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Abstract.  
Site specific nutrient management (SSNM) in corn production environments can increase nutrient 
use efficiency and reduce gaseous and leaching losses. To implement SSNM plans, farmers need 
methods to monitor and map the spatial and temporal trends of soil nutrients. High resolution 
electrical conductivity (EC) mapping is becoming more available and affordable. The hypothesis 
for this study is that EC of the soil, in conjunction with detailed terrain and elevation attributes, 
can be used to map soil nutrients and characteristics. To test this, we have used an extensive data 
set of EC measurements (EM38, n = 14,199) and soil samplings (n = 522) conducted in 10 corn 
fields in Illinois, U.S. during the years 2000-2003. Detailed digital elevation model (5m resolution) 
was generated for each field using ground measurements, and was subsequently used to calculate 
multiple terrain attributes. The multiple fragmented layers were standardized and unified using 
Agmatix’s Axiom platform. Here we focus on four soil micronutrients- Zn, Fe, Cu and Mn – and 
test the relative importance of terrain factors, elevation data and EC to serve as predictors.  
A Random Forest algorithm was used to construct successive prediction models for the 
micronutrients using different combinations of predictors. The calibration model was established 
using 80% of the whole data, while the model was tested using the rest (20%) of data. The model 
was able to predict Zn, Fe, Cu and Mn with an RMSE of 0.23, 5.7, 0.21 and 4.3 ppm, respectively, 
and R2 of 0.82, 0.53, 0.71and 0.77, respectively. Terrain alone accounted for most of the 
prediction variability in Zn, and about half of the variability of all other three nutrients. Both 
elevation and EC alone were not good predictors of any of the nutrients. The best model to predict 
all nutrients was a model combining terrain, elevation and EC data. EC data is therefore found 
valuable as a complementary input for nutrient predictions. Further work is necessary to test the 
model on new fields not used for calibration.   
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1. Introduction 
 
Site specific nutrient management can aid growers in optimizing crop production inputs, increase 

nutrient use efficiency, improve the return on investment, and reduce environmental pollution. 

There is a need to develop tools that aid farmers in understanding the spatial distribution of soil 

nutrients, to allow better planning and adjustment of inputs. Crops require supplemental input of 

nutrients to optimize crop growth and yield. Among these are macronutrients, such as potassium 

(K), phosphorous (P), sulfur (S), calcium (Ca) and magnesium (Mg), and micronutrients such as 

boron (B), copper (Cu), iron (Fe), manganese (Mn) or zinc (Zn). While soil macronutrients are 

frequently measured and monitored by farmers, micronutrients are in many times less monitored. 

Micronutrient deficiencies can hamper crop growth and contribute to potential yield loss (Alloway 

2008).  

Terrain attributes and the soil electrical conductivity (EC) are frequently used to map soil 

properties (Miao et al. 2006; Sudduth et al. 2005; Lund et al. 1999; Nawar et al. 2017; Nocco et 

al. 2019; Yan et al. 2007; Peralta & Costa 2013). Soil EC is an intrinsic prosperity of the soil, and 

as such EC readings can be useful to map spatial variability of soil properties (Lund et al. 1999). 

EC was found correlated to clay content, cation exchange capacity (CEC) and organic carbon 

(Sudduth et al. 2005). The correlation of EC to CEC supports the sensitivity of EC to the total 

amount of cations in the soil. It is of interest to test whether EC can be used to predict cations, 

particularly soil micronutrients.  

The objective of this study is therefore to test the potential of soil EC and terrain data to directly 

predict soil micronutrients. The driving hypothesis is that EC data can increase the accuracy of 

soil micronutrients models compared to terrain data alone.  

2. Methods 
We utilize an extensive dataset, both tabular and GIS layers - of soil EC, terrain data and soil 

nutrients, collected in 10 corn fields during 2000-2003. All fields are located in the state of Illinois, 

US (Figure 1). All data were standardized and unified using Agmatix’s standardization platform. 

The platform standardize data using GUARDS – Growing Universal Agronomic Research Data 

Standard – an extensive set of agronomic ontologies developed by Agmatix. Data from different 

files and layers is ingested through a semi-automatic procedure, where it is curated and assigned 

the correct GUARDS ontology. A quality assurance procedure ensures classification errors are 

identified and corrected. The raw data is not transformed or modified by the system. The end 

result is a unified database ready to be used for exploration and agronomic modeling. More 

information on the system can be found at www.agmatix.com. 
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2.1 Availabel data layers 

2.1.1 Soil EC measurments, elevation and terrain data 

Soil EC measurements were measured using an EM38 instrument (Geonics Limited, Ontario, 

Canada), and elevation data were collected using a kinematic differential global position system 

(DGPS). Both datasets were collected at a 6X20 meter grid in each field, and interpolated to 

continuous 5m grids using IDW procedure in ArcGIS (ESRI, Redlands, CA, USA). 

 

Figure 1. Location of the experimental trials at eastern part of the US state of IL. 

Elevation data was used to generate 9 potential explanatory features:  

i) Relative elevation [m], calculated for each field. 

ii) Slope [degrees] 

iii) Profile curvature [100 m-1] 

iv) Tangential curvature [100 m-1] 

v) Compound topographic index, also known as wetness index [unit less] 

vi) Aspect [degrees] 

vii) Planar Curvature [100 m-1] 

viii) Specific catchment area (SCA) [m2/m] 

ix) Stream power index [kg m2/S3], where S is the channel slope. 
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Detailed information on the calculation of each feature can be found in Miao et al. (2006). 

2.1.2 Soil nutrients data 

To test for spatial autocorrelation, a Moran’s I test was performed for all the nutrient data of all 

fields. Fields that had no spatial autocorrelation were excluded from the analysis. Consequently, 

the number of fields used for each nutrient differs. For fields where spatial autocorrelation existed, 

nutrient point measurements were interpolated to 5m grid files using ordinary kriging procedure 

in ArcGIS (ESRI, Redlands, CA, USA).  

2.1.3 Developing a database for model calibration and validation 

To develop a dataset with ample amount of data points to be used in model development, in each 

field we have randomly generated 500 points, constraining the points to be at least 5 meter apart 

between each other. Within each field, the point layer was used to extract data from all raster 

layers (elevation, terrain, EC). Finally, nutrient data from all fields were joined altogether to create 

a comprehensive dataset and the nutrient-specific prediction models were developed (Table 1).  

 

Table 1. Nutrient data points available for the analysis 

Predicted variable Number of spatially correlated fields Number of data points used as input 

Zn* 9 3305 

Fe* 7 2812 

Cu* 7 3000 

Mn* 9 3810 

*Total nutrient (ppm) 

 

2.2 Modeling approach 
For each nutrient, the data higher than three standard deviations from the mean outliers were 

removed as outliers. A Random Forest model, implemented using the scikit-learn package in 

python (Pedregosa et al. 2011), was used to predict soil micronutrients using EC, elevation and 

terrain attributes. To ensure good coverage of the nutrient parameter space, a stratified sampling 

approach was applied to split the data to training (80%) and testing (20%) datasets. 

After the model was calibrated, it was validated using the independent test data set. Model 

efficiency was quantified using four indexes: i) R2; ii) Mean Absolute Prediction Error (MAPE, [%]); 

iii) Root Mean Square Error (RMSE, [ppm]); and iv) Normalized RMSE (RMSE divided by the 

range of observations [%]). 
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3. Results and discussion 

3.1 Descriptive statistics 
Descriptive statistics for the four nutrients datasets are presented in Figure 2.  

 
Figure 2. Histograms and descriptive data for Zinc (a), Fe (b), Cu (c), and Mn (d).  

 
 

3.2 Zn prediction 
Table 2 presents the efficiency of Zn prediction models produced with different input 

combinations. Relative elevation and EC alone were very weak predictors of Zn levels. The 8 

terrain features, (referred hereafter collectively as “terrain”), were able to explain 72% of the Zn 

variability in the test data. Adding EC and relative elevation data to the terrain features improved 

prediction, and the best model was produced when all factors -terrain, relative elevation and EC 

data were accounted for (case 7 in Table 2, R2 = 0.82, RMSE = 0.23 ppm, Figure 3). 
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Table 2. Efficiency indexes for different model inputs predicting Zn soil measurements (test data). ***  for p< 0.001 ; ** for 
p>0.001 and p< 0.01 ; * for p>0.01 and p< 0.05; NS for p> 0.05 

Case Model inputs R2 MAPE(%) RMSE(mg/kg) NRMSE(%) 

1 Relative elevation 0.00* 21.26 0.65 20.08 

2 Terrain 0.72*** 9.88 0.28 8.88 

3 EC 0.07*** 18.22 0.58 18.15 

4 Relative elevation + terrain 0.76*** 8.79 0.26 8.27 

5 EC + terrain 0.78*** 8.16 0.25 7.87 

6 Relative elevation + EC 0.40*** 13.63 0.42 13.02 

7 Relative elevation + terrain + EC 0.82*** 6.97 0.23 7.13 

 
 

 
Figure 3. Predicted versus measured soil Zn values [ppm] for model #7 (test data) 
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3.3 Fe prediction 
Table 3 presents the efficiency of Fe prediction models produced with different input 

combinations. Relative elevation and EC alone were very weak predictors of Fe levels. The eight 

terrain features were able to explain only a modest 31% of variability. Adding relative elevation 

increased the model R2 to 0.49, and including all data increased it further only marginally. The 

best model (case 7) was able to predict Fe levels with an RMSE of 5.68 ppm, or 16% of error 

(Figure 4).  

Table 3. Efficiency indexes for different model inputs predicting Fe soil measurements (test data). ***  for p< 0.001 ; ** for 
p>0.001 and p< 0.01 ; * for p>0.01 and p< 0.05 ; NS for p> 0.05 

Case Model inputs R2 MAPE(%) RMSE (mg/kg) NRMSE(%) 

1 Relative elevation 0.00** 28.08 9.40 19.02 

2 Terrain 0.31*** 19.24 6.83 13.82 

3 EC 0.00 NS 29.86 9.90 20.03 

4 Relative elevation + terrain 0.49*** 16.41 5.93 12.01 

5 EC + terrain 0.32*** 18.85 6.64 13.45 

6 Relative elevation + EC 0.21*** 21.82 7.34 14.85 

7 Relative elevation + terrain + EC 0.53*** 15.57 5.68 11.50 

 

 
Figure 4. Predicted versus measured soil Fe values [ppm] for model #7 (test data) 
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3.4 Cu predictions 
Table 4 presents the efficiency of Cu prediction models produced with different input 

combinations. Relative elevation, EC and terrain alone were weak predictors. Interestingly, adding 

either EC or relative elevation to the terrain substantially increased the prediction efficiency. The 

best model (case 7) was able to predict Cu levels with an RMSE of 0.21 ppm, or 12% of error 

(Figure 5).  

Table 4. Efficiency indexes for different model inputs predicting Cu soil measurements (test data). ***  for p< 0.001 ; ** for 
p>0.001 and p< 0.01 ; * for p>0.01 and p< 0.05 ; NS for p> 0.05 

Case Model inputs R2 MAPE(%) RMSE(mg/kg) NRMSE(%) 

1 Relative elevation 0.10*** 19.27 0.40 22.00 

2 Terrain 0.22*** 16.67 0.34 18.98 

3 EC 0.10*** 20.3 0.40 22.20 

4 Relative elevation + terrain 0.54*** 11.84 0.26 14.53 

5 EC + terrain 0.53*** 12.87 0.27 14.80 

6 Relative elevation + EC 0.51*** 12.88 0.27 15.05 

7 Relative elevation + terrain + EC 0.71*** 9.12 0.21 11.50 

 

 
Figure 5. Predicted versus measured soil Cu values [ppm] for model #7 (test data) 
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3.5 Mn predictions 
Table 5 presents the efficiency of Mn prediction models produced with different input 

combinations. Relative elevation, EC and terrain alone were weak predictors of Mn levels. Similar 

to the case of Mn, adding either EC or relative elevation to the terrain substantially increased the 

prediction efficiency. The best model (case 7) was able to predict Mn levels with an RMSE of 4.34 

ppm, or 8.2% of error (Figure 6).  

Table 5. Efficiency indexes for different model inputs predicting Mn soil measurements (test data). ***  for p< 0.001 ; ** for 
p>0.001 and p< 0.01 ; * for p>0.01 and p< 0.05 ; NS for p> 0.05 

Case Model inputs R2 MAPE(%) RMSE(mg/kg) NRMSE(%) 

1 Relative elevation 0.10*** 27.14 9.40 17.84 

2 Terrain 0.36*** 21.23 7.30 13.80 

3 EC 0.03*** 27.57 10.14 19.18 

4 Relative elevation + terrain 0.59*** 16.85 5.75 10.93 

5 EC + terrain 0.56*** 16.46 5.99 11.34 

6 Relative elevation + EC 0.49*** 17.19 6.51 12.33 

7 Relative elevation + terrain + EC 0.77*** 11.68 4.34 8.22 

 
Figure 6. Predicted versus measured soil Mn values [ppm] for model #7 (test data) 
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4. Summary 
To aid in site specific nutrient management, models for the prediction of four micronutrients were 

developed, and the relative importance of elevation, terrain and EC data was compared. The 

results suggested that terrain data alone could be good predictors only for Zn. For Cu and Mn, a 

combination of terrain, elevation and EC was needed to reach a reasonable prediction efficiency. 

For Fe, even an all-inclusive model was not able to adequately predict the nutrient level.  

Our results suggested that EC alone was not a good predictor of nutrients. EC data were 

measured in all fields for the construction of management zones, and to study the spatial 

variability of soil. Thus, EC data is therefore found valuable as a complementary input to improve 

the prediction accuracy for soil micronutrients. Further work is necessary to develop a useful 

prediction model for Fe and test all the models on new fields. 
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