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Abstract. 
Pasture fields under an integrated crop-livestock system (ICLS) usually receive low or no nitrogen 
(N) fertilization rates since the expectation is that nitrogen demand will be provided by the 
remaining soybean straw previously cropped. However, maintaining suitable field N levels is the 
key to achieving sustainability in agricultural production systems. In this sense, remote sensing 
technologies play an essential role in N pasture monitoring. With the launch of the Sentinel-2 
missions (free imagery and high spectral resolution), new opportunities have arisen for nitrogen 
status monitoring. Additionally, low-cost UAV sensors that explore the RGB spectrum are 
employed for agricultural monitoring. However, few studies have investigated the combination of 
UAVs and satellite information to assess nitrogen status variability. Thus, to estimate the nitrogen 
variability in pasture fields under an ICLS, we tested the performance of exclusively visible light 
UAV data (i.e., RGB – red, green, and blue), named UAV_RGB and Sentinel-2 data (both 
individually and combined), to monitor plant N content (PNC), aboveground biomass (AGB), and 
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nutritional nitrogen index (NNI). The study area had 200 hectares in the western region of São 
Paulo State, Brazil. During the forage (Urochloa ruziziensis) growing season, we conducted three 
field campaigns to collect data, obtaining 116 samples. We used the original bands from 
UAV_RGB and Sentinel-2 and various vegetation indices (VIs) to capture the vegetation 
conditions during the study period. The assessment of PNC, AGB, and NNI employed the root 
mean square error (RMSE), mean absolute error (MAE) in absolute and percentage terms, the 
coefficient of determination (R2), and the RMSE-observations standard deviation ratio (RSR) to 
evaluate and compare the random forest model performance. The UAV visible data combined 
with the Sentinel-2 data were complementary and benefited each other in the N estimation (RSR 
< 0,7). The combination of data overcame the individual performance. Therefore, we concluded 
that using UAV_RGB data with multispectral Sentinel-2 data is more efficient for monitoring 
nitrogen variability in commercial pasture fields. 
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Introduction 
Nitrogen (N) is one of the most demanded elements in agricultural production, whose deficiency 
reduces yield, and overapplication has undesirable environmental and financial impacts. 
Monitoring N status has been a challenge even in pastures cultivated under integrated crop-
livestock systems (ICLSs), in which soybean-pasture succession allows nitrogen recovery to 
forage grass coverage. Commonly, chemical laboratory analysis is necessary to quantify plant 
nitrogen content (PNC), which, associated with aboveground biomass (AGB), provides the 
nutritional nitrogen index (NNI). Therefore, frequent field monitoring becomes impracticable due 
to appropriate time and costs (Vigneau et al. 2011). 
Remote sensing by unmanned aerial vehicles (UAVs) or satellites is one of the most prominent 
strategies to monitor N status in plants. However, outstanding N predictions usually demand high 
sensor specifications, such as infrared bands and high spatial resolutions. Such specifications 
are commonly present on multispectral cameras boarded on UAVs or commercial satellites, which 
are expensive and impracticable to most farmers. On the other hand, low-cost cameras (red, 
green, and blue – RGB) and free satellite images, such as Sentinel 2, are exciting alternatives. 
The high spatial resolution and broad spectral resolution present on the sensors can be essential 
for N prediction. We hypothesized that the high spatial resolution provided by UAVs could 
overcome the absence of near-infrared region bands in RGB sensors, and the high spectral 
resolution from Sentinel 2 (red, green, blue, red-edge, near infrared, and shortwave infrared) 
could compensate for its broad spatial resolution. Furthermore, the association data of both 
platforms would benefit from the advantages of each platform individually. 
Thus, in this study, we assessed the performance of visible bands camera boarded on unmanned 
aerial vehicle (UAV_RGB) and Sentinel2A platforms to monitor plant N content (PNC), 
aboveground biomass (AGB), and nutritional nitrogen index (NNI) in pasture fields under an 
Integrated Crop-Livestock System. We also evaluated whether combining the remote sensing 
platform data improves prediction accuracy. 

Materials and methods 
The study area has 200 ha on a commercial farm located in the western region of São Paulo 
State, Brazil (21°38'4.64" S, 51°54'15.65" W, 338 m above sea level) (Figure 1). The soil is 
predominantly sandy loam, Ultisol type (Soil Survey Staff, 2014). The climatic conditions 
correspond to Köppen's climatic type Aw, with a summer rainy season (i.e., December-March), 
where the mean annual rainfall ranges from 1,200 mm to 1,400 mm (Alvares et al. 2013). We 
used a local meteorological station to register the climatic information during field data collection 
(Figure 2). Between 2019 July and November, the average temperature was 23.8°C, and the 
accumulated rainfall was equal to 132.6 mm (Figure 2). The ICLS of soybean-pasture succession 
began in 2018. Soybean cultivation occurred during the summer season, and the pasture 
(Pennisetum glaucum and Urochloa ruziziensis consortium) was cultivated from April 2019 to 
November 2019. This study focused on assessing the nitrogen status in pasture fields with 
Urochloa ruziziensis grass, the most commonly used grass in ICLSs in Brazil, which entirely 
covered pasture fields after July. 
We collected 116 field data samples on July 13th (35 samples), August 11th (38 samples), and 
November 4th (34 samples) during the forage growing season. A square frame of 1m21 m2 limited 
the area to collect biomass. We used white paper to limit the vertices before UAV flight, ensuring 
field measurements and images representing the same area. All the aboveground biomass (AGB) 
was collected and dried at 65 ℃ to constant weight. The dry mass weight was registered to 
determine the dry mass (Mg ha-1) and then ground to evaluate the plant nitrogen content (PNC) 
in the laboratory (Kjeldahl method). The nitrogen nutrition index (NNI) was calculated by the PNC 
and AGB ratio, according to equations (1) and (2) (Gastal et al. 2015). 

𝑁𝑁𝐼 =
𝑁𝑎
𝑁𝑐

 (1) 
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where Na = PNC in % (value in g kg-1 divided by 10) and 

Nc	 = 	aW! (2) 

where a = 3.6 and b = 0.34 (as constants for tropical grasses) and W = AGB value (dry mass) in 
Mg ha-1. 

 
Figure 1. Experimental location and spatial distribution of the sampling points by field data collection. 

 
Figure 2 - Rainfall and temperatures during the period under study. 

Sentinel 2A and UAV data collection 
We used cloud-free surface images of the study area from Sentinel 2 level-2A (Sentinel2A) on 
July 10th, August 11th, and November 4th, 2019. The Sentinel2A bands used were blue (459.4–
525.4 nm), green (541.8–577.8 nm), red (649.1–680.1 nm), and NIR (779.8–885.8 nm) bands 
with 10 m spatial resolution and red-edge1 (RE1) (696.6–711.6 nm), red-edge2 (RE2) (733–748 
nm), red-edge3 (RE3) (772.8–792.8 nm), red-edge4 (RE4) (854.2–875.2 nm), shortwave infrared 
1 (SWIR1)) (1568.2–1659.2 nm) and SWIR2 (2114.9–2289.9 nm) bands with 20 m resolution 
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(ESA, 2020). 
UAV images were acquired at the same field data collection using a quadricopter (model G-Q45, 
G-drones) with a multispectral sensor (Rededge TM, Micasense, Seattle, Washington, USA), 
flying 115 m above ground from 13:00 to 17:00 GMT always under clear-sky conditions. We 
considered only the sensor visible bands (UAV_RGB): blue (465–485 nm), green (550–570 nm), 
and red (663–673 nm) for this study. The camera was set up to 75% overlap and sidelap, and the 
automatic flight control ensured parallel paths resulting in a ground sample distance (GSD) of 
0.08 m. The UAV data spatial resolution was subsequently resampled to 1.0 m, calculating the 
mean of all pixels within the plot sample area. Pilots (researchers) and the UAV fulfilled the current 
local legislation. We used Agisoft Metashape® to process mosaics of every field campaign. 

Statistical analysis and data mining 
The complete dataset was composed of 116 samples of target variables (PNC, AGB, and NNI) 
and predictor variables (vegetation indices (VIs) (Appendix a) and original bands (OBs)). The 
predictor variable compositions were UAV_RGB: 5 VIs and 3 OBs, Sentinel2A: 51 VIs and 9 OBs, 
and the combined UAV_RGB + Sentinel2A (UAV_RGB+S2A): 56 Vis and 12 OBs. We randomly 
split the PNC, AGB, and NNI datasets between the training set (70%) and the test set (30%) per 
field data collection, ensuring data from the three periods for training and test datasets. Both sets 
were described and analyzed to determine the mean, median, minimum, maximum, and 
coefficient of variation (CV %). The Shapiro–Wilk test (p<0.05) showed no normality of the target 
variable distribution for the training and test sets. No significant difference was revealed (tNC = 
0.110 and pNC=0912 ns; tBio = -0.536 and pBio = 0.593 ns; tNU = 0.211 and pNU=0.833 ns) by 
Student’s t test (Viana et al. 2012), indicating suitable datasets. The attribute correlation was 
assessed by the Spearman method. 
We used the nonparametric random forest (RF) technique to predict PNC, AGB, and NNI. Models 
based on regression trees (CART) generate sets of trees from a random independent raffle of the 
predictor subset of attributes (Breiman 2001). RF is a simple technique suitable for dealing with 
noise and outliers that informs measures of errors and importance (Breiman 2001). We used the 
Random Forest R package (Liaw et al., 2002), tuning the hyperparameter instance number per 
node and attribute number per tree. After cross-validation k-fold=10, we selected 
hyperparameters that resulted in lower errors. 
Model performances were compared through mean absolute error (MAE) in absolute and 
percentage terms; root squares mean error (RSME) in absolute and percentage terms; coefficient 
of determination (R2); and RMSE-observation standard deviation ratio (RSR) in absolute terms. 
The RSR, proposed by Moriasi et al. (2007), rated RF models' performance using the following 
scale: very good (0.00 ≤ RSR ≤ 0.50), good (0.50 < RSR ≤ 0.60), satisfactory (0.60 < RSR ≤ 0.70) 
and unsatisfactory (RSR > 0.70). RSR is calculated through equation (3). We also generated 
prediction maps of PNC, AGB, and NNI for a subset area of 10 hectares within the study area to 
evaluate the effect on the spatial variability. 
 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸
𝑆𝐷"!#

 (3) 

where RMSE = root squares mean error and SDObs = standard deviation observed. 

Results and discussion 
The UAV_RGB, Sentinel-2A, and combined UAV_RGB+S2A performances resulted in exciting 
differences in the PNC, AGB, and NNI estimates. The UAV_RGB data resulted in the lowest 
errors and the highest R² in PNC and AGB, while the UAV_RGB+S2A showed superiority in NNI 
(Table 1). It is worth mentioning that NNI quantifies the N status and indicates a deficiency or 
excessive consumption of N by the plants, helping farmers decide about N nutrition (Gastal et al. 



Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

6 

2015). Therefore, we highlighted the results of UAV_RGB+S2A. On the other hand, Sentinel2A 
presented the lowest R², despite its excellent spectral resolution. This can be attributed to the 
worse spatial resolution. 

Table 1- Mean absolute error (MAE), root-mean-square error (RMSE), and coefficient of determination (R²) of the random 
forest models using visible light unmanned aerial vehicle individual data (UAV_RGB), Sentinel2A individual data, and the 
data combination derived from two platforms (UAV_RGB + Sentinel2A) in the PNC (plant N content), AGB (aboveground 

biomass) and NNI (nitrogen nutrition index) predictions. 

Platform MAE  RMSE R² 
 PNC  

 g kg-1 %  g kg-1 %  
UAV_RGB 2.05 20.15  3.00 29.54 0.65 
Sentinel2A 2.19 21.59  3.24 31.96 0.53 

UAV_RGB + Sentinel2A 2.11 20.77  3.09 30.43 0.60 
 AGB  

 Mg ha-1 %  Mg ha-1 %  
UAV_RGB 0.29 16.56  0.40 23.09 0.65 
Sentinel2A 0.34 19.19  0.49 27.88 0.46 

UAV_RGB + Sentinel2A 0.32 18.10  0.46 26.28 0.53 
 NNI  

  %   %  
UAV_RGB 0.07 20.73  0.09 28.14 0.46 
Sentinel2A 0.07 21.69  0.10 30.34 0.32 

UAV_RGB + Sentinel2A 0.06 17.87  0.08 23.43 0.69 

We notice that UAV_RGB+S2A performed better than the individual UAV_RGB or Sentinel2A 
models by the RSR rating, reaching satisfactory classification (0.60 < RSR ≤ 0.70) for the three 
target variables (PNC, AGB, and NNI) (Figure 3). The UAV_RGB's very high spatial resolution 
and the bands relevant to N estimates from Sentinel 2A, especially NIR and RE, likely improved 
the model prediction accuracy from the two combined platforms' data. 
In the prediction maps for the 10 ha in the study area, the PNC differences among the three 
models are notable (Figure 4). The significant details in the map generated from the spatial 
resolution of UAV_RGB represent difficulties in deploying nitrogen fertilization using the present 
machines. A feasible PNC map is reached by combining the Sentinel2A data (UAV_RGB+S2A). 
The spatial resolution range is also well represented by AGB and NNI from UAV_RGB+S2A. We 
noticed low NNI values representing N deficiency in the pasture. The N from the previous soybean 
straw did not provide pasture demand during the production season.

 
Figure 3. Visible light unmanned aerial vehicle data (UAV_RGB), Sentinel2A data, and the data combination derived from 

two platforms (UAV_RGB+S2A) in predicting PNC (plant N content), AGB (aboveground biomass), and NNI (nitrogen 
nutrition index) based on the RSR (RMSE-observation standard deviation ratio) classification. The blue color represents 

satisfactory RSR classification (0.60 < RSR ≤ 0.70), and the red color represents unsatisfactory RSR classification (RSR > 
0.70). 
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Figure 4. Prediction maps obtained using the location of the selected subset (10 ha) in the study area for PNC (plant N 

content) obtained using visible light unmanned aerial vehicles data (UAV_RGB), Sentinel2A data, and the data combination 
derived from the two platforms (UAV_RGB+S2A); for AGB (aboveground biomass) and NNI (nitrogen nutrition index) 

obtained using the data combined (UAV_RGB+S2A). 

Conclusion 
Combining data from a visible light camera onboard an unmanned aerial vehicle and the 
Sentinel2A satellite (UAV_RGB+S2A) adds relevant information to improve the prediction of 
nitrogen parameters and guide appropriate fertilization in pasture fields under an integrated crop-
livestock system. This approach is an attractive application due to the low financial cost of 
acquiring both images. 
Further research is necessary to assess the combining UAV_RGB+S2A data to predict N status 
variability under different plant coverage, soil, and weather conditions. 
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Nomenclature 
AGB aboveground biomass 

ICLS integrated crop-livestock system 

N nitrogen 

NIR near-infrared 

NNI nutritional nitrogen index 

OBs original spectral bands 

RE red-edge 

RF random forest 

RGB visible wavelengths – red, green, and blue 

RMSE root-mean-square error 

SWIR shortwave infrared 

UAV unmanned aerial vehicle 

UAV_RGB visible dataset (OBs+VIs) from UAV 

UAV_RGB+S2A Combined dataset from UAV_RGB and Sentinel2A 

VIs vegetation indices 

Appendix 
Appendix (a). Vegetation indices (VIs) derived from unmanned aerial vehicle visible lights (UAV_RGB) and Sentinel2A used 

in this study. 

Quantity Vegetation Index *Equation Platform 

1 
GLI 

Green leaf index 

(2Rgreen − Rred − 
Rblue)/(2Rgreen + Rred + 

Rblue) 
UAV_RGB Sentinel2A 

2 
NGRDI 

Normalized green red difference 
index 

(Rgreen – Rred)/(Rgreen + 
Rred) UAV_RGB Sentinel2A 

3 NPCI (Rred − Rblue)/(Rred + 
Rblue) UAV_RGB Sentinel2A 



Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

9 

Normalized pigment chlorophyll 
ratio index 

4 
TGI 

Triangular greenness index 

−0.5[(λred − λblue) (Rred − 
Rgreen) − (λred − λgreen) 

(Rred − Rblue)] 
UAV_RGB Sentinel2A 

5 
VARI 

Visible atmospherically resistant 
index 

(Rgreen − Rred)/(Rgreen + 
Rred − Rblue) UAV_RGB Sentinel2A 

6 
CIrededge 

Chlorophyll index – red-edge 
(Rnir/Rred-edge) − 1 - Sentinel2A 

7 
NDRE 

Normalized difference red-edge 
index 

(Rnir – Rred-edge)/(Rnir + 
Rred-edge) - Sentinel2A 

8 
NDWI 

Normalized Difference Water Index 
(Rnir – Rswir)/(Rnir + Rswir) - Sentinel2A 

9 
CIgreen 

Chlorophyll index – green 
(Rnir/Rgreen) − 1 - Sentinel2A 

10 
CVI 

Chlorophyll vegetation index 
Rnir (Rred/Rgreen2) - Sentinel2A 

11 
EVI 

Enhanced vegetation index 
2.5(Rnir − Rred)/(Rnir + 
6Rred − 7.5Rblue + 1) - Sentinel2A 

12 
GNDVI 

Green normalized difference 
vegetation index 

(Rnir − Rgreen)/(Rnir + 
Rgreen) - Sentinel2A 

13 
MCARI 

Modified chlorophyll absorption 
reflectance index 

[(Rred-edge − Rred) − 
0.2(Rred-edge − Rgreen)] 

(Rred-edge/Rred) 
- Sentinel2A 

14 
MCARI2 

Modified chlorophyll absorption 
reflectance index 2 

[1.5[2.5(Rnir − Rred) – 
1.3(Rnir − Rgreen)]]/� 

√ [(2 Rnir + 1)2 – (6Rnir − 5√ 
Rred) – 0.5] 

- Sentinel2A 

15 
MCARI_MTVI2 

Combined index with MCARI 
MCARI/MTVI2 - Sentinel2A 

16 
MSAVI 

Modified soil adjusted vegetation 
index 

0.5{2Rnir + 1 − √ [(2Rnir + 
1)2 − 8(Rnir − Rred)]} - Sentinel2A 

17 
MTCI 

MERIS terrestrial chlorophyll index 
(Rnir − Rred-edge)/(Rred-

edge − Rred) - Sentinel2A 

18 
NDVI 

Normalized difference vegetation 
index 

(Rnir – Rred)/(Rnir + Rred) - Sentinel2A 

19 
MTVI2 

Second modified triangular 
vegetation index 

1.5[2.5(Rnir − Rgreen) − 
2.5(Rred − Rgreen)]/� 

√ [(2·Rnir + 1)2 − 6·Rnir − 5· 
√(Rred) − 0.5] 

- Sentinel2A 

20 
OSAVI 

Optimized soil adjusted vegetation 
index 

(1 + 0.16) (Rnir − Rred)/(Rnir 
+ Rred + 0.16) - Sentinel2A 

21 
SAVI 

Soil adjusted vegetation index 
(Rnir − Rred) (1 + 0.5)/(Rnir + 

Rred + 0.5) - Sentinel2A 
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22 
SR 

Ratio vegetation index (also named 
simple ratio) 

Rnir/Rred - Sentinel2A 

23 
TCARI 

Transformed chlorophyll absorption 
reflectance index 

3[(Rred-edge – Rred) – 
0.2(Rred-edge – Rgreen) 

(Rred-edge/Rred)] 

- Sentinel2A 

24 
TCARI_OSAVI 

Combined index with TCARI 
TCARI/OSAVI 

- Sentinel2A 

25 
TVI 

Triangular vegetation index 
0.5[120(Rnir − Rgreen) − 

200(Rred − Rgreen)] 
- Sentinel2A 

26 
VARIrededge 

Visible atmospherically resistant 
index-red-edge 

(Rred-edge − 1.7Rred + 
0.7Rblue) /� 

(Rred-edge + 2.3Rred − 
1.3Rblue) 

- 

Sentinel2A 

 
 
 
 
 
 
 
 
 
 
 


