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Abstract.  
This paper presents the methods to increase the accuracy of unmanned aerial vehicles (UAV)-
based remote sensing data for the determination of plant nitrogen and water stresses with 
increased accuracy. To increase the accuracy of remote sensing data, various methods were 
investigated. These include use of portable Ground Control Points and high performance GPS. 
Remote sensing data was collected from UAVs equipped with hyperspectral and multispectral 
sensors. To determine the effectiveness of the above methods, vegetation indices such as 
normalized difference vegetation index (NDVI), Green NDVI (GNDVI), and Water Band Index 
(WBI) calculated using the remote sensing data were compared with the data obtained from 
proximal sensors that include Handheld Spectroradiometer and Chlorophyll Meter. Correlations 
between different vegetation indices, chlorophyll meter data, and spectroradiometer data are 
shown for strawberry plants. 
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Introduction 
As the demand for agricultural products is significantly increasing to keep up with the growing 
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population, it is important to investigate methods to reduce the use of water and chemicals for 
water conservation, reduction in the production cost, and reduction in environmental impact. UAV-
based remote sensing techniques can help significantly reduce the amount of water and nitrogen 
applications for crop production. The main advantage of UAV-based remote sensing technique is 
the immediate availability of high-resolution data that can be used to determine the crop 
performances and stresses of a large area in a short amount of time throughout the growth season 
for precision agriculture, which aims to optimize the amount of water, fertilizers, and pesticides 
using site-specific management of crops (Bricco et al, 1998). However, to be useful in a 
meaningful way for precision agriculture, the remote sensing data must provide the crop nitrogen 
and water stresses very accurately. This paper presents some of the methods to increase the 
accuracy of remote sensing data. Ground control points and high-performance GNSS/INS were 
used to increase the accuracy of remote sensing data. Vegetation indices obtained using remote 
sensing data were compared with proximal sensor data (Bhandari et al., 2018; Govender et al., 
2009) and plant agronomic measurements. Results are shown for strawberry plants.  

Experimental Design 
Figure 1 shows the experimental strawberry plot design. The test plot has total of three replicate 
rows (R1, R2, R3), with a 3.6 meter gap between them. The design is a strip-plot design with four 
nitrogen treatments forming the main plots and four irrigation treatments forming subplots. There 
are three replications and a total of 60 subplots. 

Each row is 22 meters (72.6 feet) long, and is divided into four 4 m x 20.7m (13.2 x 68.3 ft) 
subplots, with a gap of 2 m (6.6 feet) between the subplots. The large gap between the rows and 
plots is to avoid the error in data due to nitrogen leaching and water seepage. Each subplot is 
further divided into five 4 m x 2.7 m subplots with a gap of 1.8 meters between the subplots. The 
plots are treated with different levels of irrigation, while keeping the level of nitrogen application 
the same. For example, the first plot (upper left plot in Figure 1) is treated with 0% nitrogen (N0), 
while each subplot was treated with a different level of irrigation, i.e., 0% irrigation (IR0), 25% 
(IR25), 50% (IR50), 75% (IR75), and 100% irrigation (IR100). The soil nitrogen level was 
determined prior to beginning the study by sending the samples of the soil to a soil testing lab. 
The plots were drip irrigated at 0%, 25%, 50%, 75%, and 100% of irrigation level that is estimated 
by the evapotranspiration calculations (Bhandari et al, 2018). Similarly, the nitrogen treatment 
was slow release nitrogen at 0%, 25%, 50%, and 100% of the nitrogen recommended for 
strawberry growth after taking into account the existing nitrogen in the soil.   
The actual water requirement for the strawberry production was determined using the crop 
evapotranspiration (ETc), estimated from the potential evapotranspiration (ETo) (Bhandari et al., 
2018; Allen et al., 1998). 
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 Fig 1. Strawberry plot design. 

Figure 2 shows the strawberry being grown using the above design. Markers were placed to 
distinguish the regions of different irrigation and nitrogen application levels.  

 
Fig 2. Experimental strawberry plot. 
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UAV and Airborne Sensors 
Two different UAV platforms, Matrice 210 and Matrice 600 from DJI, shown in Figure 3, were 
used for this study.   

           
Fig 3.  DJI Matrice 210 (left) and DJI Matrice 600 UAV (right). 

The UAVs are equipped with an inertial measurement unit (IMU), GPS receiver, barometer and 
magnetometer, and autopilots for autonomous flights.  
The Matrice 210 UAV is equipped with an Altum multispectral sensor from MicaSense, shown in 
Figure 3. It is a 5-band multispectral sensor, and captures 5-band spectral data on different 
wavelengths (blue to NIR). The Matrice 600 is equipped with a Nano Hyperspec sensor from 
Headwall, also shown in Figure 4. It is a hyperspectral sensor and captures data in 400-1000 nm 
spectral range, and has 640 spatial bands, 270 spectral bands, and frame rate of 300 Hz. It is 
also equipped with a high-performance GNSS/INS. GNSS/INS data is used for orthorectification.  

                            
Fig 4.  RedEdge multispectral sensor (left) and Nano Hyperspec sensor (right).  

Proximal Sensors 
The proximal sensors used for ground-truthing are a handheld spectroradiometer and chlorophyll 
content meter, which are shown in Figure 5. Besides using the proximal sensors, agronomic 
measurements such as plant height and leaf numbers for each treatment level were also 
measured.   
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Fig. 5. Handheld 2 Spectro-radiometer (left), CM 1000 chlorophyll meter right. 

Ground Control Points  
The ground control points (GCPs) give an important baseline data for remote sensing data 
correction (Hummel, 2016). A GCP is a physically marked location with a fixed position, and has 
GPS coordinates that are corresponding to the location of the GCP. GCPs help increase the 
spatial accuracy of remote sensing data. With the use of well-placed GCPs, the accuracy of 
remote sensing data can be highly increased and to the level of the accuracy of GPS. While GCPs 
can help increase the accuracy of remote sensing data, several factors affect how much increase 
in accuracy can be obtained. Number of GCPs, their distribution and location with respect to the 
crop field, and the quality of GCPs themselves affect the correction to the remote sensing data 
they can provide (Guang et al., 2016; Oniga et al., 2018).  

Figure 6 shows a GPS equipped GCP, AeropointsTM, from Propeller Aero. Six GCPs were laid in 
the field. The GCPs give an important baseline data for remote sensing data correction. The 
GCPs are equipped with GPS to provide the coordinates that are corresponding to the location of 
the GCP.  

 

Fig 6. AeropointTM GCPs from Propeller Aero. 
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Data Collection 
The airborne and proximal sensor data were collected on a weekly basis. The remote sensing 
data from the UAVs were collected at close to noon time. Handheld spectroradiometer and 
chlorophyll data were collected and either before or after the data collection from the UAVs were 
completed. Figure 7 shows the multispectral data being collected from Matrice 210 UAV.  

 
Fig 7. Strawberry data collection from UAV. 

The UAV data were collected from the entire plot each week the data were collected. However, 
for the proximal sensor data, only a sample of plants were chosen. The spectroradiometer data 
were collected either at the canopy level or the leaf level using the contact probe with the leaf 
clip. In addition, plant height and leaf numbers were also measured. Figure 8 shows the plant 
height for different irrigation levels from the data collected over a period of about 4 weeks. It can 
be seen that the plant heights show an expected trend with the plant heights being maximum for 
100% irrigation level. It can also be noticed that the plant heights are similar for 25% and 50% 
irrigation levels.   

 
Fig 8. Effect of irrigation level on strawberry plant height. 

Figure 9 shows the plant height for different nitrogen treatment levels. A similar trend is seen with 
the plant height being maximum for 100% nitrogen level and lowest for the 0% nitrogen treatment.   
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Fig 9. Effect of nitrogen treatment level on strawberry plant height. 

Leaf numbers show similar trends with water and nitrogen treatment levels as shown in Figures 
10 and 11. Thus, the strawberry plants in the plot provide a variation in plant health to assess the 
effectiveness of remote sensing data.     

 
Fig 10. Effect of irrigation level on strawberry plant leaf numbers. 

5
5.2
5.4
5.6
5.8

6
6.2
6.4

10
-A

pr

12
-A

pr

14
-A

pr

16
-A

pr

18
-A

pr

20
-A

pr

22
-A

pr

24
-A

pr

26
-A

pr

28
-A

pr

30
-A

pr
2-M

ay
4-M

ay
6-M

ay

Pl
an

t H
ei

gh
t (

cm
)

Sampling Date

Plant Height as affected by sampling date and nitrogen 
treatment

N0 N25 N50 N100

2.5
2.7
2.9
3.1
3.3
3.5
3.7
3.9
4.1

10
-A

pr

12
-A

pr

14
-A

pr

16
-A

pr

18
-A

pr

20
-A

pr

22
-A

pr

24
-A

pr

26
-A

pr

28
-A

pr

30
-A

pr
2-M

ay
4-M

ay
6-M

ay

Le
af

  #
/p

la
nt

Sampling Date

Leaf number per plant as affected by sampling date and 
irrigation treatment

IR0 IR25 IR50 IR100



Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

8 

 
Fig 11. Effect of nitrogen treatment level on strawberry plant leaf numbers. 

Remote Sensing Data Processing 
The multispectral data from UAV was processed using the PrecisionAnalytics software from 
PrecisionHawk. The collected images are orthomosaicKed by the software, i.e., the individual raw 
images are orthorectified and then mosaicked to produce a single image. Figure 12 shows the 
raw image of the strawberry plot. Shown in Figure 13 is the an NDVI image of the strawberry plot.  

 
Fig 12. Raw image of the Altum sensor data of the strawberry plot.  

 
Fig 13. NDVI image of the strawberry plot.  
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The AeroPoints ground control data were uploaded wirelessly to the Propeller software. The 
GCPs are solar powered, and after the data collection is completed, the position data are 
uploaded by pushing a button.  Aeropoints data were then imported to the PrecisionAnalytics 
software for processing.  
The hyperspectral data collected from the Nano Hyperspec sensor was processed using the 
Hyperspec III and SpectralView Software from Headwall. The data from each wave-length band 
is assembled into a three-dimensional hyperspectral ‘data cube’ (Hyper Cube) for processing and 
analysis. The hyperspectral cubes, GNSS/INS data, and GNSS correction data was used for 
postprocessing using POSPac UAV software from Applanix. 

Results and Discussion 
Using the processed data, several vegetation indices were calculated including normalized 
difference vegetation index (NDVI), Green NDVI (GNDVI), modified chlorophyll absorption ratio 
index (MCARI), and leaf chlorophyll index (LCI), water band index (WBI) (Bhandari et al., 2019). 
For example, the NDVI values are calculated using the following formula: 

NDVI = !!"#"##$%
!!"#$##$%

                    (1) 

                                                                                
where rNIR and rRED are reflectances in the NIR and Red spectrums. NDVI ratio ranges from -1 to 
1. Higher positive NDVI values indicate healthy plants whereas lower values indicate unhealthy 
plants and negative values indicate no vegetation. Specifically, NDVI is used to detect nitrogen 
stresses.  

Similarly, Water Band Index is calculated using the reflectances at 970 nm and 900 nm as given 
below: 

WBI = !&'(
!'((

                            (2) 
                                                                  

The higher the water content in vegetation canopies, the stronger the absorption at 970 nm 
relative to the absorption at 900 nm. These vegetation indices were compared with chlorophyll 
meter data and vegetation indices calculated using the spectroradiometer. 

Figure 14 shows the relationship between the NDVI obtained using the multispectral data and 
hyperspectral data collected from the UAVs compared with chlorophyll meter data. Multispectral 
NDVI has a Pearson correlation coefficient (r) of 0.80 with CM 1000 data (r = 0.8), significant at 
probability level (p) of 4 ´ 10-6. NDVI has been used to assess the level of leaf chlorophyll 
concentration and nitrogen contents.  



Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

10 

 
Fig 14. Relationship between multispectral NDVI and chlorophyll meter data ( r = 0.8, p = 4 ´ 10-6).  

The hyperspectral NDVI had slightly lower correlation with the chlorophyll meter data as shown 
in Figure 15. 

 
Fig 15. Relationship between hyperspectral NDVI and chlorophyll meter data (r  = 0.74, p = 10-7). 

Figure 16 shows the relationship between the leaf chlorophyll index calculated using Altum sensor 
compared with the chlorophyll meter data. A correlation of 0.82 was obtained. 
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Fig 16. Relationship between multispectral LCI and chlorophyll meter data (r  = 0.82, p @ 0). 

Figures 17 shows the relationship between modified chlorophyll absorption ratio index (MCARI) 
calculated using hyperspectral data with that calculated using the spectroradiometer data.  

 
Fig 17. Relationship between hyperspectral MCARI and spectroradiometer MCARI (r  = 0.75, p @ 0). 

With the use of GCPs and high performance GNSS/INS, the correlation between the UAV-based 
remote sensing data and proximal sensor data are significantly improved, and consistently are 
above 0.75 in most cases. However, WBI calculated using the hyperspectral data showed lower 
correlation with that calculated using the spectroradiometer data as shown in Figure 18.  
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Fig 18. Relationship between hyperspectral WBI and spectroradiometer WBI (r  = 0.52, p = 2.3 ´  10-6). 

Conclusion  
This paper showed the effect of portable ground control points and/or high-performance 
GNSS/INS on the accuracy of remote sensing data. Both the multispectral and hyperspectral data 
of strawberry plants were collected from UAVs. Also collected were chlorophyll meter and 
spectroradiometer data along with plant heights and leaf numbers per plant. The experimental 
design provided a variation in plant water and nitrogen stresses to evaluate the effectiveness of 
remote sensing data in detecting the plant stresses. The UAV data and spectroradiometer data 
were used in the calculation of several vegetation indices. The vegetation indices were compared 
with chlorophyll meter data. Use of GCPs and high-performance GNSS/INSS significantly 
improved the resolution of the UAV-based remote sensing data. The UAV vegetation indices 
calculated using the UAV data generally had high degree of correlation with the proximal sensor 
data. However, the WBI calculated using the hyperspectral UAV data had lower correlation with 
that calculated using the spectroradiometer data.  
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