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Abstract.  
In plant breeding the impacts of genotype by environment interactions and the challenges to 
quantify these interactions has long been recognized. Both macro and microenvironment 
variations of soil physical and chemical properties have been shown to impact breeder 
selections. However, traditional soil sampling techniques are restricted by cost and labor. 
Therefore, on-the-go and high throughput soil sensor platforms provide a potential solution for 
plant breeders to quantify spatial variation, particularly for early generation testing. These 
sensor platforms have the capability to collect data without significantly adding time or 
increasing cost through laboratory soil analysis. The objective of this study was to evaluate 
multiple soil sensor platforms and their ability to capture the soil spatial variability of experiments 
within the Kansas State Wheat Breeding (KSWB) program. The Veris MSP3, Veris P4000 and 
lab analyzed soil cores were collected at seven site years across diverse environments in 
Kansas. Data collected from all three methods were analyzed and ordinary kriging was 
performed to extrapolate soil values for the entire experiment area.  In addition to individually 
kriged grid points the interpolated kriged data was partitioned into zones based on the K-means 
algorithm to determine zonal effects on genotype yield. All assessed breeding populations were 
grown in a modified augmented design type 2 (MAD2) to make spatial corrections based on the 
experimental design. Spatial adjustments by sensor were made through a multivariate model 
where each soil parameter was a fixed effect covariate. Spatial zones had a significant effect on 
population yield for many collected soil parameters ranging from 0.02 to 1.44 tons ha-1. 
Furthermore, individual kriged values demonstrated correlation with to grain yield and the spatial 
adjusted yield values improved coefficient of variation (CV) over the raw yield data by an 
average of 5.3% and improve CV over experimental design corrections by an average of 3.2%. 
However, the CV’s between sensor platforms were not significantly different. These results 
indicate that soil spatial variability exist within the KSWB program, and that on-the-go soil 
sensors can aid in accounting for spatial correction in plant breeding. 
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Introduction 
Environmental impacts on wheat yield are well documented and mostly modulated by heat and 
drought stress (Lollato et al., 2017). However, variations in soil physical and chemical properties 
can greatly affect genotype performance both at micro and macro levels. Despite the significant 
impacts of soil variation on germplasm testing is a twofold limitation of cost and time that restricts 
the application of sampling for spatial variability within a breeding program. 
To mitigate spatial variability breeding programs commonly use a variety of experimental designs 
and statistical analyses to account for spatial variability. However, in early generation studies 
where field space and seed availability are limited, single rep experiments are usually 
implemented, and spatial corrections are dependent on strategically placed commercial checks. 
Having the ability to characterize soil parameters has the potential to make spatial corrections 
that can out preform the experimental design.  The novelty of collecting sensor-based soil 
parameters is that the sample size can be significantly increased without added time in the field 
or the added cost and time of laboratory soil analysis. Therefore, many on-the-go sensor platforms 
have been commercially developed for precision spatial quantification (Lund et al., 1999). 

Materials and Methods  
To evaluate spatial variability within the Kansas State Wheat Breeding program early generation 
experimental populations were grown at two locations, Reno (RN) and Thomas (TH) Counties for 
the 2020 and 2021 growing seasons. All experiments were conducted in a modified augmented 
type 2 (MAD-2) with a three-way blend commercially adapted primary check. 
Prior to planting indirect measurements of soil properties were collected using two sensor 
platforms. The Veris MSP-3 mobile sensor cart platform (Veris Technologies, USA) was used on 
a 10-meter grid pattern to collect apparent electric conductivity (ECa) at the 0-30 and 0-90 cm 
depth and spectral reflectance at the 5 cm depth. Whereas the Veris P4000 DW-EC-Force Probe 
was used on a 30-meter grid pattern to collect ECa, spectral reflectance and force for the 0-20, 
20-60 and 60-100cm depths. Physical soil cores were also obtained with the Veris P4000 using 
the core attachment on a 60-meter grid pattern. The cores were split into three depths 0-20, 20-
60 and 60-100 cm and analyzed for soil physical and chemical properties, including volumetric 
water content, soil texture, bulk density, pH and primary macro and micronutrients. 
To assess spatial patterns ordinary kriging (OK) was applied to the observed soil properties from 
all platforms using the ‘gstat’ R package (Pebesma & Graeler, 2015). Furthermore, the 
interpolated kriged data was partitioned into zones based on the k-means algorithm and optimized 
with the silhouette method. Each plot was then assigned a kriged value and cluster group through 
the join attributes by nearest distance function in Quantum GIS. 
To test spatial zone effects on yield, a Wilcoxon test was performed on each individual zone at 
the 0.95 significance level. To make to make spatial corrections with plot level kriged values, a 
mixed multivariate model was used within the ‘ASReml-R’ package (Butler et al., 2009) 

Results 
In most cases, field experiments covered multiple k-means cluster groups (Fig 1). However, in 
some cases not all cluster groups were represented which could present an opportunity for cluster 
avoidance or cluster blocking. In cases where more than one cluster was present a significant 
yield differential was observed and ranged from 0.02 to 1.44 tons ha-1. 

Soil geo-spatial corrections improved the coefficient of variation (CV) over the raw yield data by 
an average of 5.3% and improve CV over experimental design corrections by an average of 3.2% 
(Table 1). Additionally, the MSP3 sensor had the best CV in 4 of the 7 experiments (57.1%), while 
the soil cores were best in 2 of the 7 experiments (28.6%) and the experimental design was best 
once. However, the CV differences between the soil platforms was not significant and were never 
greater than 1.7%. 
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Fig 1. Kriged (a) and k-means cluster contour (b) maps for 0-20cm depth EC from the P4000 at 21RNS with PYN and YT plot 

map overlays. Number of color clusters in the cluster map were determined by k-means clusters and the values for the 
cluster color represent the median value of the cluster for ECa. 

Table 1. Coefficient of Variation (CV%) of yield data from seven trial across two years. Values are obtained from the raw 
yields, the experimental design spatial corrections, and spatial corrections from soil core, MSP3 and P4000 data. 

Year Loc Exp. Raw Yield 
MAD-2 

Corrections 
Soil Core 

Corrections 
MSP3 

Corrections 
P4000 

Corrections 

2020 THD AeTa 18.9% 16.6% 16.9% 17.0% 17.5% 

2020 THI DPYNA 26.7% 18.9% 14.1% 14.0% 15.7% 

2021 RNN F4 13.7% 12.7% 9.7% 9.7% 9.7% 

2021 RNS PYN 9.3% 9.1% 6.7 % 6.9% 6.8% 

2021 RNS YT 14.12% 13.7% 9.5% 9.2% 9.7% 

2021 THD PYNA 16.7% 15.3% 11.2% 11.0% 11.1% 

2021 THI DPYNA 23.9% 22.7% 17.4% 17.0% 17.4% 

Conclusion  
This experiment confirms that soil spatial variation within breeding experiments exist and that it 
has significant impacts on genotype performance. Additionally, there is support that on-the-go 
precision soil sensors have the capability to capture this variation similarly to traditional soil 
sampling methods likely due to the ability to increase sample density. However, it is unknown if 
these platforms would need to be used on every field for every growing season, or if more stable 
soil properties such as soil texture can be quantified once and used across multiple years. 
Furthermore, the cost of equipment and operation need to be explored prior to implementation of 
this technology into a breeding program. 
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