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Abstract.  
The amount of spatial data collected in agricultural fields has been increasing over the last 
decade. Advances in computer processing capacity have resulted in data analytics and artificial 
intelligence becoming hot topics in agriculture. Nevertheless, the proper processing of spatial data 
is often neglected, and the evaluation of methods that efficiently process agricultural spatial data 
remains limited. Yield monitor data is a good example of a well-established methodology for data 
processing that could be used as a guide to determine data processing strategies. However, data 
processing methods for proximal soil sensors (PSS) are not as well-known as for yield, even 
though sensors are widely used in precision agriculture and their data often applied in predictive 
models for soil spatial variability characterization. The main objective of this study was to identify 
suitable methodologies for processing PSS data and apply them to a particular dataset. It was 
determined that properly processing any spatial dataset required that the following steps must be 
taken: (1) data projection, (2) position offset correction, (3) global and (4) local filtering, and (5) 
interpolation. Based on a literature review, the most suitable methods for each step are listed and 
discussed, and frameworks are proposed. These methods were applied to 4 different types of 
PSS data (gamma ray spectrometry, ground-penetrating radar, galvanic contact and 
electromagnetic induction soil apparent electric conductivity). To evaluate the accuracy of each 
processing framework, a cross-validation procedure was used. Overall, the proposed batch 
processing framework improved the value of PSS data by highlighting spatial variability in the field 
that was previously masked by the presence of erroneous data. Also, when performing an 
analysis in the measurement’s maps, discrepancies were found between the raw versus 
processed data, thus, emphasizing the need for properly processed PSS datasets. 
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Introduction 
The amount of spatial data collected in agricultural fields has increased over the last decade, and 
with the increase in computational power, further developments in machine learning, and data 
analytics, great advances have been made in extracting practical information from this data 
(Colaço et al., 2021; Fulton and Port, 2018; Roberton et al., 2021; Willam et al., 2022). However, 
the importance of proper processing of spatial data is often neglected; this may be related to the 
lack of research focused on testing and/or developing different processing methodologies and 
frameworks to handle this type of data for precision agriculture practices.  
Yield monitor data is a good example of a well-established processing methodology that has been 
discussed and studied by many researchers (Arslan and Colvin, 2002; Blackmore and Moore, 
1999; Leroux et al., 2018; Lyle et al., 2014; Menegatti and Molin, 2004; Ping and Dobermann, 
2005; Simbahan et al., 2004; Sudduth and Drummond, 2007; Sun et al., 2013; Vega et al., 2019). 
Alternatively, processing strategies for proximal soil sensors (PSS) are not as well-established as 
as those for yield. To our knowledge, very little research exists on this topic, even though PSS 
data is widely used in research and often it is used as a guide to determine management zones 
within agricultural fields (Adamchuk et al., 2004; Ji et al., 2018; Saifuzzaman et al., 2019; 
Schepers et al., 2004). 
Some researchers provided general strategies that focused on spatial data processing (Shekhar 
et al., 2003; Singh and Lalitha, 2018; Spekken et al., 2013) but they were not tested on PSS data. 
Others, like Maldaner et al. (2022), have subjected PSS data to their methodology and obtained 
promising results, but still, the main focus of the processing is on spatial data filtering. Overall, 
studies involving the use of PSS often refer to yield monitor frameworks when processing soil 
sensing data (e.g., Rodrigues et al., 2015). Thus, there is a need to establish specific processing 
algorithms for PSS data, and considering the large amount of information already collected, 
special focus should be given to methodologies that allow the joint processing of multiple files 
(sensors data). Therefore, the main objective of this study was to identify suitable methodologies 
for batch processing PSS data and apply them to a particular dataset. 

Materials and Methods 
The literature review that we performed on processing agricultural spatial data led to the definition 
of important steps for processing on-the-go sensing data. These steps are detailed below. They 
are presented in the order in which they should be applied. It must be noted that in listing, testing, 
and evaluating the available methodologies for each of the processing steps, more attention was 
given to methodologies using the least possible variables, computational power, and user input. 
Because PSS data often presents an anisotropic distribution with a higher density of data 
acquisition within a pass than between passes, more focus was also given to methods that 
consider the existence of within-row variability. 
Local Projection  
Most of the data acquired by PSS are exported from sensors systems with non-projected 
coordinates (geographic latitude and longitude). Converting this data to a projected coordinate 
system is often needed for the calculation of distances, which are necessary for other procedures 
involved in the data processing, e.g., interpolation. Universal Transverse Mercator (UTM) is one 
of the most used projected coordinate systems. Sometimes, more localized systems, such as the 
Modified Transverse Mercator, are also used for specific locations.  
However, a known issue with projection systems is distortion. In addition, a field might be located 
over two projection zones. In this case, one zone should be chosen to continue with the data 
processing, even though an error would be associated with this decision. To avoid and/or reduce 
these issues, we propose the use of a custom localized Cartesian coordinate system, described 
under the International Organization for Standardization 12188-1 Annex A (ISO, 2010). Equations 
1 and 2 show the calculation for the conversion factors proposed in the standard above 
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mentioned, while Equations 3 and 4 the conversation formulas 
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where Flat, Flon are the location-specific conversion factors, in meters per degree, for latitude and 
longitude, respectively; j is the latitude location for the center of the field, in degrees; h is the 
average elevation for the field above the ellipsoid, in meters; a is the semi-major axis of the 
ellipsoid, in meters; and b is the semi-minor axis of the ellipsoid, in meters; X and Y are the easting 
and northing projected coordinates, in meters; Longmin and Latmin are the geographic lowest values 
of longitude and latitude observed in the dataset, in degrees; Long and Lat are the geographic 
longitude and latitude, in degrees.  

Position Offset  
Projection is not the only source of error for the geographic placement of PSS data. Often during 
data collection, the Global Navigation Satellite System (GNSS) receiver cannot be placed right 
above the sensor. A standard practice is to place it at a high location free of obstructions , (e.g., 
above the cabin of the vehicle), but still centered with the sensor. However, this procedure creates 
an offset between the data collected and the GNSS location recorded. Also, depending on the 
type of receiver used during data collection, a known pass-to-pass error can also affect the 
uncertainty of the geolocation of the data. Any such displacement in the data must be corrected. 
Even though some sensors’ collection systems allow an adjustment of the offset distance between 
the GNSS receiver and sensor, this option is often neglected, or the adjustment is forgotten when 
making changes to the collection settings (e.g., using another vehicle). Thus, an automatic 
procedure was considered and tested to calculate and apply this correction to the data. 
The methodology proposed by Lee et al. (2012) was employed for this purpose. Their 
methodology uses phase correlation analysis to automatically calculate the necessary offset. This 
analysis includes two main steps: rasterization of the points and application of the phase 
correlation analysis. According to the authors, the pixel size used in the first step can affect the 
results of the analysis. Thus, they proposed a methodology that automatically determines this 
value. After determining the best pixel size, a range of offset values was applied to the data, the 
phase correlation analysis performed, and the phase correlation coefficient obtained. The offset 
value representing the highest phase correlation coefficient was selected to be applied to the 
data. To our knowledge, this methodology has not been tested on the identification of offset values 
for PSS, but is employed in the yield processing software Yield Editor 2.0 (Sudduth et al., 2012), 
to estimate the delay for yield and moisture sensors.  
Other methodologies (e.g., Chung et al., 2002) are available to estimate the offset mentioned 
above. However, based on the conclusions of Lee et al. (2012), phase correlation analysis 
produces results similar to those of the geostatistical method, while reducing the processing time, 
which is an important variable when batch processing data. 

Operational, Global, and Local Filtering 
Assuming that any data displacements or projection distortions are corrected or reduced, sensors’ 
readings may still be subjected to random factors causing erroneous observed values, or outliers 
(e.g., a high reading by an electromagnetic induction sensor due to the presence of a metal piece, 
temporary malfunctioning of the sensor because of field operations). Ignoring outliers in the data 
can lead to higher uncertainty on interpolation or predictive processes, and affect management 
decisions made based on the data. Many papers that focused on yield monitor data processing 
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highlighted the issues in final thematic maps and decision-making procedures that may arise from 
the presence of erroneous measurements (Leroux et al., 2018; Lyle et al., 2014; Maldaner et al., 
2022; Ping and Dobermann, 2005; Sudduth et al., 2012). 
The literature on yield monitor data processing also emphasizes the need to perform not only a 
global outlier detection and removal step, but also a local analysis aimed at comparing an 
observation to a pre-determined neighborhood. In the conditions of application of Geostatistics, it 
is assumed that an observation is spatially correlated with those of its neighbors. Thus, if an 
observation is distinct from neighborhood values, that observation is considered a spatial outlier.  
Accordingly, based on the developed frameworks for yield monitor data processing, we propose 
three major steps for global and local filtering of PSS data: operational (removal of operation 
related patterns, e.g., maneuvers, changes in travel speed), global-statistical (removal of 
erroneous and extreme values), and local-statistical (removal of spatial outliers).  
Operational Filtering 

Changes in travel speed and direction (heading), stops, etc. are inevitable during field data 
collection. However, these operational factors become part of the data and can affect its quality. 
Co-located points can occur due to a stop or error on the sensor’s logger and affect the data 
interpolation. Maneuvers can cause the tilt or loss of contact between the sensor and soil, also 
generating erroneous measurements. 
The removal of such operational factors is important to increase the overall data quality. Four 
filters are proposed to remove such data points. For the operational filters involving the setting of 
thresholds for the identification of extreme values (maneuvers and travel speed), a non-
parametric methodology was adopted to reduce the need for user inputs. This methodology uses 
the identification of outliers proposed by Hubert and Van Der Veeken (2008), which identifies 
extreme values by calculating an adjusted outlyingness index (AO) and cutoff, both based on a 
skewness-adjusted boxplot. The four filters can be detailed as follows: 

1. Co-located points: any points with the same coordinates are removed. 
2. Headland: a negative 5-m buffer is applied to an auto-generated field’s boundary and any 

observation outside the buffered area is removed. A pre-generated boundary could be 
used in this step but was avoided because it would be another user input. 

3. Maneuvers: differences in calculated heading direction between consecutive points are 
computed. In sequence, the adjusted boxplot, AO, and threshold are obtained, and any 
observation exceeding the threshold is considered a maneuver and is removed.  

4. Travel speed: not every data collection system exports information on travel speed or 
frequency of data collection, but the latter is usually constant, allowing the use of distances 
between consecutive points to estimate changes in travel speed. Thus, a procedure 
similar to the maneuver filtering is adopted, while the Euclidean distance between 
consecutive points is calculated and used in the analysis for outliers. Eventually, points 
that are too close (lower travel speed) or too far (higher travel speed) are removed.  

Global and Local Statistical Filtering 

Two recently published methodologies for spatial data filtering include global and local steps and 
were selected to be tested. Other methodologies are available in the literature, but the two 
evaluated here consider spatial outliers in one direction (the data collection direction) and in all 
directions horizontally (Figure 1). 
One methodology was proposed by Leroux et al. (2018), and can be summarized in 11 steps: 

1. Global statistical filtering: based on Hubert and Van Der Veeken's (2008) AO, cutoff, and 
skewness-adjusted boxplot (described under Operational Filtering). 

2. Median calculation for unidirectional and omnidirectional neighborhoods from each 
observation within two-pass widths. 

3. Outlyingness metric calculation: hA = fA – gA, where fA is the observation value, and gA, is 
the median of the neighborhood values for the two types of neighborhoods. 
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4. Repeat Steps 2 and 3 for two more neighborhood settings: three and four times the pass 
width. 

5. Average the results of unidirectional and omnidirectional outlyingness metrics over the 
three neighborhood settings, and do a biplot (unidirectional vs. omnidirectional 
outlyingness metrics). 
The next steps no longer use spatial information (coordinates), but the distribution 
observed in the biplot obtained from the unidirectional vs. omnidirectional outlyingness 
metrics. 

6. Construct the matrix of distances between points in the biplot, and estimate the most 
frequent distance (e) using Kernel Density Estimation. 

7. Determine the number of neighbors within e for each observation, estimate their frequency 
by Kernel Density Estimation, and identify the first local minimum. 

8. Apply a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm 
(Ester et al., 1996) to the biplot, using e as neighborhood radius and the number of local 
minimum found in Step 7 as the minimum number of points. 

9. Extract the cluster containing normal observations (excluding outliers). 
10. Refine the detection of outliers by repeating Steps 2–9 and comparing the observations 

flagged as outliers with their neighborhood after removing the previously flagged outliers. 
11. Outliers flagged twice are considered spatial outliers and removed from the data. 

 
Fig. 1 Illustration of the definitions of unidirectional (within-row) neighborhood (A) and omnidirectional (within- 

and between-rows) neighborhood (B) 

The second methodology that was reviewed in greater detail was proposed by Maldaner et al. 
(2022) and used a simpler approach than the first while requiring more user inputs. For the global 
and local filters, upper and lower bounds are defined as the median plus and minus a coefficient 
times the median. The coefficient can be different for the global and local filters. At the local 
filtering step, the median is calculated for the observations in the neighborhood, in a way similar 
to Step 2 for the first methodology but by using a radius equal to 2.5 times the pass width. An 
observation value found to be below the lower bound or above the upper bound is flagged as an 
outlier. This methodology removes outliers following the sequence: global, local unidirectional, 
and local omnidirectional. 
Both methodologies use the distance between two adjacent passes (pass width) to determine the 
neighborhood for local filtering. This distance can easily be obtained using a Geographic 
Information System (GIS). However, this requires another user input. Considering that the position 
offset methodology of Lee et al. (2012) calculates a pixel size that corresponds to 50 to 80% of 
the pass width, we propose 2 times the pixel size estimated at the position offset step to be used 
as an estimate of the pass width. 
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Interpolation 
Finally, in the process of using PSS data as a decision-making tool or for any other application in 
precision agriculture, point data must be converted to a map format. Interpolation is used for this 
means. Many interpolation methods are available and can be applied. The most common for 
agricultural data are: ordinary kriging (OK), universal kriging (UK), inverse distance weighting 
(IDW), and nearest neighbors (NN). After selection of the most appropriate filtering, the filtered 
PSS data were submitted to these four interpolation procedures. 
Even though normality is not an assumption about the data distribution for geostatistical analysis, 
a common practice is to test for normality and if rejected, to apply a data transformation. This can 
help improve the results of the OK and UK procedures, as they are based, in different ways, on 
mean values (Isaaks and Srivastava, 1989; Schossler et al., 2019). We, therefore, recommend 
that for interpolation based on kriging, the data distribution be tested for normality, and when 
rejected, a Box-Cox transformation (Box and Cox, 1964) be used. 
The IDW interpolation requires a maximum number of neighbors and a weight applied to 
distances (Shepard, 1968). Either parameter can be user-defined or automatically optimized. A 
common approach is to divide the dataset into ‘test and train’ subsets and evaluate different 
options and combinations of parameter values in relation to prediction errors. The combination of 
parameter values providing the smallest prediction error is selected (Barbulescu et al., 2020). This 
procedure can be computationally costly and time-consuming. Thus, for datasets with >1000 
points (size of most PSS datasets), a threshold distance is recommended to reduce the 
computational cost for IDW interpolation (Hengl, 2009). We also propose the use of a Limited 
Memory Algorithm for Bound Constrained Optimization through an L-BFGS-B algorithm (Byrd et 
al., 1995), to obtain optimized parameters for IDW interpolation. 

Evaluation 
Data from four PSS instruments were used to evaluate the steps and different methodologies 
described above. Table 1 presents the different sensors, characteristics of the data collection 
(pass swath and distance between consecutive points), data density, and variables evaluated. 
The data from galvanic contact apparent electrical conductivity (GC) and ground penetrating radar 
(GPR) are from a 43-ha field, while the g-ray and electromagnetic induction apparent electrical 
conductivity (EMI) come from an 82-ha field.  
Raw data was standardized to zero mean and unit variance to facilitate the interpretation of 
results. The evaluation of position offset and filtering steps (global and local) took place by 
comparing the changes in the estimated parameters of fitted variogram models and the average 
root mean squared error (RMSE) from a 10-fold cross-validation using OK interpolation. 
To compare interpolation methods, data distribution normality was tested first, and a Box-Cox 
transformation was applied as required. Transformed data was used for each interpolation 
method, including IDW and NN in addition to OK and UK. No Box-Cox transformation was applied 
before interpolation because, by definition, a Box-Cox transformation modifies the data 
distribution, which would affect the comparison among methodologies in their efficiency to remove 
global and local outliers.  

For each interpolation method, a 10-fold cross-validation was performed, and the RMSE and the 
coefficient of determination (R2) between predicted and observed values were reported. For any 
kriging procedure in this study, three models (exponential, spherical, and Gaussian) were fitted 
by weighted least squares to the empirical variogram. The best variogram model was selected 
based on the error sum of squares. Evaluation of frameworks and methodologies was performed 
with customized scripts and functions written in the R language (R Core Team, 2021). 
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Table 1. Information for the different proximal soil sensors used for the evaluation of processing methodologies 

Sensor 
Model 

Manufacturer 
Provider Technique Swath 

(m) 
Point 

Distance 
(m) 

Samples
.ha-1 

Nb. 
Obs. Variables 

EM38-
MK2 

Geonics Limited 
(Mississauga, 
Ontario-CA) 

ECa - 
Electromagnetic 
Induction (EMI) 

25 4.1 108 8852 ECa Deep 
 (0-1.5 m) 

SIR-4000 
(400 MHz 
Antenna) 

GSSI (Nashua, 
New Hampshire-

USA) 

Ground 
Penetrating 

Radar (GPR) 
34 5 63 2714 

Instantaneous 
Amplitude  
(0-0.1 m) 

SoilOptix 
SoilOptix 

(Tavistock, 
Ontario-CA) 

Passive 
Gamma-Ray  

(g-ray) 
12 12 61.5 5048 Count Rate 

Veris 
3100 

Veris 
Technologies 

(Salinas, 
Kansas-USA) 

ECa - Galvanic 
Contact (GC) 18 3.3 147 6331 ECa Shallow 

(0-0.3 m) 

Results and Discussion 
Table 2. Geostatistical analysis results (Nugget, Sill: variogram model parameter estimates) and root mean squared error 
(RMSE) from ordinary kriging cross-validation for position offset and filtering procedures for each proximal soil sensor. 

Data is standardized to zero mean and unit variance. Bold and red-colored numbers represent the lowest values, and 
dashes indicate that the procedure was not applied or no point was removed. 

Process 
EMIa – 0-1.5 m GPRb – 0-0.1 m g-Ray – Count Rate GCc – 0-0.3 m 

Nugget Sill RMSE Nugget Sill RMSE Nugget Sill RMSE Nugget Sill RMSE 

Raw 0.050 0.802 0.190 0.658 0.949 0.817 0.896 0.970 0.975 0.141 1.167 0.246 

Offset 
Applied 

0.047 0.802 0.192 0.633 0.942 0.814 - - - - - - 

Operational 0.034 0.517 0.203 0.347 0.680 0.666 0.855 0.989 0.982 0.102 1.150 0.233 

Global 
Leroux et 
al. 2018 

- - - - - - 0.857 0.983 0.980 - - - 

Local 
Leroux et 
al. 2018 

0.004 0.138 0.092 0.122 0.314 0.424 0.575 0.688 0.797 0.015 0.534 0.134 

Global 
Maldaner et 
al. 2022 

0.012 0.444 0.179 0.262 0.444 0.565 0.748 0.831 0.904 0.056 0.665 0.203 

Local 
Maldaner et 
al. 2022 

0.000 0.282 0.129 0.061 0.226 0.295 0.225 0.382 0.538 0.000 0.600 0.102 

a EMI – electromagnetic induction apparent electrical conductivity, bGPR – Ground Penetrating Radar, cGC – galvanic contact 
apparent electrical conductivity 

Position Offset 
Offset values ranging from -25 to 25 m in 0.5 m steps were used for the phase correlation analysis 
for each PSS dataset. It was found that a negative shift of -3 m and -5 m needed to be applied to 
the EMI and GPR data, respectively; for GC, the highest phase correlation coefficient was 
obtained at 0 m, so no offset should be applied. For these three sensors, a well-determined 
distribution for the phase correlation coefficient was obtained with a peak at the estimated offset 
value. For g-ray, high variability in the phase correlation coefficient was observed, which resulted 
in a lack of convergence to a specific offset. A visual analysis of the raw data from the g-ray sensor 
showed a high variability at short distances, that is, a weaker spatial correlation. This can also be 
seen in the high values of the Nugget relative to the Sill (Nugget representing 92.3% of Sill) in 
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Table 2. The position offset methodology under evaluation assumes the presence of spatial 
correlation in the data, so the results obtained for the g-ray sensor data could be related to its 
weaker spatial correlation. Dashes for GC and g-ray in Table 2 indicate that no offset was applied 
to the data, and the geostatistical analysis results and RMSE values are the same as for the Raw 
dataset, that is, when the data is standardized to zero mean and unit variance (without Box-Cox 
transformation). 
Due to the low computational cost of the position offset methodology, multiple interactions can be 
assessed, together with an estimation of the variability. When a high variability in the interactions 
is observed, a warning can be issued to the user, or an automatic decision based on a threshold 
can be taken on whether or not to use the estimated offset (Lee et al., 2012; Sudduth et al., 2012).  
One may also be intrigued by the need to apply a negative offset to the data from EMI and GPR. 
The data from these two sensors were collected by contractors, who used proprietary software to 
combine the GNSS data with the sensor readings. Small inconsistencies in this combination could 
have caused a shift in the data, resulting in the need for a negative offset. For GPR, the negative 
offset could also be associated with a pass-to-pass error because the data was collected with a 
push-cart (>15 min between the beginning and end of a pass), and data was not collected using 
a Real-Time Kinematic (RTK) level receiver.  
Moreover, the offsets estimated for the EMI and GPR sensors are close to their average distance 
between consecutive points (Table 1), so the results could be related to the data collection 
density. Comparing geostatistical analysis results before and after the position offset (Table 2), a 
slight decrease in the Nugget effect for both sensors can be observed, indicating a small increase 
in the capability of the model to capture variability at shorter distances, even though there is a 
small increase in the interpolation RMSE.  
To further assess the uncertainty about the effectiveness of this methodology in determining the 
need for a position offset in the data, a simple complementary analysis was performed by 
simulating a negative shift of -7 m in the GC data (between the GNSS antenna placement and 
the sensor). As a result, the phase correlation analysis indicated the need for a positive offset of 
7 m. Accordingly, this methodology shows potential for the identification of a need for a position 
offset in PSS data, while being very suitable for batch processing because of its computational 
efficiency and autonomy. Future work will focus on simulating more datasets with a variety of 
offsets and evaluating the performance of the methodology to identify and correct them. 

Operational, Global, and Local Filtering 
Operational 

The operational filtering methodology removed about 30%, 17%, 22%, and 18% of the 
observations from EMI, GPR, g-ray, and GC, respectively. In view of geostatistical analysis results 
in Table 2, RMSE decreased for GPR and GC, and slightly increased for EMI and g-ray. The 
Nugget effect presented to be smaller for all the PSS, which shows that the fitted variogram model 
captures more spatial dependence from the data. The blue dots presented in the Removal Step 
maps in Figure 2 represent the points removed by the Operational Filter, mostly observations 
made at the borders of the field, in maneuvers or turns, and points too close or too distant from 
its consecutives were removed, which represents a good performance of the filter. Similar results 
can be observed in the maps for the other PSS (Figures 3-5). 
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Fig. 2 Results of global and local filtering methodologies for galvanic contact (GC) sensor apparent electrical conductivity 
(ECa). Results are presented for the methods of Maldaner et al. (2022), top, and Leroux et al. (2018), bottom. Points 

removed at each filtering step are classified at the Removal Step maps 

Global Statistical 

The methodology applied by Leroux et al. (2018) for the removal of global statistical outliers did 
not identify any extreme values for three of the four PSS datasets. This same methodology only 
removed 3 points from the g-ray data and dashes in Table 2 indicate that no analysis was 
performed for this step because the results would be the same as for the Operational step. 
However, the methodology proposed by Maldaner et al. (2022) removed about 0.4%, 2%, 2.3%, 
and 4% of the observations from EMI, GPR, g-ray, and GC, respectively, in addition to the 
percentages for Operational filter. The removed points in this step for the GC sensor can be 
observed in Figure 2 under Global Statistical (orange dots) in the Removal Step maps. Since no 
observations were removed by this step when using Leroux et al.’s (2018) methodology, no points 
for this class can be observed on the map in this case.  
Maldaner et al.’s (2022) methodology requires a user-defined coefficient for this filtering step. 
Considering that our study focuses on the batch processing of PSS data, we tested multiple 
values for this coefficient on each of the sensors. We found that the filtering strategy used by this 
method is sensitive to the value of the coefficient, which tends to be proportional to the variability 
in the data. To obtain the results above, the coefficients used for EMI, GPR, g-ray, and GC were 
0.2, 1.6, 0.2, and 1.6, respectively. Spekken et al. (2013), who had formerly proposed a 
methodology very similar to Maldaner et al. (2022), also reported such behavior when selecting 
the threshold to determine the presence of spatial outliers. Despite this disadvantage, there was 
an overall reduction of the data variance (Sill), Nugget effect, and interpolation RMSE for all four 
PSS, indicating an increase in the data quality. 
Local Statistical 

The Local Statistical filter is the last step towards the improvement of the data quality. At this step, 
it is possible to fully assess the differences between the filtering methodologies under evaluation. 
Table 2 shows that the lowest values for Nugget, Sill, and RMSE are for Maldaner et al.’s (2022) 
methodology for GPR and g-ray, while Leroux et al.’s (2018) methodology provides the lowest Sill 
for GC and the lowest Sill and RMSE for EMI. Through the local filtering, Leroux et al. (2018) and 
Maldaner et al. (2022) methodologies respectively removed an additional 15%, 7.7%, 6.7%, and 
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25% of the observations, and 3%, 21%, 28%, and 3% of the observations, for EMI, GPR, g-ray, 
and GC. 

 
Fig. 3 Results of global and local filtering methodologies for electromagnetic induction (EMI) sensor apparent electrical 
conductivity (ECa). Results are presented for the methods of Maldaner et al. (2022), top, and Leroux et al. (2018), bottom. 

Points removed at each filtering step are classified at the Removal Step maps 

Although the geostatistical analysis results support that the methodology of Leroux et al. (2018) 
performs better filtering for two of the four sensors (GC and EMI), a visual inspection of the 
removed and filtered maps (Figures 2 and A1 – maps for Leroux et al., 2018) suggests possible 
excessive removal of observations during the Local Statistical step. By comparing the Raw and 
Removed data points, the removal of some true patterns in the field can be observed when the 
Leroux et al. (2018) methodology was used (e.g., excessive removal of high ECa values for the 
EMI sensor in Figure 3). 

 
Fig. 4 Results of global and local filtering methodologies for ground penetrating radar (GPR) Instantaneous Amplitude at 0-

0.1m depth. Results are presented for the methods of Maldaner et al. (2022), top, and Leroux et al. (2018), bottom. Points 
removed at each filtering step are classified at the Removal Step maps 
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The issue raised in the previous paragraph might cause the removal of important patches in the 
field which could affect further analysis using the filtered data. In addition, the results presented 
for GPR and g-ray for Leroux et al. (2018) (Figures 4 and 5) suggest insufficient removal of spatial 
outliers. The maps obtained for these sensors when using this methodology still present some 
noise and do not reveal a well-delimited spatial distribution (Figures 4 and 5). On a separate note, 
the identification of spatial outliers based on the non-parametric methodology of Leroux et al. 
(2018) requires a few more extra steps than Maldaner et al. (2022) methodology, and therefore, 
is more computationally costly. 

 
Fig. 5 Results of global and local filtering methodologies for g-ray count rate. Results are presented for the methods of 
Maldaner et al. (2022), top, and Leroux et al. (2018), bottom. Points removed at each filtering step are classified at the 

Removal Step maps.  

Based on the above analyses and results, Maldaner et al. (2022) methodology appears to be the 
most suitable to process the particular dataset used in the present study. Accordingly, its results 
were used for interpolation. However, as briefly mentioned during the presentation of the Global 
Statistical step, a disadvantage of this methodology is its sensitivity to a user-defined coefficient. 
When considering data batch processing, the need for a user-defined coefficient affects the flow 
and efficiency of the process. For the Local Statistical step, the same sensitivity as for the Global 
Statistical step was observed, and after trying a number of values, 0.05, 0.4, 0.1, and 0.5 were 
selected as the best coefficients for EMI, GPR, g-ray, and GC, respectively.  
Overall, the two methodologies presented advantages and disadvantages. The proposed filtering 
steps (operational, global, and local statistical) improved the data quality; nevertheless, there is 
still a need for the development and evaluation of more efficient, non-parametric methodologies 
for global and local statistical filtering, in order to improve the batch processing of these steps.  

Interpolation 
The four PSS datasets, after applying all of the above steps, had the normality of their distributions 
tested (a=0.05). It was rejected for all variables, so each set of data was submitted to a Box-Cox 
transformation. The four interpolation methods were applied to the transformed data. Results are 
reported in Table 3, where the values for OK may differ from those in Table 2 since no data 
transformation was performed at the evaluation step. 
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Table 3. Interpolation methods root mean squared error (RMSE) and coefficient of determination (R2) resulted from 10-fold 
cross-validation for each proximal soil sensor.  

Interpolation Method 
EMIa – 0-1.5 m GPRb – 0-0.1 m g-Ray – Count Rate GCc – 0-0.3 m 

RMSE R2 RMSE R2 RMSE R2 RMSE R2 

NNd 0.320 0.899 0.855 0.406 1.149 0.120 0.200 0.960 

IDWe 0.258 0.934 0.699 0.516 0.875 0.235 0.159 0.975 

OKf 0.228 0.949 0.665 0.558 0.858 0.263 0.203 0.960 

UKg 0.231 0.947 0.662 0.563 0.859 0.262 0.143 0.980 

a EMI – electromagnetic induction apparent electrical conductivity, bGPR – Ground Penetrating Radar, cGC – galvanic contact 
apparent electrical conductivity, dNN – Nearest Neighbor, eIDW – Inverse Distance Weighting, fOK – Ordinary Kriging, gUK – 
Universal Kriging 

Overall, kriging presented the best performance for all the four different PSS data, while NN was 
the worst. Even though OK and UK performed better than the other two, automatic calculation 
and model fitting to a variogram is still challenging (Oliver and Webster, 2014). Thus, to properly 
apply geostatistics to specific data, there would be a need for some user analysis of the variogram 
and model. For example, analyzing the data from GC and its distribution on the X and Y 
coordinate, a trend was observed. In this case, UK is the most suitable kriging method instead of 
OK. However, an analysis of the data distribution and the variogram had to be performed to 
identify the trend and model it. 
On the other hand, by automatically optimizing the IDW parameters similar results to kriging were 
obtained. For GC data, where a trend was observed, IDW even outperforms OK. In this scenario, 
when focusing on batch processing, IDW might be a good option. However, there are still some 
other interpolation options that could be evaluated, such as spatial random forest (Sekulić et al., 
2020), support vector machines, and their combination with IDW (Willam et al., 2022). Although, 
these also need the optimization of their hyper-parameters, a time-consuming and 
computationally costly procedure.  
For future work, this framework should be tested with simulated datasets, while implementing 
and/or developing more robust methodologies for the spatial outlier detection step. Newly 
developed interpolation methodologies, using machine learning and their combination with 
traditional interpolation methods, should also be tested.  

Conclusion 
A framework for batch processing of high-density anisotropic data from proximal soil sensors 
(PSS) was proposed and tested. It was found that data quality improved after applying the 
framework which used different methodologies at each step. However, the development of more 
computationally efficient and autonomous methods is required, as the methods available in the 
literature require expert thresholds or they are not robust enough for use with data with such 
variability as the PSS data collected in agricultural fields.  
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