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Abstract.  
Field-specific fertilizer rate optimization is known to be beneficial for improving farming profit, 
and profits can be further improved by dividing the field into smaller plots and applying site-
specific rates across the field. Finding optimal rates for these plots is often based on data 
gathered from the plots, which are used to determine a yield response curve, telling us how 
much fertilizer needs to be applied to maximize yield. In this research, we trained a Random 
Forest to create plot-specific non-parametric yield response curves. We then use these curves 
to determine the optimal amount of fertilizer to be applied to specific plots by maximizing a net 
return function based on these curves. However, we claim that there are additional issues that 
should be taken into account when designing optimal prescription maps. In addition to 
optimizing yield, we want to reduce strain on farming equipment by minimizing rate jumps 
between consecutive cells. This helps machines run more efficiently and last longer, thus 
reducing waste. Furthermore, when creating these optimized prescription maps, we also aim to 
improve environmental impact by reducing the overall fertilizer applied, as excess nitrogen 
seeps into the soil and drains into our waterways, negatively affecting water quality. In previous 
work, we found that it is possible to reduce overall fertilizer applied by 5 to 10% when creating 
experimental prescription maps without significantly impacting yield. Therefore, we hypothesize 
this will hold true for optimized prescription maps as well. We address these three separate, 
competing objectives using an adjusted genetic algorithm, known as Non-Dominated Sorting 
Genetic Algorithm II (NSGA-II), which finds a set of potential solutions that are optimal for the 
combined objectives. Such solutions are known as Pareto optimal, where one of the objectives 
cannot be improved without negatively impacting at least one other objective. We further adjust 
NSGA-II to use the Factored Evolutionary Algorithm (FEA) framework, which decomposes the 
variables into separate, overlapping groups to increase exploration of the search space, as well 
as enabling the ability to parallelize computation. 



 

2 
Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

 
Keywords.   
Genetic Algorithm, Multi-Objective Optimization, Sustainability, Site-Specific Application, 
Economically Optimal Nitrogen Rate. 

Introduction 
Agricultural practices contributed 11% of greenhouse gases in 2020, and they are considered to 
be the single largest source of water pollution (USEPA, 2022). With the increase in concern 
regarding climate change and pollution, the question of how to increase sustainability in farming 
becomes more important. We propose using multi-objective optimization (MOO) to help address 
sustainability when creating variable rate fertilizer prescription maps. 
In this paper we consider three different “objectives.” First, we seek to maximize net return for 
farmers. In addition, we also minimize two sustainability-focused objectives: reducing strain on 
applicators by reducing jumps between fertilizer rates and reducing the overall amount of 
fertilizer applied to minimize nitrogen pollution. When trying to optimize different problems (or 
objectives) simultaneously, this is called MOO. The challenge when attempting to optimize 
multiple objectives such as these arises from the fact tradeoffs exist. For example, in many 
cases minimizing the nitrogen across the field can result in a loss of net return due to a 
corresponding reduction in yield. 
In previous research, we created experimental prescription maps for on-farm trials optimizing 
two objectives: maximizing stratification and minimizing jumps (Peerlinck et al., 2018). So 
instead of maximizing net return, we maximized stratification of fertilizer based on a field’s 
previous years’ yield content. We further extended these experiments by including the second 
sustainability-focused objective that reduces fertilizer. In these experiments, we found that we 
could reduce fertilizer by 5 to 10% without significantly influencing yield production. Because of 
these promising results, we now consider creating optimal prescription maps using the same 
techniques. 
The preliminary research reported here focuses on how prescription maps that are optimized for 
the two sustainability objectives impact net return. We do this by applying three different 
variations of a multi-objective evolutionary algorithm called Non-dominated Sorting Genetic 
Algorithm II (NSGA-II) (Deb et al., 2002) to a winter wheat field and evaluating whether the 
resulting prescription maps’ net returns are significantly different. Consistent with our previous 
experiments on trial design, we found that incorporating the two sustainability objectives 
resulted in no significant impact on net return. 
The rest of this paper is structured as follows. In the Background section we will briefly explain 
important terms and concepts in MOO, as well as the different algorithms we used. Next, we 
briefly review related work to provide the reader with a sense of other work that has been 
performed similar to ours. We will then move on to present the results of our initial experiments. 
Finally, in our conclusion we will discuss our main findings and future research directions. 

Background 

Meta-heuristics and Optimization 
In Machine Learning (ML), a common approach to solving optimization problems is by applying 
what are called meta-heuristic approaches. Meta-heuristics are a class of approximate search 
methods designed to tackle difficult optimization problems when classical strategies are not 
sufficiently effective or efficient (Osman & Kelly, 1996). Within the set of meta-heuristics there 
are two different algorithm classes: local search and population-based search (Ehrgott & 
Gandibleux, 1994). Population-based algorithms, which are where our interests lie, are often 
further divided into swarm-based algorithms (e.g., particle swarm optimization (Kennedy & 
Eberhart, 1995)) and evolutionary algorithms (e.g., genetic algorithm (Holland, 1994)). In this 
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paper we use a multi-objective version of the genetic algorithm (GA), called the Non-dominated 
Sorting GA II (NSGA-II) (Deb et al., 2002).   
There are two large classes of problems meta-heuristics are often applied to: combinatorial and 
continuous optimization problems. In combinatorial optimization problems, one attempts to find 
an optimal combination of a finite set of objects, whereas in continuous optimization, one 
attempts to find the best real-valued variables (Osman & Kelly, 1996).  There are a variety of 
reasons why these classes of problems are difficult, including the existing of multiple local 
optima, ruggedness in the objective landscape, and what is known as the “curse of 
dimensionality."   
Both combinatorial optimization and continuous optimization exist and problems in precision 
agriculture: coverage path planning (Valenta, et al., 2016) is an example of combinatorial 
optimization problems, whereas wireless sensor network design contains both combinatorial 
and continuous problems (Ibrahim & Alfa, 2017). We handle the creation of an optimal 
prescription map as a continuous optimization problem. This means we are assuming the 
amount of fertilizer to be applied to the field can take any real-valued number within the bounds 
we set (i.e., between 0 and 150 pounds. of nitrogen per acre). In contrast, when we created 
experimental trial designs, the fertilizer to be applied came from a set of fixed fertilizer rates to 
be applied, making it a combinatorial problem (Peerlinck, et al., 2019).  

Multi-Objective Optimization 
Irrespective of a problem’s continuous or combinatorial nature, optimization can involve 
attempting to address more than one objective simultaneously, creating a situation where the 
objectives compete, creating the necessity for a tradeoff. There are several ways to approach 
optimizing multiple objectives. One is known as a transformative approach, meaning the 
different objectives are transformed into a single objective (Deb, 2014). There are two 
commonly used transformative techniques: using a weighted sum, which assigns importance to 
each objective and linearly combines the associated objective functions and weights; and the ε-
constraint technique, which chooses one objective as the main objective and transforms the 
other objectives into constraints limited by a set ε value.  
However, both of these techniques assume knowledge on which objective is considered more 
important and produce a single solution based on this preference. Because of this, meta-
heuristics using the idea of Pareto optimality are often used to produce a set of solutions that 
are considered to be non-dominated (Deb, 2014). Pareto non-dominated solutions are solutions 
where no other options exist that improves the result for one objective without deteriorating 
another objective; otherwise, this new solution would become the non-dominated solution. A set 
of non-dominated solutions with respect to all of the objectives is known as the Pareto optimal 
set (also referred to as a Pareto optimal front or frontier).  

Implemented Algorithms 
NSGA-II is an elitist Genetic Algorithm (GA) that finds Pareto non-dominated solutions and uses 
a crowding distance measure to maintain diversity in subsequent generations (Deb, et al., 
2002). As with the classic GA, an offspring population is created using crossover and mutation. 
Afterwards, the parent population and the offspring population are combined into a single 
population. The resulting population is then sorted based on the Pareto non-domination 
principle, and individuals are assigned to different non-domination sets based on the extent to 
which they dominate other solutions in the population. If the set of non-dominated solutions is 
larger than the the pre-specified fixed size of the population, a second elimination is performed 
based on crowding distance.  
In addition to NSGA-II, we consider two variants that employ principles from co-evolution. These 
two additional methods still use NSGA-II as the base algorithm, but instead of using a single 
population of individuals, there are now multiple subpopulations. Specifically, in the base NSGA-
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II method, a population is made up of individuals corresponding to complete prescription maps. 
In the two co-evolutionary variants, each subpopulation’s individuals represent a only a subset 
of the full map. This idea was proposed to allow for easy parallelization, which can help speed 
up computation when dealing with large scale problems. The first co-evolutionary variant is 
known as the Co-operative Co-Evolutionary Algorithm (CCEA) and was defined by Potter and 
De Jong (2000). CCEA uses disjoint subpopulations, meaning that each subpopulation 
considers disjoint sets of variables of the full target solution. In other words, with respect to 
optimizing prescriptions, each cell of the field can only belong to one subpopulation. In our 
experiments, we create subpopulations based on the strips of cells in the field, as shown by the 
dark rectangle covering column 7 in Figure 1. Each subpopulation evolves separately before 
being recombined to form the final global solution (i.e., the solution representing all cells on the 
map). Note, however, that while the subpopulations are organized into strips, the target is to 
provide finer grained, site-specific prescriptions at the cell level. 
The CCEA approach was extended to include overlapping subpopulations, known as the 
Factored Evolutionary Algorithm (FEA) (Strasser et al., 2017). The main extension corresponds 
to permitting a single variable to be represented by multiple subpopulations, thus introducing 
“overlap” between the subpopulations being optimized. This adjustment was proposed so 
parallelization techniques can still be applied to the subpopulations, while also trying to improve 
exploration of the search space. For this algorithm, we still create subpopulations corresponding 
to strips, as with CCEA, but we include overlap by choosing the start and end cells of 
consecutive strips to create a new subpopulation; an example of this is shown in Figure 1. The 
arrows in columns 4 and 5 indicate an example of the direction the applicator takes, based on 
this direction, the lightly shaded square covering the bottom of columns 6 and 7 shows the two 
end cells of strip 6 and the start cells of strip 7. An MOO implementation of FEA is presented in 
(Peerlinck & Sheppard, 2022). 

Fig 1. Example of an optimal prescription map. The arrows indicate the path the applicator takes along the plots. The 
shaded rectangle shows an example a subpopulation based on a strip of cells in the field. The shaded square is an 

example of a  group of two ending and starting cells of consecutive strips to form overlapping subpopulations. 
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Preliminary Results 

Experimental Design 
As mentioned in the Introduction, we look at three different objectives for our experiments: 

• Net return maximization 

• Jump minimization 

• Overall fertilizer minimization. 
The Net Return (NR) is calculated as follows: 

   NR =   Y * P – AA * CA – FC, (1) 

where Y is the expected crop yield, P is the crop selling price, AA is the ‘as-applied’ fertilizer 
rate, CA is the fertilizer cost, and FC reflects any fixed costs associated with production. The 
expected crop yield is predicted using a Random Forest (RF) model (Segal, 2004), whereas the 
crop prices and fertilizer cost are obtained from the US Department of Agriculture (USDA, 
2022). Note that we are also in the process of developing more specialized yield prediction 
models.  
Jump minimization addresses large changes in fertilizer rate application between consecutive 
cells in the field, since such large changes puts strain on the farming equipment. This can then 
lead to the farmer needing to repair or replace equipment more frequently, increasing cost and 
waste, thus resulting in negative ecological impacts. We address this objective by summing over 
the absolute differences in applied fertilizer between adjacent cells. Lastly, the fertilizer score is 
calculated by summing over the fertilizer to be applied to all of the cells.  
To evaluate the impact of the different objectives, we chose three different non-dominated 
solutions produced by each algorithm, where the chosen solutions correspond to the extreme 
points for one of the objectives: jump score, net return, or fertilizer rate. Lastly, we picked a 
fourth solution to represent an equal balance between all three objectives. We do this by finding 
the centroid of the three extreme solutions, the non-dominated solution in the Pareto front 
closest to this centroid is then used as the fourth solution. We compared the four different types 
of prescription maps using an ANOVA test with α = 0.05 to evaluate the impact of the different 
objectives on net return.  

Results and Discussion 
Based on the applied ANOVA, no significant difference in net return was found between the 
different prescription maps. This indicates that applying less fertilizer need not have a significant 
negative impact on farming profit. This is further confirmed when we inspect the net return 
values visually in Figure 2, where we can see that the difference in net return when focusing on 
different objectives is minimal for each algorithm. The union front combines all found non-
dominated solutions for each of the algorithms. The best solutions for each of the 
aforementioned prescription map types are then select from this union front. The jump-focused 
prescription map found by the union front has a lower net return than the one found by F-NSGA-
II because the jump score found NSGA-II was better, but that solution had a lower net return. 
Overall, the algorithms perform similarly in terms of net return, and they ran in a similar  amount 
of time (2 days); however, we did not perform any parallelization on the CCEA and FEA 
implementations. By including parallelization of the subpopulations, we hope to reduce 
computational time, so we can provide results quickly to our end users. Furthermore, the lowest 
net return is found consistently when focusing on minimizing jumps. We believe this may be 
because the current net return calculation does not include the cost of equipment maintenance. 
If farmers could gather data on how large jump rates impact them economically, we could refine 
our net return calculation, and the difference in net return may be even less prominent.  
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Fig 2. Net Return for four prescription maps focusing on different objectives. 

 

Conclusion and Future Work 
This work presents preliminary results optimizing fertilizer prescription maps that also consider 
sustainability focused objectives. We optimized the following three different objectives: 
maximizing net return, minimizing jumps between consecutive cells, and minimizing total 
fertilizer applied. We applied three different multi-objective optimization techniques to find a set 
of Pareto non-dominated solutions, where each solution represents a prescription map. We 
compared different prescription maps that are optimal for different objectives and found that 
there is no significant difference in net return between any of the different objectives. This is a 
promising indication that we can reduce fertilizer rate in variable rate application even more 
without impacting farming profit, thus improving environmental impact.  
As next steps, we plan to apply our approach to more fields to confirm these preliminary 
findings. We would also like to add temporal objectives, such as minimizing variation in net 
return across several years, and including the impact climate change might have on crop 
response. Another goal is to investigate the effect of different yield prediction approaches when 
creating optimized prescription maps. In other words, how much influence does accurate yield 
prediction have on prescribing the correct fertilizer rate, or is it more important to use a model 
that accurately describes the shape of the yield response curve? Lastly, we would like to 
parallelize the subpopulation-based approaches to help reduce computational time. 
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