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Abstract.  
Deep learning convolutional neural networks (CNNs) have gained popularity in recent years for 
their ability to classify images with high levels of accuracy. In agriculture, they have been 
applied for disease identification, crop growth monitoring, animal behavior tracking, and weed 
classification. Datasets traditionally consisting of thousands of images of each desired target are 
required to train CNNs. A recent survey of Nova Scotia wild blueberry (Vaccinium angustifolium 
Ait.) fields, however, determined that there are more than 200 unique species of weeds present. 
Collecting an image dataset containing thousands of images of each weed species to train a 
CNN would therefore be time-consuming and impractical. Meta deep learning allows for 
classification of images using a small number of labelled training examples, typically one or five 
images per class. To achieve this, the CNN is pre-trained using a standard dataset containing 
thousands of generic images. A support dataset containing a small number of images per class 
is provided for additional training of the specific target identities. A Siamese Neural Network 
(SNN) then uses the features learned by the CNN to differentiate between the classes in the 
support dataset. In this study, an SNN was trained to identify six species of weeds using the 
Keras-TensorFlow deep learning framework. Four different feature embedding sizes were 
tested for the SNN. The CNN training dataset contained three weed classes with 800 images 
per class collected in April through June during the 2019 and 2020 field seasons. Support 
datasets containing 1, 5, 10, 15, and 20 images per species were collected in April through July 
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2021 to train the SNN. The SNN achieved accuracies of 88.3% and 88.0% on the original 
validation and testing datasets with an embedding size of 512 neurons. Fine-tuning with a 
support set of 5 images yielded accuracies of 70.1% and 70.0% on the query validation and 
testing sets. Future work will involve using meta deep learning to identify common diseases in 
the wild blueberry crop including Monilinia blight (Monilinia vaccinii-corymbosi) and Botrytis 
blight (Botrytis cinerea). The trained SNNs will be deployed in a downloadable smartphone 
application and an online web-based application to facilitate streamlined delivery of pest 
identification and management information to wild blueberry growers. 
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Introduction 

Wild Blueberry Cropping System 
Wild blueberries (Vaccinium angustifolium Ait.) are a perennial crop which grows in eastern 
Canada and Maine, USA. Commercial fields are often developed on deforested areas after the 
removal of trees and other vegetation or abandoned farmland (Hall et al., 1979). The wild 
blueberry plants spread over these areas through rhizomes. Despite their perennial nature, wild 
blueberries are typically managed in a two-year cycle (Hall et al., 1979). During the first (sprout) 
year, plant growth begins and flower buds begin to grow in August. Harvesting occurs during 
August of the following (crop) year (Farooque et al., 2014). After harvest, the plants are pruned 
through mechanical flail mowing or burning, restarting the growth cycle. 
Growers and industry professionals have indicated a desire for smart tools to improve field 
management. One such tool is a smartphone application which can identify visual field features 
such was weeds and crop diseases. A recent survey found that there are more than 200 unique 
species of weeds present in wild blueberry fields in Nova Scotia, Canada (Lyu et al., 2021). 

Convolutional Neural Networks 
Deep learning convolutional neural networks (CNNs) are image processing algorithms which can 
automatically classify images (Krizhevsky et al., 2012; LeCun et al., 1998) or objects within them 
(Girshick et al., 2014; Redmon et al., 2015). They consist of computational neurons, based on the 
perceptron (Rosenblatt, 1958), which are organized in layers to process data (Goodfellow et al., 
2016; LeCun et al., 2015). The final layer contains one neuron for each possible class. Originally 
designed to recognize handwritten digits (LeCun et al., 1998), and later adapted for broad-scale 
image recognition (Krizhevsky et al., 2012), the adoption of CNNs has greatly increased over the 
past decade. Large datasets containing thousands of images are used to train CNNs through 
backpropagation of errors  (Rumelhart et al., 1986) and iterative optimization algorithms based 
on gradient decent (Cauchy, 1847). They have been used in agriculture for crop growth monitoring 
(MacEachern et al., 2020; Tian et al., 2019), weed recognition (Sharpe et al., 2020; Yu et al., 
2019), disease recognition (Fuentes et al., 2017), and monitoring livestock behavior (Wu et al., 
2020; Yang et al., 2018). 
Images are often downscaled from their original sizes to smaller resolutions between 28x28 pixels 
(LeCun et al., 1998) to 608x608 pixels (Redmon & Farhadi, 2018). This reduces the computational 
cost at the expense of accuracy. Studies performed on weeds in wild blueberry fields found that 
higher resolutions such as 1280x736 were necessary to optimize accuracy (Hennessy, Esau, 
Farooque, et al., 2021; Hennessy, Esau, Schumann, et al., 2021). Graphics processing units 
(GPUs) are typically required to train CNNs (Raina et al., 2009), but lightweight models can be 
deployed on common Central Processing Units (CPUs) found in personal computers and 
smartphones. 

Siamese Neural Networks 
Meta deep learning techniques, such as prototypical networks, Siamese neural networks, and 
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model agnostic meta learning, adapt learned information from a trained neural network to new 
tasks using minimal amount of new training data. Siamese neural networks (SNNs) are a pair of 
identical neural networks used to compare the similarity of two pieces of data (Bromley et al., 
1994; Dey et al., 2017; Koch et al., 2015). They were originally designed to compare and verify 
the similarity of handwritten signatures (Bromley et al., 1994). The SNN produces a vector 
embedding for each piece of data, then calculates the distance between the two. 
Koch et al. (2015) used an SNN to recognize handwritten characters in the Omniglot dataset 
(Lake et al., 2015) using only one example, far fewer than the thousands of examples required 
by CNNs. This was achieved by pre-training the network using images from the MNIST dataset 
created by (LeCun et al., 1998). Support datasets containing one example of each character were 
then used to tune the network. The SNN created by Koch et al. (2015) used four layers from a 
CNN to create a 4096-neuron embedding of 105x105 resolution grayscale images containing 
handwritten character. An improved signature verification SNN, SigNet, creates 128-neuron 
embeddings from 155x220 grayscale images of signatures (Dey et al., 2017). Plant leaf diseases 
were identified using an SNN created by Argüeso et al. (2020) which used an Inception CNN 
architecture (Szegedy et al., 2015). Leaves were removed from the plants and placed on a single 
colour background for image capture. Li & Yang (2021) used an SNN with four convolutional 
layers to identify plant diseases and crop pests. They found that increasing the support set size 
improved accuracy on query datasets, but the rate of improvement declined when more than five 
images per class were used.   
In this study, an SNN with four convolutional layers was trained to identify select weed species in 
wild blueberry fields. The accuracy of the SNN was evaluated using four feature embedding sizes 
ranging from 128 to 512 neurons. Accuracy of the SNN on query images was tested before and 
after fine-tuning with support datasets of 1, 5, 10, 15, and 20 images. Using an SNN, rather than 
a CNN, to create a smartphone app for weed recognition in wild blueberry fields would greatly 
reduce the size of the image dataset needed. 

Materials and Methods 

Computer Hardware and Software Environment 
A Dell1 Alienware Aurora R11 desktop computer with an Intel2 Core i9-10900K CPU, 128 GB of 
system RAM, and an Nvidia3 GeForce RTX 3090 24GB GPU was used for training and validating 
the SNNs. The computer used the Windows4 11 Pro operating system. The Python5 programming 
language (v3.9.12) was installed using Anaconda6. The TensorFlow7 machine learning platform 
(v.2.8.0) was installed in a virtual environment. The Nvidia graphics driver for the RTX 3090 GPU 
(v.512.13), the Compute Unified Device Architecture toolkit (CUDA, v.11.6), and the CUDA Deep 
Neural Network library (cuDNN, v.8.2.4.15) were installed to allow TensorFlow access to the GPU 
for processing. 

Dataset Acquisition and Preprocessing 
Images of nine weed species were captured in wild blueberry fields using rear-facing smartphone 
cameras with resolutions greater than 3000x2000 pixels (Figure 1). Images were captured from 
April to August 2019, 2020, and 2021 in sprout-year and crop-year fields. This resulted in an 
image dataset which was highly varied within each class because it encompassed various growth 
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stages of the weeds (Figure ). For initial network training, validation, and testing, images of hair 
fescue (Festuca filiformis Pourr.), sheep sorrel (Rumex acetosella L.), and bunchberry (Cornus 
canadensis L.) were used. The training dataset consisted of 800 images of each weed, while the 
validation and independent testing datasets both contained 100 images of each weed. 
Six additional weed species were used in the support and query datasets: bracken fern (Pteridum 
acquilinum (L.) Kuhn.), haircap moss (Polytrichum commune Hedw.), marsh violet (Viola obliqua 
Hill.), narrow-leaved goldenrod (Euthamia graminifolia (L.) Nutt.), common St. John’s wort 
(Hypericum perforatum L.), and yellow hawkweed (Hieracium caespitosum Dumort). Query 
validation and testing datasets both contained 40 images of each weed species. Support datasets 
were created which contained 1, 5, 10, 15, and 20 example images (“shots”) of each species. 
Query validation and testing datasets contained 40 examples of each weed species. The images 

 
Figure 1: Examples of the nine weed species used in this study: (1) Bracken Fern, (2) Bunchberry, (3) Common St. John’s 

Wort, (4) Hair Fescue, (5) Haircap Moss, (6) Marsh Violet, (7) Narrow-Leaved Goldenrod, (8) Sheep Sorrel, (9) Yellow 
Hawkweed. 
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were down sampled using the IrfanView8 batch processing tool (v.4.60). The original testing 
datasets for hair fescue, sheep sorrel, and bunchberry were divided in the same manner to create 
additional support and query datasets. The images were first cropped from their original aspect 
ratios to 16:9. The cropped images were then scaled down to 224x244 resolution for processing.  

Network Architecture 
A modified version of the SNN defined by Koch et al. (2015) was written and trained in this study 
using TensorFlow’s Keras API (Figure 3). The input resolution of the network was increased from 
105x105 to 224x224 to allow finer image details to be retained. Furthermore, the input layer was 
increased from one channel to three for processing of color images rather than grayscale. Directly 
after the input layer, a randomized image augmentation layer was added to make the SNN more 
robust (Goodfellow et al., 2016). Augmentations included rotation (+/- 180 degrees), translation 
(+/- 2% vertically and horizontally), zooming (+0%, -25%), and flipping (horizontal and vertical). 
The convolutional filters and max pooling layers defined by Koch et al. (2015) were not modified. 
Four convolutional layers are used in the SNN, each separated by a max pooling layer. The final 
convolutional layer in the original SNN is flattened and densely connected to the embedding layer. 
The SNN used in this study adds a dropout layer with a factor of 20% between the flattened layer 

 
 
8 IrfanView, Wiener Neustadt, Austria 

 
Figure 3: Diagram of the SNN used in this study. A pair of identical CNNs with shared weights each produce an embedding 

from input images. The L2 distance between the embeddings is calculated to determine if they are of the same class or 
different classes. 

 
 

    

    
Figure 2: Examples of variability within the dataset. Each column contains the same weed species. 
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and the embedding layer to help prevent overfitting to the training data (Srivastava et al., 2014). 
With the increased image resolution, the SNN could not be trained with an embedding layer of 
4,096, as the memory required exceeded the 24 GB available in the RTX 3090 GPU. Four SNNs, 
each with a different embedding size, were trained and evaluated. The smallest embedding was 
128, as used by SigNet (Dey et al., 2017). The other embedding sizes tested were 256, 384, and 
512 neurons. The embeddings produced from two given images are compared using an L2 
(Euclidian) distance calculation (Goodfellow et al., 2016) rather than the L1 (Manhattan) distance 
used by Koch et al. (2015). 

Network Training 
Images in the training, validation, and testing datasets were randomly grouped into positive and 
negative pairs. Positive pairs contain two images of the same weed species, while negative pairs 
contain two images of different species. A total of 4800 image pairs were created for training, 
while 600 pairs were created for both the validation and testing datasets. 
The four SNNs were trained using a binary cross entropy loss function (i.e.: the SNN had to 
determine if an image pair was positive or negative). Network weights were updated using the 
Adam optimizer (Kingma & Ba, 2015) and an initial learning rate of 0.00001. Larger learning rates 
would not converge on a solution. The largest batch size possible within the GPU memory was 
used for training (16, 8, 6, and 4 image pairs for SNN embeddings of 128, 256, 384, and 512 
neurons, respectively). Training epochs used every image pair in the training dataset. The SNNs 
were trained until the accuracy on the validation dataset did not improve for 20 epochs. The 
weights achieving the highest accuracy on the validation dataset were used for evaluation with 
the support and query datasets. 

Few-Shot Testing 
The SNN embedding and weights achieving the highest validation accuracy were further 
evaluated using the support datasets. The accuracy query validation and testing sets were 
evaluated with the SNN using positive and negative image pairs. Then, the SNN was fine-tuned 
using the support datasets containing 1, 5, 10, 15, and 20 images. The fine-tuned SNN was then 
re-evaluated using the query validation and testing datasets to determine the optimal number of 
images for fine-tuning. The network weights achieving the best accuracy on the query validation 
dataset were recorded. 

Results and Discussion 

Effect of Embedding Size 
In general, increasing the embedding size improved the accuracy of the SNN on the training, 
validation, and testing datasets (Figure 4). The only exception was the decrease in training 
accuracy from 93.7% to 91.3% when the embedding was increased from 384 to 512 neurons. 
However, the accuracy on the validation and testing datasets increased by 0.8% and 0.7%, 
respectively. The peak accuracies achieved on the validation and testing datasets, achieved with 
the 512-neuron embedding, were 88.3% and 88.0%, respectively. The SNNs overfit to the training 
data at all embedding sizes other than 128 neurons. The accuracy reduced by 5.7%, 6.3% and 
3.3%, respectively between the training and testing datasets at the 256, 384, and 512-neuron 
embedding sizes. 
For smartphone deployment, the reduced accuracy of the 384-neuron embedding may be 
acceptable because of the increase in processing speed and decrease in memory required 
compared to the 512-neuron embedding. The results with the 256-neuron embedding compared 
to the 128-neuron embedding indicate that SNNs for use in this weed classification task require 
larger embeddings than the signature verification SNN created by Dey et al. (2017). However, the 
much larger 4096-neuron embedding used by Koch et al. (2015) is likely unnecessary, as the 
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increase in accuracy between the 384 and 512-neuron embeddings in this study was minimal. 
Accuracy may be further improved through processing images at a higher resolution, as seen in 
other neural network weed classification studies in wild blueberry (Hennessy, Esau, Farooque, et 
al., 2021; Hennessy, Esau, Schumann, et al., 2021). 

Fine Tuning with Few-Shot Datasets 
Before fine-tuning, the SNN achieved accuracies of 67.5% and 66.6% on the query validation and 
testing datasets, respectively (Figure 5). Fine-tuning with a support set of 5 images improved the 
results on the query validation and testing datasets to 70.1% and 70.0%. As the number of support 
images increased, the query validation and testing accuracies diverged, eventually reaching 

 
Figure 4: Comparison of training, validation, and testing dataset accuracy at four feature embedding sizes. 
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Figure 5: Improvements in SNN accuracy on the query validation and testing datasets after fine-tuning with different sizes 

of support datasets. 
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71.8% on the validation set and 67.7% on the testing dataset. Fine-tuning with a single image 
improved the accuracy of the SNN to 67.6% and 67.8% on the query validation and testing 
datasets. 
The improvement in accuracy resulting from increasing the fine-tuning dataset from 1-shot to 5-
shots is consistent with the results from Li & Yang (2021). The divergence of accuracy on the 
query validation and testing datasets with 10-shot and larger fine-tuning may indicate that the 
SNN weights overfitted to the validation dataset, as the accuracy on the validation dataset was 
used as the acceptance criteria. The reduced accuracy on the query datasets compared to the 
original datasets may be the result of the small number of original training classes. Training with 
more classes may result in more weed image features being represented in the network weights, 
which could improve accuracy. Furthermore, other CNN architectures such as ResNets (He et 
al., 2016) and Inception (Szegedy et al., 2015) have been effective for other SNNs (Argüeso et 
al., 2020). These architectures should be evaluated for use in weed classification in wild 
blueberry.  

Conclusion 
A Siamese neural network (SNN) based on four convolutional layers was trained to classify 
positive and negative pairs of 224x224 resolution weed images captured in wild blueberry fields. 
Four feature embedding sizes were tested, for the SNN architecture. An embedding size of 512 
neurons achieved accuracies of 88.3% and 88.0%, respectively on the original validation and 
testing datasets. The accuracy of the SNN was substantially lower on the query validation and 
testing datasets, 67.5% and 66.6% respectively before fine-tuning. Fine-tuning with 5-shots 
improved the accuracy of the SNN to 70.1% and 70.0% on the query validation and testing 
datasets. To improve the accuracy of the SNN on the query datasets, other CNN architectures 
and an increased number of training classes should be investigated. If the accuracy of the SNN 
can be improved, it could serve as the backbone of a weed identification smartphone application 
for the wild blueberry industry. Further work will investigate possible improvements to the SNN, 
and the application of SNNs in other machine vision tasks in the wild blueberry industry such as 
plant disease identification. A field scouting smartphone application would help wild blueberry 
growers ensure they are using the most current management practices for weeds, diseases, and 
other yield-limiting factors. 
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