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Abstract.  
Conducting on-farm experiments have become more cost-efficient with new technology. The 
spatial correlations in on-farm experiments will affect optimal experimental designs. In this paper, 
we address the problem of allocating the optimal locations of treatment levels for a fixed number 
of replications. Pseudo-Bayesian D optimal designs are obtained for an experiment to collect the 
data for estimating a non-differentiable production function, linear plateau (LP), with spatially 
varying coefficients (SVC). Obtained optimal designs are more efficient than classic designs like 
Latin square, strip plot, and random allocation when estimating the SVC model. The optimal 
designs were robust to misspecification of the assumed true values for the variance parameters.  
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 Introduction  
On-farm experimentation has become of interest due to advancements in technology. These 
experiments are not as costly as before, as current machinery can allocate different levels of 
treatment to specific plots. The main goal of this kind of experiment is to obtain a site-specific 
nutrient level. One unanswered question for on-farm experimentation is how the treatments 
should be allocated in the first place such that the appropriate model can be estimated precisely. 
Poursina and Brorsen (2022) obtained the nearly Ds-Optimal allocation design of the experiment 
for the linear in parameters model with SVC. They showed that optimal allocations are more 
informative than the standard designs such as strip plots or random assignment. They use the 
Ds-Optimality criterion that maximizes the determinant of the Fisher information matrix for a 
subset of parameters. In some cases, however, the linear plateau (LP) with spatially varying 
coefficients (SVC) is an appropriate modeling scheme, and Poursina and Brorsen’s linear in 
parameters assumption that greatly simplifies the calculations would not apply.  
Xiaofei, et al. (2021) made a Monte Carlo simulation over several classic experimental designs. 
They showed that the randomly assigned location to treatment levels is not very informative in 
many cases. They use the quadratic plateau model for simulating data and concluded that 
blocking can increase the information gained from an experiment, and as a result, gained profit 
for these kinds of designs increases.  
The LP model creates two problems. Firstly, since it is a non-linear non-differentiable model, the 
information matrix cannot be derived directly from the likelihood function of the model. Secondly, 
the Fisher information matrix depends on the model’s unknown parameters. This paper uses a 
two-step approximation to obtain the Fisher information matrix. The LP model is approximated 
with a differentiable model at the first step based on the assumption that the true value of the 
optimal nitrogen levels is known. Then this function is linearized to find the Fisher information 
matrix. We employ the pseudo-Bayesian optimal design approach for the second problem that 
considers the parameters' best initial guess and distribution for the optimal nitrogen value to aid 
our design in being robust against misspecification of the parameters. We also examine the 
robustness of the obtained design against misspecification in the parameters’ true values.  
There is a vast literature on experimental design for agronomy purposes (Casler, 2015; Clewer 
and Scarisbrick, 2013). The main goal of experimental design is to select the treatment levels and 
allocate frequencies for each treatment level such that the production function can be estimated 
with the most possible precision (Hanrahan and Lu, 2006). The classical optimal design usually 
considers the independence of the observations; however, this assumption is questionable in 
most agricultural experiments.    
Fast algorithm and computational power make the spatially varying coefficients models feasible 
for large data sets in a practical situation (Gelfand, et al., 2003; Mu, et al., 2018; Murakami, et al., 
2019). Selecting treatment levels and replications is essential in these models, but treatment 
locations also play a vital role.  
Atkinson and Haines (1996) obtained the optimal design for the LP model. They showed that this 
design has three treatment levels at zero, optimal value, and one point on the plateau. Brorsen 
and Richter (2012) obtained the optimal design of the experiment for the stochastic LP model. To 
find the optimal nitrogen value variance, they consider two estimation methods, the linearized 
response method, and the Monte Carlo simulation. They assumed that there is one small value 
for the treatment, one at the plateau, and then search for the last design point.  
Ng'ombe and Brorsen (2019) considered the Bayesian sampling system to overcome the problem 
of optimal design for the stochastic LP model over several years. They concluded that conducting 
experiments on a small portion of the field for up to 6 years is optimal based on an economic point 
of view.  
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The papers mentioned above do not consider the potential spatial behavior in the model’s 
parameters. The spatial behavior in the model parameters changes the amount of information 
obtained from the data. In addition, the location of the treatment levels affects the information, 
treatment level, and the number of replications. Hence, we should consider the locations of the 
level of the treatment when we find the optimal experimental design for estimating SVC models.  
The obtained optimal designs are for a 4 × 4 square. We consider four equally weighted levels of 
nitrogen equal to 20, 50, 100, and 150 and uniform prior distribution on the optimal nitrogen value 
between 90 to 110. We adjusted the method suggested by Poursina and Brorsen (2022) to find 
pseudo–Bayesian Ds optimal designs. They showed that their method is feasible for any shape 
of the field. Optimal designs are far more informative than the standard experimental designs and 
do not impose any extra cost on the application system (assuming that the applicator can switch 
nitrogen levels between plots). Inefficient designs like strip plots made sense when machinery 
could not easily apply nutrients and seeds at different levels within a field. Completely random 
designs only have 50% efficiency on average. We can learn much more from our experiments 
simply by putting more care into designing the location of each treatment. 

Spatially Varying Coefficient Linear Plateau Model and Information 
Matrix 
The LP model is widely used in agricultural applications. Hermesch, et al. (1998) used this model 
to describe pig growth. Ouedraogo and Brorsen (2014) use the Bayesian method to estimate the 
optimal nitrogen value in an LP model. Tembo, et al. (2008) employ the stochastic LP model to 
describe the crop production function response to nitrogen. They also mentioned that the plateau 
term in this model might vary across the field and year. Poursina and Brorsen (2021) consider the 
spatial behavior in both the intercept and the plateau parts. They considered three different spatial 
correlation matrices and showed that using the precision matrix can improve the run time in the 
Bayesian Kriging method.  
Assume that the model is  

 𝑦! = min(𝛽"! + 𝛽#!𝑥! , 𝑃!) + 𝜖! (1) 

where 𝑦! shows the yield in each location, 𝛽"!, and 𝛽#! are the location intercept and slope, 
respectively and  𝑃! is the plateau value. Let also assume that 𝜖~𝑁(0, 𝜎$𝐼); and  

  𝑓(𝜷!(𝑠)|𝚿!)~𝑁(𝟎,𝚿!)  (2)  

where 𝚿! is the covariance matrix that describes the spatial behavior of the parameters; hence 
all the spatial behavior can be captured by the spatial behavior in the parameters. We assume 
that the Bayesian method is used to estimate the parameters in (1) and the asymptotic variance 
of the parameters can be estimated by the inverse of the Fisher information matrix. 
The information matrix for the linear/nonlinear model 

 	
𝑦 = 𝜂(𝑥, 𝛽) + 𝜖	 (3) 

is equal to  

 𝐼 = %&((,*)
%*

	𝛺,# 	>%&((,*)
%*

?
-
  (4) 

where %&((,*)
%*

 is the partial derivatives of the production function with respect to the parameters, 
and Ω is the variance-covariance matrix of the response variable 𝑦. Based on equation (4), we 
can calculate the information matrix, however, we need one more step here since the production 
function is not differentiable.  

The min(𝑥, 𝑦) = #
$
(𝑥 + 𝑦 − |𝑥 − 𝑦|) so the LP model can be written as  
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min(𝑎 + 𝑏𝑥, 𝑝𝑙𝑎𝑡𝑒𝑎𝑢) =
1
2
(𝑎 + 𝑏𝑥 + 𝑝𝑙𝑎𝑡𝑒𝑎𝑢 − |𝑎 + 𝑏𝑥 − 𝑝𝑙𝑎𝑡𝑒𝑎𝑢|). 

Hence, if the value of the optimal nitrogen value is known priorri, then the derivative of the linear 
plateau is 
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After linearizing the LP model and integrating out the parameters, the variance of the vector 𝑦 can 
be approximated by  

 Ω = V𝑫#𝚿"𝑫# +𝑫(𝚿#𝑫( +𝑫4𝚿$𝑫4 + 𝜏$𝑰Z (5) 

where 𝑫#, 𝑫( and 𝑫4 are the diagonal matrices with diagonal elements of columns of the %&((,*)
%*

. 

 

Optimal Design 
The design of experiments has a rich literature that started from the early 20th century (Smith, 
1918). However, the theory of optimal design was proven in papers by Kiefer (1974). Assume that 
the experimenters can run N experiments. The theory of optimal design deals with selecting, not 
necessarily distinct, N treatment level to collect the data. In classic design of experiment, 
independency are usually assumed for fitting the production function. When the data are spatially 
correlated, the location of the experiments is also added to the selecting variables. Hence, we 
want to maximize the information gained from the experiment by selecting the treatment and their 
locatoins. In statistics literature, the standard criterion is a D-optimal design that maximizes the 
determinant of the Fisher information matrix. Maximizing the Fisher information matrix's 
determinant is equivalent to minimizing the volume of the confidence ellipsoid of the estimated 
parameters. So, the main goal for the experimental design is  

max
5
𝜙(𝑌, 𝜽, 𝜉) 

where 𝑌 is the response variable, 𝜽 is the vector of parameters, 𝜉 shows the experimental design 
and the 𝜙 is the selected criterion.   
For the linear models, the Fisher information matrix does not depend on the unknown model 
parameters. So, a closed form for these models can be derived. However, the Fisher information 
matrix for non-linear models and SVC models does depend on the model parameters. Hence, 
chiken and egg situation is occured. Wethe main goal is to find the optimal design to estimate the 
model parameters, but the design itself depends on these parameters. One solution for this 
situation is to assume the parameters are known and find the locally optimal designs (Chernoff, 
1953; Yang and Stufken, 2012). An alternative solution is Bayesian method. Bayesian method 
consider a prior distribution on the unknwon parameters and maximize the expected value of the 
Fisher information matrix (Chaloner and Verdinelli, 1995; Dette and Neugebauer, 1997). In the 
following section, the robustness of these locally optimal designs are investigated against the 
misspecification for true value of the parameters.  
We consider two spatial covariance matrices: SAR and Exponential. The Exponential covariance 
function is 

 covV𝛽2(𝑠!), 𝛽2(𝑠6)Z = 𝜎2$ exp >−
7"#
8$
?		 , 𝑟 = 0,1,2   (6) 



 

Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

5 

where	𝑑!6 is the distance between location 𝑖 and 𝑗, 𝜎 shows the sill, and the 𝜌	is the effective 
spatial range. SAR covariance function is  

 𝚺29:; = 𝜎2$((𝑰 − 𝜌2 	𝑾∗=)(𝑰 − 𝜌2 	𝑾∗)),#		, 𝑟 = 0,1,2 (7) 

where 𝜎2$ is the common variance for the r’th	parameters, 𝑾∗ is the row standardized contiguity 
matrix, and 𝜌2 shows the amount of spatial dependence. 

Application and Results 
Assume that the level of treatment and number of replications are fixed, and we want to select 
the treatment location in a 4 × 4 field. The information matrix given in (4) depends on the unknown 
parameters of the spatial variance as well as the optimal nitrogen value. We consider the pseudo-
Bayesian method to overcome this problem.For the pseudo-Bayesian method, we assume that 
true values of the covariance parameters are known (locally optimal), and uniform prior 
distribution between 90 and 110 on the optimal nitrogen values. With this prior distribution, we 
can be sure that there is at least one point in the plateau and one point in the optimal nitrogen 
distribution range.   

Suppose we want to allocate 4 equally weighted treatment levels in a 4 × 4 square. There are 
more than 63 million possible permutations that need 8.1 gigabytes of RAM. All the possible 
permutation are calculated by the RcppAlgos package in R (Wood, 2020). We assume that the 
true values of the spatial behavior are known for all matrices and equal to 𝜌# = 0.8, 𝜎#$ = 20, 𝜌> =
0.9, 𝜎>$ = 10, 𝜌4 = 0.8, and  𝜎4$ = 30 for the SAR and these values are 4, 0.1, 3, 0.5, 10, and 1 for 
exponential, respectively. The value of 𝜎?$ = 1 for both variance matrices. Figures 1 and 2 show 
the optimal allocation for the SAR and Exponetial.  

 
Figure 1. Best allocation for EXP covariance 

 
Figure 2. Best allocation for SAR covariance 

In order to investigate the efficiency of the obtained designs, we use relative efficiency used by 
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Poursina and Talebi (2014). Relative efficiency of two design 𝜉#and 𝜉$ can be calculated by   
 	
𝐸 = |A(5%,B)|

|A(5&,B)|
.	 (8) 

Since for classic designs like Latin square, strip plot, and randomly assigned designs, there is 
more than one allocation possible, we consider the average efficiency of these designs over 
several possible conditions. Table 1 illustrates the efficiency of the classic designs to the optimal 
allocation of the locations.  

Table 1. Efficiency of designs for 16 Locations 

    Maximum Efficiency 

Design of 
experiment 

Number of 
designs 

Average 
Efficiency for 
SAR  

Average 
Efficiency for 
Exponential 

SAR Exponential 

Latin Square 576 71.29 61.81 0.94 0.91 
Randomly 
Assigned 

1000 40.85 51.01 0.48 0.96 

Strip plot 24 37.59 28.89 0.56 0.51 

 
 In this paper, we consider the pseudo-Bayesian method. Hence the true values of the variance 
parameters are assumed to be known. Another important issue that should be addressed here is 
the robustness of obtained designs against the misspecification of the variance parameters. We 
consider two different scenarios here. Firstly, the misspecification is not very severe and the 
𝜽2/CD =

E
F
𝜽CGGHI/7	or 𝜽2/CD =

F
E
𝜽CGGHI/7	. In another scenario, we consider the severe 

misspecification where 𝜽2/CD =
#
#"
𝜽CGGHI/7	or 𝜽2/CD = 10𝜽CGGHI/7	. In both scenarios, we change 

the parameters such that we have more variance or less information about the field. Table 2 
shows the results of the robustness check against the misspecification.  
 
 

Table 2. Robustness of Nearly Optimal Designs Against Misspecification 

Model Parameter Efficiency Parameter Efficiency 

SAR 

𝜌# = 0.6 1 𝜌# = 0.08 0.96 

𝜌> = 0.675 1 𝜌> = 0.09 1 

𝜌4 = 0.6 1 𝜌4 = 0.08 1 

𝜏# = 15 1 𝜏# = 2 0.95 

𝜏> = 7.5 1 𝜏> = 1 1 

𝜏4 = 22.5 1 𝜏4 = 3 1 

𝜎? = 1.33 1 𝜎? = 10 1 

Exponential 

𝜌# = 5.33 1 𝜌#J40 1 

𝜌> = 4 1 𝜌> = 30 1 

𝜌4 = 6.66 1 𝜌4 = 50 1 
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𝜎# = 0.13 1 𝜎# = 1 0.99 

𝜎> = 0.66 1 𝜎> = 5 1 

𝜎4 = 1.33 1 𝜎4 = 10 1 

𝜎? = 1.33 1 𝜎? = 10 1 

Conclusion and Disscusion 
By increasing the computational power and faster algorithms, SVC models become more and 
more feasible. In this paper, we consider a non-differentiable production function (LP). The 
treatment levels and the replication for them are predetermined by the researchers’ budget. The 
optimal location for the treatment levels is found based on the D optimal criterion that maximizes 
the determinant of the Fisher information matrix for the LP model with spatially varying 
coefficients. Current technology lets us apply different levels of treatment without extra cost. So, 
finding the optimal location for the treatments helps to increase the amount of information gained 
from an experiment without imposing an extra cost on the project. The obtained designs are far 
more informative than the classical designs like Latin square, strip plot, and random designs. 
These designs also are robust against the misspecification of the parameters, but the true 
functional form of the covariance function should be known in the first place.  
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