn’t accessible.  
 

 
 
1 GIS SOL 2019; Dumont et al. 2015  
2 Legrain & Block 2009 
3 Le Bas 2021 
4 Météo-France, IRM 2021 
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Table 2. Distribution and spatial features of yield maps before and after outliers’ treatment 
 

Yield performances Spatial trends of 
yield 

 Removed 
records 

Yield range 
(t.ha-1) Mean yield 

(t.ha-1) 
Spatial 

CV Skewness Sill Range 

Raw data 0 [0 -50] 7.32 35% - 0.70 1889 8455 

Global 
filtering -13% [1.5 – 17.2] 7.78 21% -0.57 2.49 361 

Global + 
local filtering -19% [1.5 – 17.2] 7.86 19% -0.49 2.28 77 

 

Satellite data collection 
Remote sensing data from the Multi-Spectral Instrument (MSI) mounted on Sentinel-2 satellites 
were used in this study. Satellite images were downloaded from the internet platform of the French 
scientific structure “Theia” (Pôle Theia, 2022) with Python software. Acquired images correspond 
to level “2A” treatment also known as Bottom of Atmosphere” (BoA). Images are thus ortho-
rectified, georeferenced by tile (100 km x 100 km) and benefit from atmosphere correction. Only 
wavelength with resolutions of 10m and 20m were downloaded. Acquisition period was set 
between the 1st of April to 30th of June from 2016 to 2021 to match wheat growing period. Revisit 
time is approximately five days but only images with less than 70% of cloud coverage were 
selected to ensure maximal availability of pixels during the season. Number of downloaded 
images are indicated per year and month in Table 3.  

Table 3: Number of downloaded Sentinel-2 images per year and month 
Year April May June 
2016 1 2 2 
2017 2 3 1 
2018 2 3 2 
2019 4 2 2 
2020 7 11 4 
2021 4 2 8 

 

Vegetation indices  
Vegetation indices (Table 4) were calculated on the whole Sentinel-2 tiles at each sensing date 
available (Table 3). Each map of vegetation index was then cropped to each field boundary.  
Vegetation indices were tested for their ability to reveal within-field yield variability. Red and Near 
Infra-Red (NIR) wavelengths respectively catch the intensity of the photosynthetic activity and the 
complexity of cells structure in plant leaves (Ollinger, 2011). Combining these two wavelengths, 
NDVI, the Normalized Difference Vegetation Index, reflects plant vigor and thus biomass 
development (Tucker 1979). However, NDVI is known to saturate for large Leaf Area Index (LAI) 
and thus high level of biomass (Haboudane et al., 2004). Considering the above-mentioned 
sensing period, other indices have also been tested. Modified Simple Ratio (MSR) was developed 
to overcome NDVI limitations in high biomass (Chen 1996, Haboudane, 2004). Enhanced 
Vegetation Index 2 (EVI2) is also known to perform better in high level of biomass (Huete et al. 
1997, Jiang et al. 2008). Haboudane et al. (2004) transformed three-wavelengths based indices 
firstly dedicated to photosynthetic activity detection, Modified Chlorophyll Absorption in 
Reflectance Index (MCARI), into LAI sensitive indices. Modified Chlorophyll Absorption Ratio 
Index 1 and 2 (MCARI1, MCARI2) and Modified Triangular Vegetation Index 2 (MTVI2). Finally, 
two indices were calculated to ensure any disturbance of soil background, the Soil Adjusted 
Vegetation Index (SAVI) (Huete 1988) and the Optimized Soil Adjusted Vegetation Index (OSAVI) 
developed by Rondeaux et al. (1996). 
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Table 4: Equations of the vegetation indices used in this study 

Index Equations Source 

NDVI (NIR	–	Red)/(NIR+Red)	 Tucker 1979 

SAVI 1.428	×(NIR-Red)/(NIR+Red+0.428)	 Huete 1988 

OSAVI (1+0.16)×(NIR-Red)/(NIR+Red+0.16)	 Rondeaux et al. 1996 

MSR (NIR-Blue)/(Red-Blue)	 Chen 1996 
Sims & Gamon 2002 

EVI2 2.5×(NIR-Red)/(NIR+2.4×Red+1)	 Jiang et al. 2008 

MCARI (Red_edge-Red)	 − 0.2		×(Red_edge-Green)	× ?
	Red_edge	
	Red	 @	 Daughtry et al. 2000 

MCARI1 1.2 × (2.5 × (NIR − 	Red	) − 1.3 × (NIR − 	Green	))	 Haboudane et al. 2004 

MCARI2 1.5× 2.5(NIR − 	Red	) − 1.3(NIR − 	Green	)/	B(2NIR + 1)! − (6NIR − 5√	Red	) − 0.5	 Haboudane et al. 2004 

MTVI2 1.5× 1.2(NIR − 	Red	) − 1.3(NIR − 	Green	)/	B(2NIR + 1)! − (6NIR − 5√	Red	) − 0.5	 Haboudane et al. 2004 

 

Delineation of management zones 
Algorithm developed by Blackmore (2000) on yield maps follows two main steps. The first creates 
a spatial trend map expressing each pixel as the average of the standardized yields (1) over the 
years (2).     𝑠" = F#!

#$
G × 100   (1) 

                                                      �̅�" =
∑  "
#$% '!#
(

   (2) 

Where si is the standardized yield (y) on location i, 𝑦" is the annual yield of the field, �̅�! the average 
of standardized yield over n years. 
The second expresses the magnitude of yield variation by pixel computing the coefficient of 
variation (CV) (3) and creating a temporal trend map.  

       CV! =
"
∑  #$%
#$& '(#

) *+∑  #$%
#$& '(#,

)

%(%*&) #

/.1

$(̅
× 100 (3) 

Values of the two generated maps are opposed to thresholds to delineate High and Stable (HS), 
Low and Stable (LS) and unstable (U) management zones. Blackmore algorithm requires at least 
three years of yield map records to be implemented.  

Statistical analysis 
Analysis is performed with R software (version 4.0.5) and QGIS (version 3.22).  

a. Step 1: Correlation analysis between yield and vegetation indices distributions 

Yield substitution in Blackmore’s method (subsection 2.5) could be performed by different 
vegetation indices (subsection 2.4).  
The first step of the statistical analysis aims to analyze the ability of different vegetation indices 
to retrieve annual yield distribution at the sub-field scale. In Blackmore’s approach, the first step 
rescales individual yield map values on the annual mean yield value (equation 1). Thus, chosen 
vegetation index must retrieve yield variability but doesn’t have to predict yield values. To evaluate 
and compare VIs, we used Spearman rank correlation. This method let compare distribution ranks 
and stay robust with non-normal distributions. Analysis is performed on the different yield maps 
and vegetation indices computed from each individual satellite images sensed in related growing 
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periods. Once the best index is identified, we looked for sensing window offering the best and 
most constant correlations. Satellites images were obtained between April 1 and June 30 to match 
wheat growing period. Flowering stage, in our context is reached at the beginning of June (Gobin, 
2018) so senescence is expected by the end of the month.  
From the results obtained during these two substeps, Blackmore’s method is implemented with a 
vegetation index; the most correlated to yield distribution and sensed during optimal window.  
 

b. Step 2: Management zone comparison from yield maps and vegetation index 

Among the fields where yield maps were obtained, six have at least three years of records. 
Blackmore’s delineation was implemented on the yield maps and the corresponding maps of 
vegetation index. A confusion matrix is constructed for each field between both delineations from 
the yield maps (considered as the “true classes”) and maps of VI (considered as the “predicted 
classes”). Delineated maps are compared pixels by pixels. Different metrics are computed to 
evaluate the accuracy of the satellite-based delineation (Makowski et al. 2009). Accuracy metrics 
indicates the number of well classified pixels (pixels representing management zones) among 
well classified and wrongly classified pixels. Sensitivity represents the rate of well classified pixels 
(true positives) among the total pixels classified in the same class (true positive and false positive). 
It can be considered as the ability of NDVI delineation to detect the correct management zone. 
Specificity measures the rate of pixels correctly classified in a different class (true negative) 
among all the pixels classified in different classes (true negative and false negative) (Tharwat, 
2021). Specificity measures the exactness of the classification. Here classes are equivalent to 
management zones.  
 

Results and Discussion   

Identification of the best vegetation index to retrieve yield distribution 
Fig 2 represents the distributions of the Spearman correlations calculated on 40 fields, including 
different yield maps and the related VI maps computed at each sensing dates along the related 
seasons. Obtained correlations strongly depend on the year of observation.  
NDVI, OSAVI, SAVI, MSR and EVI2 obtained the same correlations by year. These different VI 
involve different combinations of the same wavelengths in the NIR and Red. OSAVI and SAVI 
were expected to detect potential soil disturbances at the beginning or the end of the season. 
However, at this sensing period, canopy is already closed, and these indices don’t provide more 
information than NDVI. MSR and EVI2 were computed for their ability to outreach saturation issue 
in high biomass level. However, these results on rank correlation reveal similar performances as 
the one obtained with NDVI.  
At the opposite, the different versions of MCARI and the MTVI2 obtained more variable results. 
MCARI always underperform compared to the different VIs. This index involves “red-edge” 
wavelength and green one but does not rely on NIR, losing scattering effect on plant cells (Ollinger 
2011). MCARI is known to be linked to LAI but also to chlorophyll content variations (Haboudane 
2004). Chlorophyll variations could explain noise in the signal to retrieve yield. MCARI is 
computed on 20m resolution when all other VIs were calculated on 10m resolution. It could have 
dissolved a part of the information, reducing the correlation. This last effect is expected to be 
limited. MCARI1, MCARI2 and MTVI2 were designed to be closer to LAI values than MCARI 
(Ibid). The correlation to yield is slightly higher than 
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Figure 1: Distribution of Spearman rank correlation between each of the 35 fields annual yield maps and maps of 

vegetation indices computed at each available sensing date. The red dotted lines represent the first and third quartile of 
NDVI based correlation. 

 

MCARI, irrespective of year, site and sensing date. However, these three indices didn’t reach 
performances of “NIR-Red” indices like NDVI to retrieve yield spatial variability. Adding 
wavelength in the “green” domain seems to reduce the ability of the index to catch yield variability.  
Correlation levels obtained with NDVI are consistent with correlations observed in the literature 
to analyze annual within-field yield spatial patterns on the same growing periods (Maestrini et 
Basso, 2018; Toscano et al. 2019). Most articles use « Pearson » correlation as the objective is 
to regress yield through NDVI values.  
From these results, no index better perform than NDVI to catch spatial yield variability within the 
fields. This index is the main used in closed-related literature (Lai et al. 2018; Basso et al. 2019; 
Toscano et al. 2019) and can be computed on high spatial resolution (10m) from Sentinel-2 
images. For these reasons, NDVI is the index selected in this study as a proxy of within-field 
spatial variations.  
 

Identification of the best sensing window 
In the next sections, only NDVI will be used to retrieve yield variations. Fig 3. represent 
distributions of Spearman correlations computed between yield and NDVI for different fields, year 
and available sensing dates along the growing period.  Correlations are grouped per week as this 
time resolution corresponds approximately to the revisit time of Sentinel-2 missions.  
The year 2016 was removed from the graph as many pixels were missing from the different 
satelitte images. 
Correlation levels change from year to year with globally higher correlation in 2017 than in other 
years. A trend is observed among fields and years to reach higher correlations at the end of May 
and beginning of June. This trend seems to move within a three weeks period from May 15th 
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(2019) to June 7th (2018, 2020). This period corresponds to the wheat flowering stage in Belgian 
context (Gobin, 2018) when wheat leaves are already totally developed and not yet senescent. In 
2021, correlations seem the highest in the end of April. Even if a limited tendency is also observed 
in 2017 and 2018 these higher correlations seem more anecdotal than the window observed in 
May-June.  
 

 
Figure 2: Spearman correlation distributions computed between yield maps and NDVI on related sensing dates over the 
growing period. Correlations are grouped per week Vertical dotted lines define the three weeks period between May 15th 

and June 7th. 

 
Our results are consistant with ones obtained by Panek et al 2020 whose correlations are also 
the highest during flowering stage. Correlations we computed are globally weaker but based on 
yield maps rather than plant sampling. The remaining heterogeneity of yield maps after outlier 
removal (Table 2) could partly explain these weak correlations. We can observe on the exemple 
below a “noisy” yield map and related vegetation indices computed on one sensing date. From 
our results, we can expect a clearer delineation of management zones applying Blackmore’s 
methodology with NDVI.  
However, NDVI is an index that usually range between 0 and 1 in vegetation. Correlations 
obtained show that the entirety of yield distribution is not clearly catched by NDVI (Figure 2). 
Figure 4 displays the distributions of NDVI within yield classes, ranked per yield deciles,  at 
different dates from the same year and on one field.  Among the different dates, “2017-05-29” got 
the best correlation. At this date, NDVI is also visually more discriminant of the yield classes. 
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As Spearman correlation compares yield and NDVI ranks, low correlation indicates a low ability 
of the index to retrieve yield distribution. This could affect Blackmore’s delineation accuracy and 
requires a validation of the delineation.  
 

Comparison of Blackmore’s delineation from yield maps and maps of NDVI 
Table 5 summarizes the metrics computed from the confusion matrix between yield map-based 
delineation and NDVI-based delineation. 

Table 5: Metrics of management zones classification accuracy computed on each field F1 to 6. 

Fields Accuracy 
Sensitivity Specificity 

HS LS U HS LS U 

F1 0.625 0.777 0.484 0.000 0.502 0.768 0.994 

F2 0.599 0.661 0.567 0.000 0.571 0.648 0.998 

F3 0.731 0.855 0.681 0.000 0.673 0.816 0.995 

F4 0.754 0.776 0.748 0.000 0.746 0.773 0.996 

F5 0.436 0.250 0.701 0.000 0.806 0.277 0.937 

F6 0.632 0.829 0.448 0.000 0.464 0.846 0.983 

Average 0.630 0.691 0.605 0.000 0.627 0.688 0.984 

 
Accuracy of the delineation ranges between 0.43 and 0.75 highlighting important differences in 
classifications. Sensitivity of U zones reveals the misfit of Blackmore’s stability threshold to NDVI. 
However, few U zones were originally detected by yield map based delineation, explaining the 
high specificity of this zone. High and stable zones got the best predictions (sensitivity), except 
on the field F5 (sensitiviy=0.25) which also obtained the lowest accuracy. LS zones were globally 
less predicted than HS indicating a transfer of LS and U pixels toward HS. Indeed, LS got higher 

Figure 4: NDVI distributions by yields ranked per yield deciles, on different dates and one field. Red dotted 
lines represent NDVI mean values per date. 
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values of specificity than HS. This offset between HS and LS predictions can be explained by the 
shapes of yield and NDVI distributions (figures 5 and 6).  Indeed, in Blackmore’s method, annual 
yield records are compared to annual mean yield. This mean threshold separates the higher yields 
from the lower yields. When using the NDVI, the mean value seems not to be a good threshold 
to distinguish high and low NDVI values related to the yield level (figure 6).  
 
 
 
 
 
 
 
 
 

                      

 

 
A first approach incrementally adapts NDVI threshold on each map of NDVI from the annual mean 
NDVI. Threshold range from -0.5 to 0.5, “0” being the mean value. Accuracy is computed on 
confidence matrix between yield map-based delineation and NDVI based delineation for the 
different values of NDVI threshold. Results are shown on figure 7. Optimal accuracy is reached 
from different thresholds according to the field considered. As an example, mean NDVI seems to 
be the optimal threshold for field F4 whereas “mean NDVI + 0.05” is the optimal threshold for field 
F5. Usually, mean is considered a poor indicator for non-normal distribution; the median is rather 
used. Same computation is applied replacing the mean by the median of NDVI (figure 8). Initial 
NDVI median seems a better threshold than mean NDVI as optimal accuracy values on the 
different fields are centered on the median (figure 7 & 8).  
 
Finally, the different confusion matrix indices are computed implementing NDVI median as 
threshold to separate values of NDVI corresponding to higher yields from those considered as 
lower yields (table 6).  
 
 
 
 

Figure 6: Shape of annual within-field NDVI distribution. Red 
dotted line is the mean NDVI value and green dashed line is 

the median NDVI 

 

Figure 5: Shape of annual within-field yield 
distribution.  

Red dotted line is the mean yield value   
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Figure 7: Accuracy values from confusion matrices 
computed between yield map-based management zones 

and NDVI-based management zones when NDVI threshold 
evolve around the mean. F1 to F6 are the six fields where 

the delineation is computed. 

Figure 8: Accuracy values from confusion matrices 
computed between yield map-based management zones and 

NDVI-based management zones when NDVI threshold 
evolve around the median. F1 to F6 are the six fields where 

the delineation is computed. 

 

 
 
 
 
 
 
 
 

Table 1: Metrics of management zones classification accuracy computed on each field F1 to 6 
 

Fields Accuracy Sensitivity Specificity 
  

HS LS U HS LS U 
F1 0.654 0.723 0.596 0.000 0.599 0.714 1.000 
F2 0.597 0.636 0.594 0.000 0.599 0.624 0.997 
F3 0.742 0.742 0.841 0.000 0.826 0.702 0.996 
F4 0.754 0.738 0.789 0.000 0.790 0.733 0.996 
F5 0.515 0.508 0.557 0.000 0.728 0.562 0.887 
F6 0.702 0.684 0.722 0.000 0.731 0.697 0.989 

Average 0.661 0.672 0.683 0.000 0.712 0.672 0.978 

 
Accuracy of the prediction slightly improved on the different fields. Sensitivity of LS increased 
more than HS, which was expected. Both classes reached equivalent sensitivity values. At the 
same time, the specificity of HS increased while LS decreased indicating that HS are still better 
predicted than LS. U zones that did represent a low part of the delineated pixels are not better 
predict. Further investigations are needed to adapt threshold of NDVI temporal variations. Figures 
9 and 10 give an overview of delineation of field F2 
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Conclusion 
Diagnosis of within-field variability already offers a wide field of research as it would be a powerful 
support to reduce agricultural pollutions while improving productions quantity and quality. In 
Western-Europe, statement of technology adoption raises the issue of the future of precision 
agriculture. We assumed a low-tech approach would favor appropriation of knew agronomic 
techniques by farmers. Replacement of yield maps by vegetation indices in delineation methods 
would level up the scale of application of such diagnosis. We have shown that NDVI is still an 
interesting index, applied at the canopy level, to retrieve yield variations. Implementing NDVI into 
Blackmore’s delineation method is promising but needs further adaptations to correctly catch the 
within-field spatial and temporal trends. Special attention was paid to distinguish low from high 
yielding zones as unstable zones were reduced in our dataset. However, the inability of the index 
to catch temporal trend negatively affect the global accuracy of NDVI-based delineation. This 
calibration will support deployment of the method at the territorial level on both Hauts-de-France 
and Wallonia regions. This diagnosis will benefit farmers who want to adapt their N management 
practices at the subfield scale. Moreover, this territorial delineation, coupled with a crop model, 
will support further investigations to implement decisions rules adapted to the different 
management zones.  
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