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Abstract. The objective of this study is to use machine learning models to identify key soil and 
landscape properties affecting yield spatial patterns and yield temporal stability for management 
zone delineation and to evaluate the consistence of these factors in different prediction models. 
The study was carried out in a 44 ha corn-soybean rotation field in western Minnesota, USA. Yield 
maps from 7 years collected from 2014 to 2020 were used to create yield spatial trend (YST; 
average normalized yield map) and yield temporal stability maps (YTS; coefficient of variation 
map). In the complete dataset, 29 different soil and landscape properties were used as input in the 
machine learning models including relative elevation, slope, curvature and aspect, calculated 
from LiDAR elevation data at 1 m resolution downloaded from the MN TOPO website; 
topographic wetness index and soil brightness index calculated from PlanetScope images at 3 m 
spatial resolution; soil physical properties, and macro and micronutrients collected with 
SoilOptix, a high-resolution soil mapping system; and shallow and deep electrical conductivity. A 
farmer-friendly dataset was also tested using mostly variables that are available online and that 
can be easily accessed by farmers. All maps were interpolated to a 3 m grid using kriging. 
Prediction models for YST and YTS were created using random forest, support vector machine 
and XGBoost algorithms. To identify features that were relevant for the models, Boruta algorithm 
was used for feature selection. Once features were selected based on importance, Spearman 
correlation was used to exclude features that were highly correlated to each other to avoid 
redundance. Results showed that while all features were deemed important, relative elevation was 
the most relevant factor influencing both YST and YTS. In the farmer-friendly dataset brightness 
index was the most important feature for YST, and relative elevation was the most important for 
YTS. Other attributes such as slope, iron, sulfur, potassium and calcium soil concentrations and 
soil organic matter were also among the most important factors for both YST and YTS. Random 
forest (RF) was the best performing model among all models and test sets for both response 
variables.   
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Introduction 
The identification and division of homogenous subareas within a field for site specific 
management is the basic premise of precision agriculture (Brock et al. 2005; Doerge 1999). These 
homogenous areas are commonly known as management zones and are used to indicate where 
different rates of inputs may be applied. The delineation of management zones has been 
extensively explored, but there is still a posing challenge to its use in precision agriculture 
applications due to the numerous factors involved in limiting crop yield such as soil and landscape 
properties, biotic factors, and weather conditions. Thus, identifying and selecting the key 
properties driving crop yield and using them as base for management zone delineation is of the 
utmost importance (Sanches et al. 2019; Chang et al. 2014). 
The most common approaches for management zone delineation are the use of individual or 
multiple soil properties (Wang et al. 2021; Scudiero et al 2013; Shaner et al. 2008), crop 
performance (Blackmore et al 2003), and a combination of soil and crop attributes (Miao et al. 
2018). Another important step in delineating management zones is the selection of the statistical 
methods to group these homogenous sub-areas in groups or clusters. Fridgen et al. (2004) 
pointed out the need for an easy-to-use software to help in the decision-making process and 
developed the management zone analyst software (MZA). Due to its user-friendly interface, its 
capabilities to classify data into zones and to inform the user the optimal number of potential 
zones, MZA became widely used. Brock et al. (2005) used MZA to delineate zones based on 
multiple years of yield data from four different corn-soybean rotation systems. MZA was also used 
to delineated zones for smallholder farms in Brazil using remote sensed data (Breunig et al. 2020). 
Jiang et al. (2011) used MZA to delineate management zones based on multiple measured soil 
properties in China. 
In addition to the statistical methods and software used to divide data variables into zones, other 
mathematical principals are often used as the first step of management zone delineation to help 
with selection of key variables before performing clustering analysis. Principal component 
analysis is a commonly used mathematical tool to identify important factors in a larger dataset 
(Shukla et al. 2016; Yao et al. 2014). In more recent years, machine learning models such as 
random forest have been used to determine the relationship between response variable and 
predicting variables (Chen et al. 2017, Wang et al. 2021). Hence, the objective of this study was 
to use machine learning models to identify key soil and landscape properties affecting yield spatial 
pattern and yield temporal stability for management zone delineation and to evaluate the 
consistence of these factors in different prediction models. 

Material and Methods 
The study was carried out in a 44 ha rainfed corn-soybean rotation field (45º39’39.12” N, 96 º 
18’34.93” W) in the Traverse County located in the western region of the state of Minnesota, USA 
(Figure 1). The majority of the field area has a silty clay loam soil with 0 to 1% slope and a silt 
loam with 0 to 2% slope soil types (USDA-NRCS 2022). The region is characterized by a snow 
climate with no defined dry season and hot summers with the temperature of the hottest month 
being equal or above 22 ºC (Kottek et al. 2006; Beck et al. 2018).  Minimum and maximum 
temperature averages for the past 20 years from April to October were 3º and 31 ºC, and average 
total precipitation measure was 571.5 mm (NOAA 2022). 
Yield maps from seven years were collected from 2014 to 2020 using a yield monitor. In the seven 
growing seasons between 2014 and 2020, soybean was planted for 4 years in 2015, 2016, 2018 
and 2020, while corn was planted for 3 years in 2014, 2017 and 2019. A data cleaning protocol 
was developed to clean the yield data in order to mitigate machine errors and errors introduced 
by field conditions. Yield data points that exceed 33% or fell below 10% moisture were excluded 
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(Luck et al. 2015), as well as points with travel speed slower than 1.13 km/h and faster than 13.20 
km/h. Sudden combine speed change was also used as a criterion. Points in which the speed 
increased or decreased by 15% compared to the previous point were also excluded. The last step 
of the cleaning protocol consisted of normalizing the moisture to 15% (for corn) and 13% (for 
soybean) and exclude any points that fell below or above 3 standard deviations from the mean. 
Once yield maps from all years were cleaned, the final wet yield mass adjusted to the outlined 
moisture was normalized by dividing each data point by the field average yield for a given year 
and multiplying by 100%. Normalized yield maps were then interpolated to a 3 m grid using kriging 
and used to create yield spatial trend (YST; average normalized yield map across 7 years) and 
yield temporal stability maps (YTS; coefficient of variation map) following Blackmore (2000).  

 
Fig. 1.  Location and boundary of rainfed corn-soybean rotation field used for the study. The field has an area of 44 ha and 

is located in the Traverse County, MN, USA. 

Yield Spatial Trend (YST) and Yield Temporal Stability (YTS) prediction models 
Predication models were classified in two types: complete dataset and farmer-friendly dataset. In 
the complete dataset, 29 different soil and landscape properties were used as input in the machine 
learning models including relative elevation, slope, curvature, aspect and topographic wetness 
index calculated from LiDAR elevation data at 3 m resolution downloaded from the MN TOPO 
website (http://arcgis.dnr.state.mn.us/maps/mntopo/); soil brightness index calculated from 
PlanetScope images at 3 m spatial resolution; soil physical properties, and macro and 
micronutrients collected with SoilOptix, a high-resolution soil mapping system; and shallow and 
deep soil electrical conductivity (Table 1). In the farmer-friendly dataset, only nine attributes were 
used (indicated in bold letter in table 1). Most of these attributes are either easily available to 
farmers and are offered for free in the sources cited above, or are attributes commonly collected 
by farmers in their fields, such as soil electrical conductivity. 
PlanetScope satellite constellation is operated by Planet Labs (Planet Labs 2021) and provides 
images in the blue (455-515 nm), green (500-590 nm), red (590-670 nm) and NIR (780-860 nm) 
regions of the spectrum at a 3 m spatial resolution. The images downloaded from planet were 
part of the surface reflectance product offered by Planet, and a factor of 10,000 was applied to 
the individual bands to obtain correct reflectance data prior to soil index calculation (Planet 2019). 
All maps with different variables were interpolated to a 3 m grid using kriging tool in ArcGIS (ESRI, 
Redlands, CA USA). 
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Variable selection and machine learning prediction models 
To identify features that were relevant for the models, Boruta algorithm using the Boruta package 
in R software (Ver. 4.1.1) was used for feature selection. The algorithm uses a random forest 
classifier to set a mean threshold value that will serve as a reference to classify feature importance 
(Liaw and Wiener 2002). Each decision tree uses an attribute for classification and its importance 
is calculated separately. Attribute importance is measured based on the loss of accuracy of 
classification, and the standard deviation and average of the accuracy loss are computed (Kursa 
and Rudnicki 2010). A Z score is also computed (average loss/ standard deviation), which is then 
used as the importance measure. Features that show importance value higher than shadow 
means are deemed important, and their importance increases with higher values.  

Table 1. Complete list of variables used in the YTS and YST prediction models. Bold words represent the variables 
included in the farmer-friendly dataset.   

Labels Variables Labels Variables 
BI Brightness Index Ec Shallow Electrical Conductivity (shallow layer) 

CEC Cation Exchange Capacity Ec deep Electrical Conductivity (deep layer) 
- Relative Elevation - Loam 
- Slope - Sand 
K Potassium Plant avail. water Plant Available Water 
S Sulfur - Leakability 
- Aspect TWI Topographic Wetness Index 

Fe Iron B Boron 
Ca Calcium Mn Manganese  
P Phosphorus Mg Magnesium 

Cu Copper Ca-Mg ratio Calcium- Magnesium ratio 
OM Organic Matter K-Mg ratio Potassium- Magnesium ratio 
Zn Zinc pH pH 
- Clay Silt Silt 
- Curvature   

 
Once all features initially used were deemed important for the model, different models were tested 
by excluding features that were highly correlated to each other based on Spearman correlation. 
Data was divided into training, validation, and test sets (70, 20 and 10%, respectively). Three ML 
algorithms, including support vector machine (SVM), random forest (RF), and XGBoost were 
selected to construct prediction models for YST and YTS. Linear SVM is a Kernel-based 
technique that derives a linear hyperplane and separates data points into two classes, which often 
results in higher accuracy with non-normally distributed data than traditional stochastic models 
(Ivanciuc 2007). Data was preprocessed by centering and scaling the whole data before 
constructing models. RF consists of an arbitrary number of simple decision trees (mtry = 3 for 
present study) and can prevent overfit by producing a dataset with variables only important to the 
predicted variables for better accuracy (Were et al. 2015). XGBoost also creates trees but weights 
those trees higher if they achieve the better prediction based on root mean square error (RMSE) 
(Chen and Guestrin 2016). The algorithm provides built-in 5-fold cross-validation to avoid 
overfitting the model. The aforementioned algorithms were executed using the caret and 
randomForest package in R software (Ver.4.1.1). 

Statistical analysis 
The best prediction models were selected based on the highest R2, lowest RMSE for each 
training, validation and test sets, and the computational time that took to run the training sets. The 
running time for each model was represented by the difference between the start time and the 
end time of each model. To calculate the start and end times the system’s time was recorded 
immediately before and after the model was running. 
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Results and discussion 

Yield Spatial Trend (YST) 
The feature selection process results for the YST model using Boruta algorithm is shown in figure 
2. Despite the different levels of importance, all attributes were deemed relevant for YST 
prediction. Among the top 10 most important attributes, landscape features and macro and 
micronutrients were the major factors for variability in spatial yield potential (Figure 2A). Relative 
elevation was the most important attribute with an importance score over 60, slope was the third 
most important attribute, while aspect was the tenth. Landscape properties such as elevation and 
slope affect yield spatial variability because they are determinant factors of water flow and 
accumulation in the soil (Pachepsky et al. 2001), which drives soil water availability.  
Among the soil nutrients, iron (Fe) was the most important micronutrient and second most 
important attribute affecting yield spatial trend. Addressing field Fe deficiency is very challenging 
because of the influence of other soil conditions (Godsey et al. 2003) such as soil moisture and 
pH, in addition to the economically feasibility of applying Fe fertilizers for the whole field. However, 
site-specific Fe application can help increase yield in areas that suffer from a more limiting 
deficiency. Potassium (K) was the most important macronutrient and third among all nutrients 
available. Areas with higher K available in the soil can achieve higher corn yields than areas with 
K deficiency (Hussain et al. 2007). Organic matter (OM) was the only soil property within the first 
10. The lowest importance scores were observed for the potassium-magnesium ratio, zinc, clay, 
silt, sand, and loam attributes. Similar to the complete dataset, all attributes in the farmer-friendly 
dataset were considered important (Figure 2B). The most important variables were BI, slope, and 
relative elevation, while the least important were soil Ec deep and shallow.  
 

 
Figure 2. Boruta algorithm feature selection results for yield spatial trend (YST) prediction using the complete dataset (A), 

and the farmer-friendly dataset (B). 

Table 2 shows the complete dataset results of the different machine learning YST prediction 
models testing different combinations of attributes. The random forest model showed the best 
performance among the three models in all tests. The XGBoost model also showed a good 
performance with the R2 values in all tests above or equal to 0.68, while SVM models showed a 
high R2 value only in test 1, in which all attributes were used. Test 1 had the highest R2 values 
and lowest RMSE among all tests. Computational times for RF and XGBoost were slightly higher 
in this test due to the significantly bigger dataset, and significantly higher time for SVM.  
To minimize the number of attributes used in the prediction model, attributes were excluded based 
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on their importance and correlation to other attributes. Results showed that that R2 values and 
running time decreased as more attributes were excluded, while RMSE increased. The random 
forest model on test 2 showed similar performance as test 1, while having only one third of the 
number of attributes. Using the top 10 most important variables in the RF model resulted in R2 
values of 0.92, 0.93 and 0.93, and RMSE values of 3.03, 3.07 and 2.98 for training, validation and 
test sets, respectively.  

Table 2. Machine learning YST prediction models using support vector machine (SVM), random forest (RF) and eXtreme 
gradient boosting (XGBoost) models for the complete dataset. Different attribute combinations were tested to select the 

best performing model. 

Machine 
learning 

algorithm 

Test 1a Test 2b 

Training Validation Test  Training Validation Test  

R2 RMSE R2 RMSE R2 RMSE Time 
(min) R2 RMSE R2 RMSE R2 RMSE Time 

(min) 
SVM 0.68 6.05 0.69 6.17 0.67 6.10 135 0.23 9.50 0.24 9.74 0.23 9.44 23.6 
RF 0.94 2.53 0.95 2.54 0.95 2.52 4.9 0.92 3.03 0.93 3.07 0.93 2.98 4.1 

XGBoost 0.92 2.99 0.93 2.83 0.93 2.84 15.8 0.89 3.56 0.91 3.39 0.91 3.33 13.0 
               

 
Test 3c Test 4d 

Training Validation Test  Training Validation Test  

R2 RMSE R2 RMSE R2 RMSE Time 
(min) R2 RMSE R2 RMSE R2 RMSE Time 

(min) 
SVM 0.19 9.68 0.2 9.95 0.19 9.72 11.5 0.23 9.44 0.23 9.71 0.23 9.44 16.5 
RF 0.76 5.2 0.78 5.30 0.77 9.72 4.0 0.89 3.55 0.90 3.61 0.90 3.58 3.91 

XGBoost 0.68 6.04 0.7 5.99 0.69 5.9 7.6 0.79 4.88 0.81 4.85 0.79 4.85 3.4 
aTest 1: all attributes. 
bTest 2: top 10 most important attributes. 
cTest 3: top 5 most important attributes. 
dTest 4: top 7 most important attributes. 

The prediction model results for the second dataset are shown in table 3. The overall performance 
of all models was lower than the ones from the complete dataset, most likely due to the lower 
number of variables. However, accuracy was still high in tests 1 and 2. The best overall model 
was the RF in test 2, which showed the highest R2 and lowest RMSE than any other model. Model 
accuracy was R2= 0.84, 0.85 and 0.84 for training, validation, and test sets, respectively. The 
RMSE observed for the three sets were all equal or below 4.32. The RF model also had the fastest 
running time with 3.9 minutes. The lowest accuracies were seen in the fourth test, in which only 
the three top attributes were used.  

Table 3. Machine learning YST prediction models using support vector machine (SVM), random forest (RF) and eXtreme 
gradient boosting (XGBoost) models for the farmer-friendly dataset. Different attribute combinations were tested to select 

the best performing model. 

Machine 
learning 

algorithm 

Test 1a Test 2b 

Training Validation Test  Training Validation Test  

R2 RMSE R2 RMSE R2 RMSE Time 
(min) R2 RMSE R2 RMSE R2 RMSE Time 

(min) 
SVM 0.63 6.54 0.64 6.65 0.62 6.58 23.5 0.62 6.57 0.64 6.68 0.62 6.6 18.2 
RF 0.83 4.47 0.83 4.53 0.83 4.48 3.99 0.84 4.29 0.85 4.32 0.84 4.30 3.9 

XGBoost 0.77 5.1 0.79 5.02 0.78 4.97 6.98 0.78 5.02 0.80 4.94 0.80 4.81 11.6 
               

 
Test 3c Test 4d 

Training Validation Test  Training Validation Test  

R2 RMSE R2 RMSE R2 RMSE Time 
(min) R2 RMSE R2 RMSE R2 RMSE Time 

(min) 
SVM 0.33 8.92 0.33 9.19 0.33 8.87 13.6 0.32 8.95 0.32 9.25 0.32 8.93 7.97 
RF 0.55 7.15 0.57 7.24 0.56 7.1 3.83 0.25 9.23 0.29 9.4 0.31 9.01 3.36 

XGBoost 0.46 7.89 0.49 7.89 0.48 7.69 6.9 0.38 8.41 0.38 8.62 0.39 8.32 1.79 
aTest 1: all attributes. 
bTest 2: relative elevation, aspect, OM, slope, BI, curvature and Ec shallow. 
cTest 3: relative elevation, aspect, OM, slope, BI, and curvature. 
dTest 4: relative elevation, slope and BI. 

Yield Temporal Stability (YTS) 
Figure 3 shows the Boruta algorithm feature selection results for both the complete and farmer-
friendly datasets. Similar to the yield spatial trend, relative elevation was also the most important 
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factor affecting yield temporal stability (Figure 3A). Macro and micronutrients such as sulfur, 
copper, iron and calcium completed the list of the five most important attributes. Soil properties 
such as TWI, loam, sand, and clay contents, and curvature were the least relevant features. In 
the smaller dataset, relative elevation, organic matter, and brightness index were the most 
important attributes, while TWI and curvature had the lowest importance to the variability in 
temporal stability of the yield data. A study conducted in 2018 using artificial neural network-based 
approach to determine relevance of different attributes in corn and soybean yield also found that 
slope consistently showed high importance among the 20 predictor variables tested (Kross et al. 
2018).  
Prediction model results are shown in table 4 and 5 for complete and farmer-friendly datasets, 
respectively. The SVM models showed the lowest R2 values, highest errors and longest running 
times among the models in all tests of both datasets. Despite the overall good prediction 
capabilities of the XGBoost models, random forest showed the best performance with the highest 
accuracy among the models. In the complete dataset, the R2 values for training, validation and 
test sets for all models were above 0.79. These results indicated that five most important attributes 
would be enough to predict YTS in this field.   

 
Figure 3. Boruta algorithm feature selection results for yield temporal stability (YTS) prediction using the complete dataset 

(A), and the farmer-friendly dataset (B). 

Table 4. Machine learning YTS prediction models using support vector machine (SVM), random forest (RF) and eXtreme 
gradient boosting (XGBoost) models for the complete dataset. Different attribute combinations were tested to select the 

best performing model. 

Machine 
learning 

algorithm 

Test 1a Test 2b 

Training Validation Test  Training Validation Test  
R2 RMSE R2 RMSE R2 RMSE Time 

(min) R2 RMSE R2 RMSE R2 RMSE Time 
(min) 

SVM 0.29 4.47 0.31 4.59 0.31 4.55 110 0.23 4.68 0.26 4.8 0.24 4.78 20.4 
RF 0.86 1.96 0.88 2.02 0.89 1.97 5.0 0.86 1.95 0.88 2.00 0.88 1.97 4.2 

XGBoost 0.80 2.31 0.82 2.28 0.83 2.25 33.1 0.83 2.12 0.86 2.00 0.86 2.01 0.8 
               

 

Test 3c Test 4d 

Training Validation Test  Training Validation Test  

R2 RMSE R2 RMSE R2 RMSE Time 
(min) R2 RMSE R2 RMSE R2 RMSE Time 

(min) 
SVM 0.1 5.07 0.11 5.24 0.12 5.17 13.2 0.10 5.07 0.11 5.24 0.11 5.18 10.9 
RF 0.83 2.15 0.84 2.24 0.85 2.19 3.9 0.79 2.37 0.80 2.51 0.79 2.49 3.9 

XGBoost 0.65 3.13 0.66 3.17 0.66 3.16 3.9 0.69 2.91 0.72 2.89 0.70 2.91 9.1 
aTest 1: all attributes. 
bTest 2: top 10 most important attributes. 
cTest 3: top 7 most important attributes. 
dTest 4: top 5 most important attributes. 



Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

8 

The accuracy of YTS prediction using a smaller dataset with less variables significantly decreased 
(Table 5). The best performing model was the random forest in test 2, using the top seven most 
important attributes. The R2 values were 0.66, 0.67 and 0.68, while errors were 3.04, 3.13, and 
3.07 for training, validation and test, respectively. In addition to the lower number of attributes, 
one possible cause of the decreased prediction accuracy is the absence of macro and 
micronutrients. Based on the feature selection results, the nutrient spatial variability in the soil has 
a great effect on the crop final yield.  

Table 5. Machine learning YTS prediction models using support vector machine (SVM), random forest (RF) and eXtreme 
gradient boosting (XGBoost) models for the farmer-friendly dataset. Different attribute combinations were tested to select 

the best performing model. 

Machine 
learning 

algorithm 

Test 1a Test 2b 

Training Validation Test  Training Validation Test  
R2 RMSE R2 RMSE R2 RMSE Time 

(min) R2 RMSE R2 RMSE R2 RMSE Time 
(min) 

SVM 0.21 4.75 0.24 4.88 0.22 4.87 17.6 0.22 4.74 0.24 4.88 0.22 4.87 12.9 
RF 0.65 3.08 0.67 3.17 0.68 3.11 4.15 0.66 3.04 0.67 3.13 0.68 3.07 4.09 

XGBoost 0.57 3.44 0.60 3.40 0.60 3.38 0.51 0.56 3.46 0.59 3.44 0.58 3.47 9.49 
               

 

Test 3c Test 4d 

Training Validation Test  Training Validation Test  

R2 RMSE R2 RMSE R2 RMSE Time 
(min) R2 RMSE R2 RMSE R2 RMSE Time 

(min) 
SVM 0.07 5.16 0.08 5.33 0.09 5.24 9.74 0.21 4.79 0.23 4.9 0.21 0.88 11.2 
RF 0.43 3.91 0.45 4.04 0.47 3.92 3.88 0.69 2.88 0.71 2.95 0.72 2.91 3.97 

XGBoost 0.34 4.24 0.34 4.38 0.37 4.26 9.46 0.56 3.49 0.6 3.41 0.61 3.35 6.69 
aTest 1: all attributes. 
bTest 2: relative elevation, aspect, OM, slope, BI, curvature and Ec shallow. 
cTest 3: top 5 most important properties. 
dTest 4: relative elevation, aspect, OM, slope, BI and Ec shallow. 

Conclusion 
The identification of key attributes that affect yield spatial and temporal variability in a field can 
greatly contribute to the delineation of representative management zones for site-specific 
application. Results showed that different soil and landscape attributes had varying roles in 
predicting crop yield, and that field data easily available could be used to predict crop yield and 
delineate management zones. Despite the promising results more research is required to test the 
relevance of different attributes across multiple fields and conditions. The next steps for this 
research will be to delineate management zones based on the prediction model results and 
analyze the yield variability within each zone. In the future, this pipeline for management zone 
delineation will be tested for nitrogen management, and potential economic and agronomic 
benefits will be analyzed.   
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