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Abstract.  
Deep learning-based solutions for precision agriculture have achieved promising results in recent 
times. Deep learning has been used to accurately classify different disease types and disease 
severity estimation as an initial stage for developing robust disease management systems. 
However, tracking the spread of diseases, identifying disease hot spots within cornfields, and 
notifying farmers using deep learning and UAS imagery remains a critical research gap. 
Therefore, in this study, high resolution, Unmanned Aerial System (UAS) acquired, Real-Time 
Kinematic (RTK) geotagged, RGB imagery at heights of 3 meters and 12 meters above ground 
level (AGL), was used to track disease hot spots in corn fields throughout the growing season. A 
total of 98,000 RGB images with a resolution of 8192 x 5460 pixels were acquired in cornfields 
located at Purdue University’s Agronomy Center for Research and Education (ACRE), using a 
DJI Matrice 300 with an RTK base station mounted with a 45-megapixel DJI Zenmuse P1 camera, 
from June 28th to August 31st, 2021. After carefully selecting images acquired at one-week 
intervals, they were split into multiple smaller tiles and superpixels using the Simple Linear 
Iterative Clustering (SLIC) segmentation algorithm. Images were first split into tiles of sizes 250 x 
250 pixels, 500 x 500 pixels, and 1000 x 1000 pixels, resulting in 672, 160, and 40 image tiles, 
respectively. Additionally, for SLIC segmentation, the images were split into the same number of 
superpixels as the number of tiles using two different compactness (m) values. After the tiles and 
superpixels were created, they were labeled as either soil, weed, healthy corn, or diseased corn. 
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Five Convolutional Neural Network (CNN) architectures, namely VGG16, ResNet50, InceptionV4, 
DenseNet169, and Xception, were then used to train deep learning-based image classification 
models to compare the tile-based approach and SLIC segmentation for disease tracking in 
cornfields. After comparing the trained deep learning models using testing accuracies and testing 
losses, the optimal number of tiles and SLIC segmented superpixels were identified with the help 
of a plant pathologist. It was observed that the DenseNet169 model that was used to identifying 
the diseased regions when images were segmented into tiles of sizes 1000 x 1000 pixels achieved 
performed the best with testing accuracy of 100% and testing loss of 0.0007. The best performing 
model was then used to calculate the percentage of each diseased image by highlighting 
diseased regions. In addition, the RTK geolocation information for each image was used to update 
farmers with the location of disease hot spots within cornfields by developing a web and 
smartphone application and sending email message notifications. 
 
Keywords.   
Deep learning, Disease Identification, SLIC Segmentation, Image Classification, UAS, Web 
Application, Smartphone Application.  

Introduction 
As diseases pose a serious threat to crop production systems worldwide (Chen et al., 2021), 
research is underway to develop high-throughput precision agricultural solutions for disease 
management in fields. Most current solutions rely on pesticide application over entire fields, which 
is destructive to healthy crops and incurs high economical costs (Tudi et al., 2021). Furthermore, 
these ineffective approaches are subjective (Bock et al., 2010). Therefore, there is a need for the 
development of effective solutions capable of identifying the different diseased regions which will 
essentially help overcome the limitations presented by approaches that are widely practiced.  
Recently, researchers have relied on deep learning-based computer vision for developing 
solutions for various precision agricultural solutions including weed identification (Ahmad et al., 
2021a), disease identification (Ahmad et al., 2021b), disease severity estimation (Wang et al., 
2019), insect identification (Thenmozhi et al., 2019), insect counting (Tetila et al., 2019), crop 
counting (Kitano et al., 2019), crop height estimation (Xie et al., 2021), yield prediction (Wang et 
al., 2018), etc. In addition, different sensors have been used for acquiring imagery for training 
robust deep learning models, including UAS (Etienne et al., 2021), handheld (Jahan et al., 2021), 
mounts (Wiesner-Hanks et al., 2018), and ground robot platforms (Young et al., 2019). 
In particular, deep learning has been used extensively for crop disease diagnosis within the past 
seven years. Deep learning was used for identification of diseases in crops using UAS imagery 
acquired using hyperspectral sensors (Zhu et al., 2017; Nguyen et al., 2021). Multispectral 
imagery was also used for plant disease identification (Kerkech et al., 2020). Although spectral 
sensors are capable of accurately locating diseased regions, they are costly and difficult to 
operate (Farber et al., 2019). RGB sensors on the other cost less and are easy to operate (Ngugi 
et al., 2021). Therefore, the use of RGB sensors has gained popularity. Deep learning was 
recently used for accurate disease identification using UAS imagery acquired by utilizing RGB 
sensors (Wu et al., 2019). 
Although current studies have shown promising results, in order to develop an effective disease 
management system, the diseased regions present within fields need to be accurately identified 
with their location for farmers to accurately navigate to hot spot regions within the field. Recently, 
a deep learning-based approach was developed using a sliding window approach to accurately 
identify the diseased regions in corn fields with testing accuracies of up to 97.84% (Ahmad et al., 
2021b). However, additional segmentation approaches were not explored and the GPS 
information from the UAS imagery was not harnessed to develop an application to alert farmers 
of existing diseased hot spots within corn fields. 
Multiple different computer vision segmentation approaches have been proposed over the years. 
Recently, simple linear iterative clustering (SLIC) segmentation approach was proposed 
(Achanta, 2010). SLIC segmentation is a promising, fast, and computationally efficient method 
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that can be used to create superpixels corresponding to similar regions within an image (Achanta 
et al., 2012). SLIC segmentation was recently used for precision agricultural applications such as 
insect counting (Tetila et al., 2019a), tree detection in urban area (Martins et al., 2021), and plant 
disease identification (Tetila et al., 2019b; Trindade et al., 2020).  
In this study, deep learning was used to train disease regions identification models using tile 
segmented images and superpixels created using SLIC segmentation. A total of 25 deep learning 
models were trained using state-of-the-art deep neural network architectures: namely VGG16, 
ResNet50, InceptionV3, DenseNet169, and Xception. After comparing the different techniques 
for splitting the images, the RTK geolocation information for each image that was uploaded was 
obtained. The farmer was then notified of diseased regions in corn fields using RTK geolocation 
and the deep learning model to indicate the percentage of the field infected at the location at 
which the image was acquired. Five primary objectives were identified for developing a disease 
regions hot spot location tool to help farms manage diseases: 

1. Acquire a large UAS imagery dataset. 
2. Use tile segmentation on UAS imagery to create datasets with tiles of sizes 250 x 250, 

500 x 500, and 1000 x 1000 pixels. 
3. Use SLIC Segmentation to create superpixels using two different K values of 5 and 10. 
4. Train deep learning models to compare the different segmentation approaches for disease 

region identification. 
5. Develop an application for alerting farmers of diseased hot spots in corn fields using RTK 

geolocated images. 

Materials and Methods 

Dataset 
For the purpose of this study, a custom dataset consisting of a total of 98,000 RGB images that 
were acquired using a DJI Matrice 300 UAS with an RTK base station was used. The UAS was 
mounted with a Zenmuse P1 45 Megapixel camera capable of acquiring images with a resolution 
of 8192 x 5460 pixels. The images were acquired by conducting multiple flights at five, 12, and 
20 meters, over corn field 21B located at Purdue University’s Agronomy Center of Research 
(ACRE) from June 13th to August 31st, 2021.  

Tile Based Segmentation 
After obtaining the images, a total of 500 images were randomly selected from different dates and 
heights for the purpose of this study. The images were then subject to splitting into tiles of various 
sizes, i.e., 1000 x 1000, 500 x 500, and 250 x 250 pixels, in order to prepare datasets for training 
deep learning models capable of accurately identifying different diseased regions in corn fields. 
After an original image of size 8192 x 5460 pixels was split, a total of 672, 160, and 40 images 
were obtained for 250 x 250, 500 x 500, and 1000 x 1000 pixels, respectively as shown in figure 
1. After splitting the images, the datasets corresponding to images of sizes 250 x 250, 500 x 500, 
and 1000 x 1000 pixels were comprised of 1804, 1112, and 570 images, respectively. 
Furthermore, the images were manually labelled as diseased, healthy, or background, and 
organized into training and testing folders in order to train deep learning models.  

Table 1. Dataset distribution for training deep learning models for identifying diseased regions using tile segmentation. 
Class Training Images Testing Images 

Diseased (250 x 250) 349 348 
Healthy (250 x 250) 251 251 

Background (250 x 250) 303 302 
Diseased (500 x 500) 255 254 
Healthy (500 x 500) 164 163 

Background (500 x 500) 138 138 
Diseased (500 x 500) 124 123 
Healthy (500 x 500) 137 136 

Background (500 x 500) 25 25 
TOTAL 1746 1740 
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Fig 1. Overall Tile Dataset Generation Workflow. 

SLIC Segmentiation 
Superpixels are segments of an image that are created by grouping together different pixels within 
an image into perceptually meaningful atomic regions that may be similar in color, texture, and 
shape (Martins et al., 2021). Although different algorithms exist for creating superpixels, Simple 
Linear Iterative Clustering (SLIC) segmentation is a popular and a computationally efficient 
method to segment an image into multiple superpixels (Achanta et al., 2010).  
When creating superpixels, the SLIC algorithms relies on two primary parameters, i.e., the 
number of segments that need to be created (K) and the compactness (m). The compactness 
determines the compactness of the pixels corresponding to superpixels. Essentially, by increasing 
the compactness (m), the compactness increases, and more regular quadrilateral contours are 
generated. However, by reducing the compactness (m), the superpixels are more irregular and it 
was observed to be better for differentiating between diseased and healthy regions within UAS 
acquired corn field imagery. After comparing different compactness (m) values, a single value 
was fixed for conducting the experiments in this study in order to maintain consistency. Therefore, 
the number of segments (K) was varied for testing the impact of changing the number of 
superpixels that were created per image. The number of segments (K) was also the only 
parameter that was modified in a recent study (Martins et al., 2021). 
For SLIC segmentation in this study, superpixels were created using different combinations of 
parameters. For the images acquired at 3m, the compactness (m) value was 5 and 50 segments 
were created. In addition, for images acquired at 12m, the compactness (m) value was 5 and 100 
segments were created. Finally, for images acquired at 20m, the compactness (m) value of 10 
was used and 100 segments were created. This was done after testing with various compactness 
(m) values and number of segments. 
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Fig 2. Overall SLIC Segmentation and Superpixels Dataset Generation Workflow. 

Table 2. Dataset distribution for training deep learning models for identifying diseased regions using SLIC segmentation. 
Class Training Images Testing Images 

Diseased (m = 10) 121 121 
Healthy (m = 10) 121 120 

Background (m = 10) 121 121 
Diseased (m = 5) 137 135 
Healthy (m = 5) 136 136 

Background (m = 5) 161 160 
TOTAL 797 793  

Deep Learning 
Deep learning is a machine learning technique that relies on the use of deep neural networks 
(DNN) that are capable of accurately learning important features from training data for 
identification purposes.  
A DNN typically consists of input layers, hidden layers, and an output layer. The input layer takes 
in the input images as tensors in a specified size as per the requirements of the deep learning 
DNN architecture. Multiple hidden layers follow the input layer. Hidden layers are comprised of 
convolutional layers, dense layers, pooling layers, or batch normalization layers. In addition, fully 
connected layers are then present followed by an output layer. The output layer consists of 
neurons corresponding to the total number of classes that being identified using either the 
Sigmoid activation function for a binary classification problem or the Softmax activation function 
for a multiclass classification problem.   
Image classification is a deep learning technique where a probability is assigned to an image 
which corresponds to different classes that were used for training the model. Unlike object 
detection and semantic segmentation, traditional image classification is unable to accurate locate 
the identified objects using bounding boxes or masks. However, in this study image classification 
was used accurately locate and identify diseased regions within UAS imagery acquired in 
diseased corn fields by accurately identifying each tile or SLIC segment within an image.  
Training robust deep learning-based image classification requires access to large imagery 
datasets consisting of thousands of images. One of the most popular datasets, ImageNet, is 
comprised of a total of 14 million images. Due to the availability of limited resources, access to 
such large datasets for disease identification is limited. Therefore, for the purpose of this study, 
transfer learning was used for training each model.  
Transfer learning is a technique that is commonly used to train deep learning models when access 
to large datasets and computational resources is limited. Transfer learning helps training deep 
learning models by utilizing pre-trained weights from models that were trained for similar but 
different tasks. For image classification, the pre-trained ImageNet weights are most commonly 
used.  
A total of five different state-of-the-art DNN architectures: namely VGG16 (Simonyan & 
Zisserman, 2014), ResNet50 (He et al., 2016), InceptionV3 (Szegedy et al., 2016), DenseNet169 
(Huang et al., 2017), and Xception (Chollet, 2017), were utilized for the interest of this study. 
Transfer learning was used by utilizing pre-trained ImageNet weights for training deep learning 
models capable of locating diseased regions in corn fields from UAS imagery. 
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A total of 25 deep learning models were trained for the purpose of this study using the datasets 
that were created using the tile segmentation and SLIC segmentation approaches. Five models, 
using each of the DNN architectures, were trained for the tile segmentations that were created 
using tile sizes of 250 x 250, 500 x 500, and 1000 x 1000 pixels. The same five DNN architectures 
where then used to train the superpixels datasets that were created using compactness (m) of 5 
and 10. Before training the models, the data augmentation techniques were used. Each image 
was augmented using the built-in TensorFlow functions by rotating, flipping, and zooming the 
images. In addition, each image was converted into tensors of input size corresponding to the 
input image size requirements for each DNN architecture. For VGG16, ResNet50, DenseNet169, 
and Xception, the training images were resized to 224 x 224 pixels. The input image size for 
InceptionV3 was 299 x 299 pixels. Each model was trained for a total of 25 epochs with a learning 
rate of 0.0001, the ADAM optimizer, and a batch size of 32 The categorical cross entropy loss 
function was also used. After training all the models, different metrics were used for evaluating 
and comparing their performances. 

Evaluation Metrics 
In order to evaluate the trained deep learning models, two primary evaluation metrics were 
utilized: namely confusion matrices and testing accuracies. In addition, the inference times were 
compared for the sliding window disease region location task.   

 𝑡𝑒𝑠𝑡𝑖𝑛𝑔	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 !"#$%
!"#$"#!%#$"

   (1) 

where TP = true positive, FP = false positive, TN = true negative, FN = false negative 

Web and Smartphone Application Tool for Disease Region Identification  
After training and comparing the deep learning models for accurately locating and identifying 
diseased regions within corn fields from UAS imagery, a disease regions identification tool was 
developed in the form of web and smartphone applications. The “Streamlit” Python library was 
used for creating the application. Streamlit is a library that helps easily deploy deep learning 
models for various tasks. In addition, Streamlit offers multiple additional promising tools to help 
users easy upload images for analysis.  
The home page was developed to provide a user with the options of either using tile segmentation 
or SLIC segmentation for identifying the different diseased regions. The title of application is 
displayed at the top of the home page and a map that corresponds to the corresponding farm at 
which the data was collected.  
After the user is prompted to select the type of segmentation approach for identifying the diseased 
regions, the user was prompted to upload an image. The uploaded image was then fed into a 
sliding window algorithm that iterates over each of the segments and classifies them as either 
diseased, healthy, or background using the trained deep learning model. If the region was 
identified as diseased, it was highlighted orange. 
Using the “Exif” library from Python, the name of the image, the time at which the image was 
acquired, and the RTK geolocation coordinates at which the image was acquired were extracted. 
The area of the image that was diseased and the Exif information obtained from the image were 
then sent to the farmer via email communication. The “smtplib” library from Python for setting up 
an SMTP server was used to send email notifications. For the purpose of this study, a temporary 
Gmail account named farmerhack1@gmail.com was created to send emails with information 
corresponding to diseased regions identified from UAS imagery acquired in corn fields.  

Resources 
For the purpose of this study, the code was primarily written using the Python programming 
language. The TensorFlow 2.0 deep learning framework was utilized in order to train the deep 
learning models. Each model was trained using an NVIDIA RTX 3090 GPU. In addition, the 
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Python was used to develop the web application using an Apple MacBook Pro with Apple Silicon 
M1 Pro chip with 16 GPU cores and 10 CPU cores. 

Results and Discussion 

Tile Based Segmentation 
For the first set of experiments, the dataset that was created by splitting the UAS images into tiles 
of size 250 x 250, 500 x 500, and 1000 x 1000 pixels, was used. For each of the three different 
tile sizes, five different deep learning-based image classification were trained for a total of 25 
epochs using each of the five state-of-the-art DNN architectures: namely VGG16, ResNet50, 
InceptionV3, DenseNet169, and Xception. 
Tile Size of 250 x 250 Pixels 

The first set of models were trained using the tile segments of size 250 x 250 pixels. After the 
models were trained, the training and validation accuracy and loss plots were created. It was 
observed that apart from the ResNet50 model that did not seem to train, the validation accuracy 
for the other models reached up to 100%. In addition, it was observed from the plots that the 
VGG16 had a higher degree of overfitting and the validation accuracy for the inception model 
started to decrease towards the end of training which indicates some degree of overfitting. 
Nevertheless, it is important to evaluate the modes by comparing the testing accuracies. 

 
Fig 3. Training and validation accuracy and loss plots for training deep learning models to identifying diseased regions 

using tile segments of size 250 x 250 pixels. 

In addition, the testing accuracies and testing losses were also obtained using the testing dataset, 
as shown in table 3 below. It was observed that 100% testing accuracy was achieved for the 
VGG16, DenseNet160, and Xception models. The lowest testing loss was achieved for the 
Xception model. Therefore, when tile size of 250 x 250 pixels was used, the Xception model 
performed the best. 

Table 3. Testing accuracies and testing loss when tile size of 250 x 250 pixels was used. 
Model Testing Accuracy Testing Loss 

InceptionV3 93.75% 0.1242 
ResNet50 56.25% 15.0615 

VGG16 100% 0.0041 
DenseNet169 100% 0.0251 

Xception 100% 0.0007 

Tile Size of 500 x 500 Pixels 

Once again, five models were trained for identifying diseased regions within the UAS imagery of 
diseased corn fields using the tiles of size 500 x 500 pixels that were created. First, the training 
and validation accuracies and losses were plotted. In addition, almost no overfitting was observed 
as there were very small fluctuations in the plots that were generated. The ResNet50 model again 
failed to train, and validation accuracy did not cross 50%. 
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Fig 4. Training and validation accuracy and loss plots for training deep learning models to identifying diseased regions 

using tile segments of size 500 x 500 pixels. 

After the plots were generated, the testing accuracies and testing losses were obtained and 
compared. The testing accuracies was 100% for InceptionV3, VGG16, DenseNet169 and 
Xception. After evaluating the testing losses, it was observed that the InceptionV3 achieved the 
best performance as it had the lowest testing loss of 0.0045. The results are shown in table 4. 

Table 4. Testing accuracies and testing loss when tile size of 500 x 500 pixels was used. 
Model Testing Accuracy Testing Loss 

InceptionV3 100% 0.0045 
ResNet50 25.00% 8.3028 

VGG16 100% 0.0077 
DenseNet169 100% 0.0048 

Xception 100% 0.0265 

Tile Size of 1000 x 1000 Pixels 

Finally, tile segments of size 1000 x 1000 pixels were used for training the models. Once again, 
a low degree of overfitting was observed as almost no fluctuation existing in the training and 
validation accuracy and loss plots as shown in figure 5. In the case of larger tile sizes, the testing 
accuracy for ResNet50 improved. 

 
Fig 5. Training and validation accuracy and loss plots for training deep learning models to identifying diseased regions 

using tile segments of size 1000 x 1000 pixels. 

Testing accuracies and testing losses were once again compared for evaluating the overall 
performance of the models. The testing accuracies for InceptionV3, VGG16, DenseNet169 and 
Xception were 100%. Unlike ResNet50 models that were trained for tile segments of sizes 250 x 
250 pixels and 500 x 500 pixels, the testing accuracy was high at 87.5% when tile segments were 
1000 x 1000 pixels. The best model, however, was the DenseNet160 model as it achieved the 
highest testing accuracy of 100% and the lowest testing loss of 0.0003. 

Table 5. Testing accuracies and testing loss when tile size of 1000 x 1000 pixels was used. 
Model Testing Accuracy Testing Loss 

InceptionV3 100% 0.0242 
ResNet50 87.5% 0.3000 
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VGG16 100% 0.0190 
DenseNet169 100% 0.0003 

Xception 100% 0.0023 

SLIC Segmentation 
For the second set of experiments, the dataset that was created by splitting the UAS images into 
superpixels using SLIC segmentation, was used. Two different compactness (m) values were 
used, i.e., 5 and 10. 
Superpixels Created Using Compactness (m) of 5 

When the compactness (m) value was set to 5, the superpixels that were created consisted of 
more irregular boundaries. After the dataset was prepared with diseased, healthy, and 
background superpixels, the five DNN architectures were used to train five different models. After 
training, the training and validation accuracy and loss plots were created as shown in figure 6. It 
was observed that there was a larger degree of overfitting as the validation loss values fluctuated 
throughout training. The ResNet50 model again failed to train well, and validation accuracy did 
not cross 50%.  

 
Fig 6. Training and validation accuracy and loss plots for training deep learning models to identifying diseased regions 

using SLIC segments with compactness (m) value of 5. 

In addition, the testing accuracies and testing losses were also obtained using the testing dataset, 
as shown in table 6. The highest testing accuracy of 93.75% was achieved for the VGG16 model 
and the corresponding testing loss was 0.01872. No other model achieved testing accuracies of 
greater than 90%.   

Table 7. Use the Table Caption style above each table. Material in the table uses the Table Contents style. Use standard 
Word table commands or make a table in your usual way. 

Model Testing Accuracy Testing Loss 
InceptionV3 81.25% 0.9234 
ResNet50 25.00% 5.4016 

VGG16 93.75% 0.1872 
DenseNet169 81.25% 0.2556 

Xception 81.25% 0.4240 

Superpixels Created Using Compactness (m) of 10 

In order to conduct further experiments, the superpixels that were created using compactness (m) 
value of 10 was used. The training and validation accuracy and loss plots were created and are 
shown in figure 7. With a higher compactness (m) value, the validation accuracy and loss values 
did not closely follow the training accuracy and loss which is representative of a higher degree of 
overfitting. 
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Fig 6. Training and validation accuracy and loss plots for training deep learning models to identifying diseased regions 

using SLIC segments with compactness (m) value of 10. 

However, in order to further assess the performance of the models, the testing accuracies and 
losses were compared. It was observed that the DenseNet169 model achieved the highest testing 
accuracy and lowest testing loss of 93.75% and 0.2469 respectively. 

Table 6. Use the Table Caption style above each table. Material in the table uses the Table Contents style. Use standard 
Word table commands or make a table in your usual way. 

Model Testing Accuracy Testing Loss 
InceptionV3 87.5% 0.5060 
ResNet50 6.25% 3.613 

VGG16 81.25% 0.3636 
DenseNet169 93.75% 0.2469 

Xception 75.00% 0.6832 

Sliding Window Disease Reigon Identification 
After comparing the performances of the different segmentation types, it was observed that the 
tile segmentation yielded higher overall results for accurately identifying the diseased regions 
present within corn fields. The testing accuracies using tile segmented reached up to 100%, 
whereas for SLIC segmentation, the highest testing accuracy was 93.75%. Therefore, the tile 
segmentation algorithm that was trained to identifying the tiles of size 1000 x 1000 pixels was first 
used to identify and highlight the diseased regions. The sliding window was used over the image. 
If the regions were diseased, it was highlighted orange as shown in figure 8. In addition, the area 
of diseased region was calculated with respect to the area of the entire image, and it was reported 
in the title of the image. 

 
Fig 8. Sliding window algorithm to identify and highlight diseased regions in UAS imagery acquired in diseased fields. 

Web and Smartphone Applications 
After training the deep learning models capable of accurately locating the different diseased 
regions present within corn fields using two different segmentation approaches, and after 
developing the sliding window algorithm for highlighting the diseased regions, a web application 
was developed using the Streamlit API.  
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The home page of the application displays the title and consists of the map with a pinpoint on 
where the farms or fields where data was collected are located. In addition, the drop-down box 
on the top left of the screen prompts the user to select the type of different segmentation 
algorithms to choose as shown in figure 9. If the user selected the tile segmentation algorithm as 
shown in figure 9, the best model that achieved the highest testing accuracy was used for 
identifying the diseased regions.  

 
Fig 9. Home page of the Disease Region Location Tool web application. 

After the user chooses the option that they would like to use for identifying the different diseased 
regions within corn fields, the user is prompted to upload an image as shown in figure 10. The 
image can be selected from the computer. 

 
Fig 10. Image upload box. 

Once the image is uploaded, the Pillow library in python is used for reading the information and 
the segmentation is performed. If the tile segmentation was selected, the original images were 
split into sizes of 1000 x 1000 pixels. Each of the tiles were then passed into the trained deep 
learning model and were identified as either diseased, healthy, or soil. All the regions that were 
diseased were highlighted orange to indicate the diseased parts of the image corresponding to a 
region in the field as shown in figure 11. In addition, the percentage of the image which consists 
of diseased regions was calculated and the information was displayed for the user. 

 
Fig 11. Identification of diseased regions in corn fields using the Disease Region Location Tool web application. 
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Finally, the geolocation information corresponding to each image that was obtained from the RTK 
base station was used to locate the image on the map (figure 12). The total area corresponding 
to the diseased regions, the name of the image, the date and time of image acquisition, and the 
coordinates were then sent to the user in the form of an email. This link could be either opened 
using the smartphone or a web application in order to help update farmers on diseased 
information for their fields.  

 
Fig 12. Pinpoint diseased regions on maps using RTK geolocation information. 

Once the email was sent, the notification was then displayed in the notifications of a smartphone. 
A sample of the email that was sent / received is shown in figure 13. The information can help 
farmers keep track of disease information in different parts of their fields over a period of time.   

 
Fig 13. Email notification corresponding to diseased corn fields sent to farmers from the Disease Region Location Tool. 

Although using a web application is useful, many farmers are also likely to use the application in 
fields in real-time. Therefore, the application can also be used from a smartphone as shown in 
figure 14. The task can be selected, and the original location is shown on the home page. When 
uploading the image for analysis and disease diagnosis, the images can be uploaded from the 
gallery. In addition, the smartphone application provides the benefit of taking an image on the go. 
After the image is uploaded, once again the disease regions are identified, and a map is displayed 
with the information for the diseased corn field. Finally, the information is also sent to the farmer 
in the form of an email. 
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Fig 14. Disease Region Location Tool smartphone application. 

Conclusion 
In this study, a deep learning-based disease region identification tool was developed in the form 
of web and smartphone applications. Two different segmentation techniques: namely tile and 
SLIC segmentation were used to create tiles of varying sizes and superpixels with different 
compactness (m) values. Tiles of sizes 250 x 250, 500 x 500, and 1000 x 1000 pixels were created 
and labelled as either diseased, healthy, or background. In addition, SLIC segmentation was used 
to create superpixels with compactness (m) values of 5 and 10. The datasets that were created 
using each of the three tile sizes and two compactness (m) values were then used to train deep 
learning models using five different DNN architectures: namely VGG16, ResNet50, InceptionV3, 
DenseNet169, and Xception. It was observed that the tile segmentation achieved high testing 
accuracies of up to 100% for each of the tile sizes. However, for the superpixels that were created 
using SLIC segmentation, testing accuracies of up to 93.75% were achieved. Furthermore, the 
best performing model was the DenseNet169 model that was trained to identifying diseased 
regions in corn fields when images were segmented into tiles of sizes 1000 x 1000 pixels resulting 
in a testing accuracy of 100% and testing loss of 0.0007. A sliding window algorithm was then 
used to highlight diseased regions from UAS acquired imagery in diseased corn fields. The trained 
models were then deployed onto a web and smartphone application in order to help farmers 
identifying diseased regions in corn fields. Additionally, RTK geolocation information from each 
image was extracted and sent to the farmers to indicate the location of diseased regions. Finally, 
after analyzing uploaded images corresponding to diseased regions within corn fields, the 
information was sent via email communication to update farmers in real-time. Overall, in this 
study, a deep learning-based tool was developed to help farmers analyze diseased corn fields 
using UAS imagery.  
Future works include enhancing the application that was created by adding multiple additional 
features. In particular, a link to the map will be sent to the farmer along with a link to the application 
via email communication. In addition, a map will be created highlighting the entire field and 
corresponding diseased regions in order to provide the information regarding the area of the field 
that is diseased on different dates. 

Acknowledgements 
The research was made possible by the funding provided by Wabash Heartland Innovation 
Network (WHIN) grant number 18024589 and the USDA National Institute of Food and Agriculture 
(NIFA) Hatch project 1012501. 



Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

14 

References 
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süsstrunk, S. (2010). Slic superpixels (No. 

REP_WORK). 

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süsstrunk, S. (2012). SLIC superpixels compared 
to state-of-the-art superpixel methods. IEEE transactions on pattern analysis and machine 
intelligence, 34(11), 2274-2282. 

Ahmad, A., Saraswat, D., Aggarwal, V., Etienne, A., & Hancock, B. (2021a). Performance of deep learning 
models for classifying and detecting common weeds in corn and soybean production systems. 
Computers and Electronics in Agriculture, 184, 106081. 

Ahmad, A., Saraswat, D., El Gamal, A., & Johal, G. S. (2021b). Comparison of deep learning models for 
corn disease identification, tracking, and severity estimation using images acquired from uav-mounted 
and handheld sensors. In 2021 ASABE Annual International Virtual Meeting (p. 1). American Society 
of Agricultural and Biological Engineers. 

Bock, C. H., Poole, G. H., Parker, P. E., & Gottwald, T. R. (2010). Plant disease severity estimated visually, 
by digital photography and image analysis, and by hyperspectral imaging. Critical reviews in plant 
sciences, 29(2), 59-107. 

Chen, J., Zhang, D., Zeb, A., & Nanehkaran, Y. A. (2021). Identification of rice plant diseases using 
lightweight attention networks. Expert Systems with Applications, 169, 114514. 

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 
IEEE conference on computer vision and pattern recognition (pp. 1251-1258). 

Etienne, A., Ahmad, A., Aggarwal, V., & Saraswat, D. (2021). Deep Learning-Based Object Detection 
System for Identifying Weeds Using UAS Imagery. Remote Sensing, 13(24), 5182. 

Farber, C., Mahnke, M., Sanchez, L., & Kurouski, D. (2019). Advanced spectroscopic techniques for plant 
disease diagnostics. A review. TrAC Trends in Analytical Chemistry, 118, 43-49. 

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional 
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 
4700-4708). 

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings 
of the IEEE conference on computer vision and pattern recognition (pp. 770-778). 

Jahan, N., Zhang, Z., Liu, Z., Friskop, A., Flores, P., Mathew, J. J., & Das, A. K. (2021). Using images from 
a handheld camera to detect wheat bacterial leaf streak disease severities. In 2021 ASABE Annual 
International Virtual Meeting (p. 1). American Society of Agricultural and Biological Engineers. 

Kerkech, M., Hafiane, A., & Canals, R. (2020). Vine disease detection in UAV multispectral images using 
optimized image registration and deep learning segmentation approach. Computers and Electronics 
in Agriculture, 174, 105446. 

Kitano, B. T., Mendes, C. C., Geus, A. R., Oliveira, H. C., & Souza, J. R. (2019). Corn plant counting using 
deep learning and UAV images. IEEE Geoscience and Remote Sensing Letters. 

Martins, J. A. C., Menezes, G., Gonçalves, W., Sant’Ana, D. A., Osco, L. P., Liesenberg, V., ... & Junior, J. 
M. (2021). Machine learning and SLIC for Tree Canopies segmentation in urban areas. Ecological 
Informatics, 66, 101465. 

Ngugi, L. C., Abelwahab, M., & Abo-Zahhad, M. (2021). Recent advances in image processing techniques 
for automated leaf pest and disease recognition–A review. Information processing in agriculture, 8(1), 
27-51. 

Nguyen, C., Sagan, V., Maimaitiyiming, M., Maimaitijiang, M., Bhadra, S., & Kwasniewski, M. T. (2021). 
Early detection of plant viral disease using hyperspectral imaging and deep learning. Sensors, 21(3), 
742. 

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. 
arXiv preprint arXiv:1409.1556. 

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture 
for computer vision. In Proceedings of the IEEE conference on computer vision and pattern 



Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

15 

recognition (pp. 2818-2826). 

Tetila, E. C., Machado, B. B., Menezes, G. V., de Souza Belete, N. A., Astolfi, G., & Pistori, H. (2019a). A 
deep-learning approach for automatic counting of soybean insect pests. IEEE Geoscience and 
Remote Sensing Letters, 17(10), 1837-1841. 

Tetila, E. C., Machado, B. B., Menezes, G. K., Oliveira, A. D. S., Alvarez, M., Amorim, W. P., ... & Pistori, 
H. (2019b). Automatic recognition of soybean leaf diseases using UAV images and deep convolutional 
neural networks. IEEE geoscience and remote sensing letters, 17(5), 903-907. 

Thenmozhi, K., & Reddy, U. S. (2019). Crop pest classification based on deep convolutional neural network 
and transfer learning. Computers and Electronics in Agriculture, 164, 104906. 

Trindade, L. D. G., Basso, F. P., Macedo Rodrigues, E. D., Bernardino, M., Welfer, D., & Müller, D. (2020, 
December). Analysis of the Superpixel Slic Algorithm for Increasing Data for Disease Detection Using 
Deep Learning. In International Conference on Intelligent Systems Design and Applications (pp. 488-
497). Springer, Cham. 

Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., ... & Phung, D. T. (2021). Agriculture 
development, pesticide application and its impact on the environment. International journal of 
environmental research and public health, 18(3), 1112. 

Wang, A. X., Tran, C., Desai, N., Lobell, D., & Ermon, S. (2018, June). Deep transfer learning for crop yield 
prediction with remote sensing data. In Proceedings of the 1st ACM SIGCAS Conference on 
Computing and Sustainable Societies(pp. 1-5). 

Wang, C., Du, P., Wu, H., Li, J., Zhao, C., & Zhu, H. (2021). A cucumber leaf disease severity classification 
method based on the fusion of DeepLabV3+ and U-Net. Computers and Electronics in Agriculture, 
189, 106373. 

Wiesner-Hanks, T., Stewart, E. L., Kaczmar, N., DeChant, C., Wu, H., Nelson, R. J., ... & Gore, M. A. 
(2018). Image set for deep learning: field images of maize annotated with disease symptoms. BMC 
research notes, 11(1), 1-3. 

Wu, H., Wiesner-Hanks, T., Stewart, E. L., DeChant, C., Kaczmar, N., Gore, M. A., ... & Lipson, H. (2019). 
Autonomous detection of plant disease symptoms directly from aerial imagery. The Plant Phenome 
Journal, 2(1), 1-9. 

Xie, Q., Wang, J., Lopez-Sanchez, J. M., Peng, X., Liao, C., Shang, J., ... & Ballester-Berman, J. D. (2021). 
Crop height estimation of corn from multi-year RADARSAT-2 polarimetric observables using machine 
learning. Remote Sensing, 13(3), 392. 

Young, S. N., Kayacan, E., & Peschel, J. M. (2019). Design and field evaluation of a ground robot for high-
throughput phenotyping of energy sorghum. Precision Agriculture, 20(4), 697-722. 

Zhu, H., Chu, B., Zhang, C., Liu, F., Jiang, L., & He, Y. (2017). Hyperspectral imaging for presymptomatic 
detection of tobacco disease with successive projections algorithm and machine-learning classifiers. 
Scientific Reports, 7(1), 1-12. 

 
 


