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Abstract. Peanut growth and maturity prediction can help farmers and breeding programs 
improve crop management. Remote sensing images collected by satellites and drones make 
possible and accurate in- season crop monitoring. Today, empirical relationships between crop 
biomass and spectral reflectance could be used to predict single variables such as aboveground 
crop biomass, pod weight (PW), or peanut maturity. Robust algorithms such as multi-output 
regression (MTR) implemented through multioutput random forest (RF) and K-nearest neighbor 
regression algorithms capable of predicting multioutput variables have not been proposed for 
peanut management. We developed experiments to predict multiple peanut growth variables 
using the MTR approach. The experiment was conducted in 2021 on an 8.5 hectare irrigated 
commercial peanut field located near Auburn, Alabama. The field was divided into square grids 
(0.01 hectare size), and 20 grids of contrasting soil characteristics were selected for data 
collection. Starting 92 days after planning, peanut biomass samples were collected weekly from 
1.5 m row length inside each grid. Assessment of peanut maturity was done manually on 200-
pod sample using the hull-scrape method and the peanut profile board. Peanut maturity indices 
(PMI) were calculated using two equations, one considering pods from Brown to Black class and 
the other considering Orange to Black classes. Aboveground biomass was also estimated from 
each sampling location. Multi-output regression (MTR) models were built to establish a functional 
relationship between peanut above ground biomass, maturity, and spectral reflectance changes 
of the canopy over time. Reflectance from individual specific spectral bands and also vegetation 
indices (VI) of the study field were extracted from Planet Labs’ satellite images. The indices NDVI, 
GNDVI, NLI, MNLI, SAVI, and spectral bands were used as explanatory variables. Training (80% 
of the original data set) and cross-validation (20% of data) of algorithms were developed using 
toolkits available in the Scikit-learn python library. The metric to analyze the performance of the 
algorithms was the mean absolute error MAE. The RF algorithm outputted multiple numeric 
values of PMI upon VIs and spectral bands, supporting our hypothesis that MTR can predict the 
maturity of peanut at the field level. The use of spectral reflectance from the Planet Labs imagery 
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to assess peanut maturity resulted on a prediction error of 0.09 % for PMI using the brown to 
black pods and 0.13 % when predicting PMI using orange to black pods. When the MTR model 
was evaluated for its accuracy in predicting PW and biomass, a small prediction error was 
observed for aboveground biomass MAE = 892.62) compared to PW (MAE = 1039.19). Our 
findings demonstrated a promising method to assess within-field variability of peanut maturity 
using remote sensing images which could reduce the subjectivity of the manual method. Another 
promising outcome is that the spatial and temporal prediction of peanut aboveground and 
belowground biomass could support farmers and researchers decisions not only with respect to 
harvest but also market and even plant breeding.  Future research should focus on integrating 
other explanatory variables, mainly related to topography and soil conditions like temperature. 
These variables could help understand the driving factors of peanut growing and maturation at 
the field level. 
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Introduction 
Assessment of peanut pod maturity is not only linked to productivity (quantity and quality) but also 
yield losses. Determining the ideal time to start the harvest is one of the most challenging 
decisions during peanut cultivation (Colvin et al., 2018). Early or late harvest reduces productivity 
and product quality (Ab-El Monsef et al., 2019). 
One way to determine pod maturation is to use the maturation table (Peanut Profile Board, 
Williams and Drexler 1981) in conjunction with the peanut maturation index (Peanut Maturation 
Index - PMI, Rowland et al., 2006) which considers optimal maturation when the peanut sample 
has a PMI of 0.7. Overall, this manual method is laborious, subjective, and requires dense 
sampling, as peanuts show different maturation rates at different locations within a peanut field 
(Vellidis and Beasley 2013). Therefore, alternative non-destructive methods that can estimate the 
within-field maturation across production fields, instead of the maturity of peanut from randomly 
selected plants, are necessary. 
Alternatives to non-destructively peanut maturation estimation were studied by Rowland et al. 
(2008). They showed a correlation between the infrared spectral bands and the maturation of 
peanut pods using proximal remote sensing. On a plot scale, Vellidis and Beasley (2013) 
demonstrated that the Non-Linear Vegetation Index (NLI) could be used to estimate the 
maturation of the peanut crop. Santos (2019) using data from production peanut fields confirmed 
the existence of a linear relationship between peanut maturation and modified vegetation indices, 
with the Modified Non-linear Index (MNLI) being the most promising index next to the NLI. 
High-resolution satellite imagery and drone images were used to develop non-linear and neural 
network models to predict peanut maturity (Santos et al., 2021; Santos et al., 2022). These 
researches highlighted the use of remote sensing to predict peanut biophysical variables. 
Therefore, there is no model capable of predicting multi-output peanut biophysical variables to 
our knowledge. An alternative to output multiple numeric values of peanut biophysical variables, 
we think, would be multi-target regression (MTR). MTR can predict multiple output processing 
numeric input variables (Melki et al., 2017). MTR can have advantages relative to single-target 
regression (STR), with better predictive performance and learning from several tasks (Borchani 
et al., 2015). Based on this rationale, the objective of this research was to predict multiple peanut 
variables using the MTR approach.  
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Material and Methods 
A commercial irrigated field located in Society Hill, AL, U.S, was used in this experiment during 
the 2021 growing season (Figure 1). The irrigated field was planted on May 26, 2021 using the 
peanut runner-type cultivar ACI 3321, which has a growing cycle of approximately 145 days.  
 
 

 
Figure 1. Location of the study area. 

Ground data sampling 
 
The field was divided into square grids (0.01 hectare size), and 20 grids of contrasting soil 
characteristics were selected for data collection. Peanut biomass samples were collected weekly 
from 1.5 m row length inside each grid, starting 92 days after planting. This study divided the 
biomass into above-ground biomass (AGB) and below-ground biomass (Pod weight, Figure2). 
Assessment of peanut maturity was done manually on 200-pod subsample sample, extracted 
from the 1.5 m biomass sample, using the hull-scrape method and the peanut profile board 
(Wiliams and Drexler, 1981; Figure 3).  
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Figure 2. Example of what was considered AGB and pod weight. 
 

 
Figure 3. Peanut profile board with pods sorted by color class. 
 
Peanut maturity indices (PMI) were calculated using two equations, one considering pods from 
Brown to Black class and other considering Orange to Black classes (Figure 3) (Equations 1 and 
2). 
𝑃𝑀𝐼!! =

"_$$%
&_%

                                                                                                                             (1) 

𝑃𝑀𝐼𝑜𝑏 = 	"_'$%
&_%

                                                                                                                            (2) 
Where, PMIBB is the peanut maturity index considering brown to black pods class 
PMIob is the peanut maturity index considering orange to black pods class 
N_bbp is the number of pods in the brown and black class 
N_obp is the number of pods in the orange, brown and black class 
 

Sattelite Imagery 
To establish a functional relationship between peanut biophysical variables and spectral 
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reflectance changes of the canopy over time, Planet Labs imagery data was used to extract 
reflectance from specific spectral bands and calculate several vegetation indices (VIs).  
The surface reflectance Ortho Scene product was acquired from PlanetScope, Planet Labs, Inc., 
San Francisco, USA (Planet, 2020) under a student license. Cloud Planet Scope satellite data 
provide 3 m spatial resolution images. The PlanetScope satellite data used had four spectral 
bands: blue (455–515 nm), green (500–590 nm), red (590–670 nm), and near-infrared (NIR, 780 
– 860 nm) in a 16-bit GeoTiff format. The spectral band images were carefully selected for days 
with 0% cloud over the study area.  

Vegetation Indices  
Five VIs used in previous studies to predict peanut maturity were selected as input for developing 
the machine learning models (Table 1). 

Vegetation Index Equation Reference 
NDVI (NIR−RED)/(NIR + RED) Rouse et al. (1974) 
NLI (NIR2−RED)/(NIR2 + RED) Goel and Qin (1994) 
GNDVI (NIR−Green)/(NIR + Green) Gitelson and Merzlyak (1996) 
MNLI (NIR2−RED) × (1 + L)/(NIR2 + RED + L) Gong et al. (2003) 
SAVI (NIR−RED)/(NIR + RED + L) * (1 + L) Huete (1988) 

 
The geoprocessing steps of extracting reflectance data and calculating the five vegetation indices 
were performed using QGIS software (Free software Inc, Boston, United States). 

Multi-target regression MTR 
Since peanut produces above and below-ground biomass and presents different possibilities for 
calculating pod maturity, MTR was implemented to predict above and below-ground biomass and 
other types of peanut maturity indices (PMI_bb and PMI_OB). We tested two algorithms (random 
forest RF, Belgiu and Drăguţ, 2016; and K-Nearst Neighbour, Ali et al., 2019) to output multiple 
numeric values for the independent variables using VIs and spectral bands as inputs. Training 
(80% of the original data set) and cross-validation (20% of data) of algorithms were developed 
using toolkits available in the Scikit-learn python library (Pedregosa et al., 2011). Cross-validation 
process it’s an interactive epochs-based method to prevent overfitting (Duan et al., 2014). The 
datasets were scaled using the StandardScaler method during the training process, and hyper-
parameters were optimized using GridSearchCV methods.  

 Data analysis 
The indices NDVI, GNDVI, NLI, MNLI, SAVI and spectral bands were used as explanatory 
variables to predict above and below-ground biomass, and PMI_bb and PMI_OB. The metric to 
analyze the performance of the algorithms was the mean absolute error MAE (Equation 2). 

𝑀𝐴𝐸 =	
∑ (𝑌𝑒𝑠𝑡𝑖( − 𝑌𝑜𝑏𝑠()
(*+ )

𝑛
 

where, n is the number of data, Yesti is the value of the variable estimated by algorithm, Yobsi is 
the value of the observed variable. 
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Results and Discussion 
The RF and KNN algorithms outputted multiple numeric values of PMI and peanut biomass using  
VIs and spectral bands as explanatory variables, supporting our hypothesis that MTR can predict 
the maturity of peanut at the field level. The Sanken diagram (Figures 4 and 5) adequately 
illustrated the most accurate combination to transform the reflectance into the estimated peanut 
biomass and maturity. The KNN outperformed the RF algorithm in predicting peanut biomass and 
maturity, demonstrating that the prediction of peanut biophysical variables is possible using 
spectral bands and vegetation indices. 

 
Figure 3. Sanken Diagram for the combination of KNN and RF algorithms and features to predict 
biomass and pod weight. Darkness paths visually assign the best solutions possible to MTR. 

 
Figure 4. Sanken Diagram for the combination of KNN and RF algorithms and features to predict 
peanut maturity indices. Darkness paths visually assign the best solutions possible to MTR. 
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The use of spectral data from high-resolution satellite as explanatory variables on the MTR 
algorithms resulted on a predictive mean average error (MAE) of 1481 – 975 kg ha for pod weight, 
779 – 1241 kg ha for AGB, 8 – 13 % for PMI_BB, and 10 – 17 % for PMI_OB. These results 
suggest that MTR could be used to predict both, peanut biomass and maturity at the same time. 
These results  demonstrates the robustness of MTR algorithms in capturing spatial-temporal 
variability existing across crop fields. The model with the lowest MAE was the one including the 
KNN algorithm and used spectral bands and vegetation indices as features independently of the 
variable predicted. 
Table 1. Mean absolute error for different input combinations and algorithms for peanut biomass 
and maturity prediction. 
 

Combination Algorithm Pod weight  AGB PMI_BB PMI_OB 

  Accuracy 

SB+Vis KNN 975.416509 845.0708 0.07464 0.116308 
RF 1039.18735 892.6217 0.086901 0.120839 

Vis KNN 1291.922 951.2966 0.100696 0.154815 
RF 1480.93171 1143.046 0.111972 0.177225 

SB KNN 1119.42516 786.1444 0.077318 0.102177 
RF 1018.06169 778.8137 0.082414 0.110811 

NDVI KNN 1203.26355 1134.416 0.120178 0.169968 
RF 1257.2143 1107.873 0.121517 0.180747 

GNDVI KNN 1217.80027 1208.026 0.121032 0.175215 
RF 1247.72081 1241.112 0.122085 0.180388 

NLI KNN 1221.0988 798.8786 0.119734 0.170339 
RF 1255.31804 794.854 0.130565 0.191255 

MNLI KNN 1331.62573 971.1612 0.115103 0.167495 
RF 1388.23412 945.1607 0.127183 0.167197 

SAVI KNN 1189.25954 1209.084 0.111987 0.148624 
RF 1261.44942 1212.852 0.119148 0.162855 

 
Graphical analysis was performed between the in-field measured variable and the predicted 
variable using the KNN algorithm and spectral bands and vegetation indices as input to evaluate 
the performance of the selected algorithm with the lowest MAE (Figure 5). We inferred from the 
graphs that the KNN algorithm underestimates AGB, mainly when the observed values are higher 
than 6000 kg ha. In contrast, the model overestimates pod weight when the observed data are 
less than 5000 kg ha. This pattern was not observed for peanut maturity prediction, demonstrating 
that MTR learned accurately from the dataset. The KNN algorithm had better accuracy in 
predicting PMI_BB. 
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Figure 5. Performance of the best models used to predict peanut biomass and maturity using 
spectral bands + vegetation indices as features. 
 
Our study is the first to mention the use of MTR in the prediction of peanut biomass and maturity 
upon spectral data. The RF and KNN algorithm can successfully learn the pattern between 
spectral bands vegetation indices and biophysical variables. Using spectral bands and vegetation 
indices as input, the KNN can predict the peanut variables more accurately than RF. The 
outperformance of KNN is attributable to the way that the algorithm works. The inputs consist of 
the closest training examples in the dataset. The output is the property value for the object, or 
equivalently, the average k-nearest neighbors' values (Tedesco et al., 2022). Contrasting, 
according to the authors above, RF can fail when processing data with collinearity or permutation, 
thus favoring features with more levels and smaller groups over more prominent groups. From a 
practical standpoint, producers and researchers can use MTR associated with remote sensing to 
determine the spatial within-field variability of peanut biomass and maturity to make agronomic 
decisions based on the estimated field variability. It is needed to create a robust model based on 
data from different varieties and crop systems to cover the main aspects of the southeastern 
peanut production area.  
Conclusion  
Our findings demonstrated a promising alternative to predict multiple PMI at a field scale using 
remote sensing, which may reduce the subjectivity of determining peanut maturity. Another 
promising outcome is that by predicting peanut biomass above ground and below ground, farmers 
and researchers can have quantitative values of those variables allowing characterize the peanut 
variability throughout the space and time. Future research should focus on integrating other 
explanatory variables, mainly related to topography and soil conditions like temperature. These 
variables could help understand the driving factors of peanut growing and maturation at the field 
level. 
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