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Abstract.  
Alfalfa (Medicago sativa L.) is considered the queen of forage due to its high yield, nutritional 
qualities, and capacity to sequester carbon. However, there are issues with its relatively low 
persistency and winter survival as compared to grass. Winter survival in alfalfa is affected by 
diverse factors, including the environment (e.g., snow cover, hardiness period, etc.) and 
management (e.g., cutting timing, manure application, etc.). Alfalfa's poor winter survival reduces 
the number of living plants, delays plant development, and diminishes field productivity. To better 
understand poor winter survival and persistency in alfalfa and assess winter damage, this 
research aimed to develop an assessment tool for Canadian growers. In addition, a prediction 
model was designed to consider and account for the variability and potential risks. Both field 
measurements and remote sensing approaches were incorporated into the assessment tool.  
 
Soil samples, stem counts, and height were collected from 192 farms in four provinces – Nova 
Scotia, Quebec, Ontario, and Manitoba. The field sampling design used time-series vegetation 
indices in the k-means clustering procedure. A randomized design was implemented in each 
cluster. The stem count samples were measured from each site in the Spring and Fall of 2021. 
The soil texture was mainly loam, which varies across the provinces. A total of 1612 targeted soil 
samples were collected from the four regions. The sampling points were then positioned using 
the iPad GPS. Lab-measured soil micro-and macro-nutrients were pH, soil organic matter (SOM), 
phosphorus (P), potassium (K), cation exchange capacity (CEC), Magnesium (Mg), Manganese 
(Mn), Zinc (Zn), and Calcium (Ca). Many regions also used soil and stem characteristics for winter 
risk assessment grids. The initial field assessment scores were evaluated based on suitable 
parameters (i.e., stand age, soil pH and potassium levels, harvest frequency, and cultivar type) 
of all agro-ecological zones for the status of potential risks. Both historical field measurements 
and topographic datasets were used for the assessment model. Descriptive statistical analysis 
and correlation between stem characteristics and topographic variables, together with the 
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knowledge of soil nutrients, enhanced our understanding of the spatial heterogeneity of alfalfa 
production areas. A random forest regression model was applied. Model parameters were 
developed to determine the number of essential variables and regression trees to be used in the 
training phase; this resulted in optimal model performance and scenario maps. 
 
The prediction model and data-driven decisions pose challenges only with soil chemical analysis 
in assessing winter mortality, identifying potential agronomic and environmental factors and their 
potential for improvement. The emerging risk assessment tools and the application of generalized 
models considering all potential factors described in regional guidelines will assist Canadian 
forage growers in improving their productivity by using alternative management practices, 
including species selection and soil recommendations, using information on survival rates and 
persistency, to increase financial returns. 
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Introduction 
Alfalfa production systems are well adapted in diverse agro-climatic regions due to their economic 
importance of high yield, nutritional qualities, and capacity to sequester carbon. Profitable forage 
production depends on favorable conditions along with a selection of well-drained growing fields. 
However, there are many issues with its lower persistency and winter survival as compared to 
grass. [1,4]. Winter survival in alfalfa is affected by diverse factors, including environmental (e.g., 
snow cover, hardiness period, etc.) and management (e.g., cutting management, manure 
application, etc.). Alfalfa's poor winter survival reduces the number of living plants, delays plant 
development, and diminishes field productivity [2], which negatively affects to the production 
system of many regions. 
Due to the impact of diverse drivers and anomalies in the production system, alfalfa fields manage 
distinctively in seasons and different regions. According to regional guidelines, many 
management decisions affect alfalfa growth and persistency. This management includes variety 
selection, seeding rate, stand establishment, harvesting time, soil fertilizer and irrigation 
management, and managing moisture conditions [1]. Besides these field managements, diverse 
climatic and topographic conditions must be emphasized to manage the production fields better 
and enhance winter survival [4]. Also, alfalfa growing in the summer is a different structure that 
winter hardens alfalfa. To better understand poor winter survival and persistency in alfalfa and 
assess winter damage, this research aimed to develop an assessment tool for Canadian growers. 
In addition, a prediction model was designed to understand the variability and potential risks. Both 
field measurements and remote sensing approaches were incorporated into the assessment tool. 
 

Materials and methods 

2.1 Study site and sample data collection 
Soil samples, stem counts, and stem heights during sampling were collected from 192 farms (478 
fields) in four provinces: Nova Scotia, Quebec, Ontario, and Manitoba (Fig. 1 and Table 1). The 
field sampling design used time-series vegetation indices in the k-means clustering procedure. A 
randomized design was implemented in each cluster of the farms and fields. The stem count 
samples were measured from each site (composite of 3 data points, often called a landmark) in 
the Spring and Fall of 2021. Soil samples were also collected from the same site as the stem 
count locations. The stem count measurements were taken from a rectangular frame used in each 
landmark position (Fig. 2). The soil texture was mainly loam, maintaining moderate drainage 
conditions [2].  

Table 1: Field statistics and data collection sites 
Summary   Statistics 
Total fields 478 (out of 1040) 
Total farms 192 (out of 250) 
Number of producers 192 
Number of advisors 33 
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Fig 1. Study area and data collection sites (red points): alfalfa stem count, yield, and soil sample locations in Spring & Fall 2021. 

 

2.2 Field measurements – Stem count 
Stem count 
The stem count samples were measured from each sampling site in the Spring and Fall of 2021. 
Sample measurement locations and placement of the quadra are shown in Fig. 2.  
 

(a) (b) 
 

(c) 
Fig 2. Landmark (no. 2 out of 3 with a distance of 1 m) placed in the sampling site (a), measurements were taken with in the red 
rectangle (30x30 cm) paced on the corner of each landmark (b), and each stem was counted from the individual plant (c).   
 

Soil Sampling 

A total of 1612 targeted soil samples were collected in 2021 and 2022. The sampling points were 
then positioned using the iPad GPS. Each soil sample was obtained from a composite of 8-10 
soil cores 17 cm (7 in.) deep mixed in a sampling bucket and then processed for lab analysis. 
Lab-measured soil micro-and macro-nutrients were pH, soil organic matter (SOM), phosphorus 
(P), potassium (K), cation exchange capacity (CEC), Magnesium (Mg), Manganese (Mn), Zinc 
(Zn), Calcium (Ca), Aluminium (Al), Boron (B), Copper (Cu), Iron (Fe), Integral Suspension 
Pressure (ISP), Saturation of K/Mg/Ca, and lime index. Except pH, SOM, CEC, ISP, all properties 
were analyzed by Mehlich III extraction method. 
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2.3 Other datasets 
According to regional guidelines, cultivar, seeding rate, harvesting time, soil nutrients and 
moisture, fertilizer application, and drainage conditions were important assessment parameters. 
Historical crop and field management practices, weather, and topographic datasets were used for 
the assessment model. Those datasets were – cropping practices, soil history, temperature and 
rainfall, topographic data, and the following management practices: 
 
Crop history and stand age 

Alfalfa’s stand age was calculated by field cropping practices each year. Therefore, we only 
considered forage crops from 2018 to 2021. 
 
Soil history and texture 

Soil history and nutrient data were recorded at the field level from 2018 to 2020. In addition, the 
land suitability and soil texture map, published by the Research and Development Institute for the 
Agri-environment (IRDA), Quebec, contains valuable information at the farm level for the 
producer. 
 
Management practices 

We also collected field management data: manure, fertilizer (N-P-K), and lime applications at the 
field scale. Seeding rates and cultivar data were also collected in 2021. 
 
Topographic data 

Topographic parameters including: elevation, topographic wetness index (TWI), slope, and 
aspect ratio, were calculated from light detection and ranging (LiDAR) data of high-resolution 
digital elevation model (HRDEM) data, Canada. Drainage condition and performance were initially 
evaluated from the generated TWI. 
 
Weather data 

We used historical daily weather data, maximum and minimum temperature, and cumulative 
rainfall from the Hobolink weather station located at every farm. We also used open-source 
weather data from Meteostat to fill in the missing Hobolink data. Growing degree days (GDD) 
were calculated for alfalfa production. 
 

2.4 Data preprocessing: 
Data preprocessing: 

Stem count and soil samples were collected from the exact sample location (composite of 3 data 
points, often called a landmark). Timestamps, seasonal variations, locations, the distance 
between data points, and other variable measurements were evaluated simultaneously in the 
preprocessing steps. By removing outliers, various data features were added to the raw data for 
geospatial adjustment.  
 

Statistical analysis and outlier detection: 

Potential outliers and null values of the sample measurements (latitude and longitude, and unique 
ID of the fields along with test data point, other comments from the producer) were identified in 
this step. Data filtering was applied after generating the histogram, data distribution curve, and 
descriptive statistics. In this study, different environmental variables were considered for building 
the input and training datasets used by the model. General statistical analysis and correlation 
matrices of the selected variables were used to determine targeted variables in the following 
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sections. 
 
Stem values were counted mostly between 10 and 90 (Fig. 3). The stem count for the Fall and 
Spring seasons had a similar distribution pattern in all of the provinces (Fig. 4). Soil chemical 
analysis was compared to three provinces only since analysis data were not available for Nova 
Scotia. In terms of pH measurements, Manitoba was more alkaline than the other three provinces 
(Fig. 5). In micronutrient analysis, Quebec had a more diverse soil nutrient distribution than the 
other provinces. 
 

(a) 

(b) 

(c) 

Fig 3. Stem count by province (a) and by seasonal distribution by Fall (b) and Spring (c). 

 

  

  
Fig 4. The total stem count of this study was compared to each Province (Clockwise: Quebec, Ontario, Nova Scotia, and Manitoba).  



Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

7 

 
 

   

   

   

   

   
Fig 5. Soil nutrients at the field scale compared to different provinces in Canada. 

 

2.5 Regression forest model and parameter optimization 
Regression forest (RF) design 

Descriptive statistical analysis and correlation between stem characteristics and soil nutrients 
enhanced our understanding of the spatial heterogeneity of alfalfa production areas. A random 
forest regression model was designed and implemented for stem count prediction (Fig. 6). Model 
parameters were developed to determine the number of essential variables and regression trees 
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to be used in the training phase; this resulted in optimal model performance and scenario maps. 

 
Fig 6. Model design and process diagram. 

 

For the regression procedure, the random forest built k trees, where the predicted values were 
the average of all individual tree predictions. However, it does not handle the data beyond the 
training samples. Random forest regression creates a set of K trees [Txi,….., Txk)], where x = 
[xi,….., xb], is a b-dimension of the input vector which forms a forest. The predicted values were 
obtained by the aggregation of the results of all individual trees. The following equation provides 
the random forest regression predictor: 

𝑓(𝑥) = & 𝑇!(𝑥)
!"#

!"$
								𝐾							************

 (6) 

Random forest builds a set of regression trees (K) and averages the predictions of individual trees 
to make a final prediction [5]. Where k is the individual bootstrap sample, and Tk is the individual 
learner or decision tree. 
 
Parameter optimization 

The training dataset checked different combinations of soil properties in the training stage to fit a 
regression model and determine the parameters of the random forest model. The model used all 
of the Fall datasets in training, and there was no test dataset. In this case, the model score is 
0.79, and the validation (out of bag - OOB) score is 0.56. If we used 20% in test data, the validation 
mean absolute error (MAE) of the stem count was 13. After the hyper-parameter optimization (‘n 
estimators': 100; 'max features': 5; 'bootstrap': True; 'random state':35; ‘min samples leaf’:4), the 
RF training and validation score were 0.80 and 0.54, respectively. Based on the training and test 
data, the relative importance of all soil variables is shown in Fig. 7. For the sensitivity analysis, it 
is important to evaluate the model on a dataset using k-fold cross-validation. 
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Fig 7. Feature importance of all variables for the regression model before optimization 

 

Results and Discussion 

Stem analysis 
The stem count and descriptive statistics are shown in Tables 2 and 3. Higher mean values (μ = 
73.91) of stem count were observed in Nova Scotia than the other three provinces, while 
maximum stem count was observed in Quebec. A maximum stem count of 165 was found in the 
Spring season, while the maximum stem count in the Fall season was 145. The average stem 
count was above 45 in all provinces, which was not considered in limiting yield of the fields 
according to the regional guideline [4].  

Table 2: Descriptive statistics for stem count data of differences 
Province Min Max Mean Std 
Quebec 0 165 45.87 24.46 
Nova Scotia 38 145 73.91 19.85 
Ontario 0 110 44.98 23.56 
Manitoba 0 160 38.61 25.86 

 

Table 3: Descriptive statistics for stem count data of two seasons 
Season 

    

Spring 0 165 43.68 25.28 
Fall 0 145 45.62 24.42 
Total 0 165 44.64 24.88 

Soil analysis 
The lab-measured soil analysis data were processed and selected for the prediction model. 
Ranges between the maximum (max) and minimum (min) values for the soil properties varied 
throughout the whole field and farm data (Table 4). The range, standard deviation - Std (σ), and 
mean (μ) for each soil parameter showed a large variability in the different provinces. The 
measured pH values varied between 4.9 and 8.1 (lower values of σ = 0.41 and μ = 6.24 in Quebec 
than in other provinces). For the SOM measurements, the range varied highly between 1.5% and 
57.1% in the whole dataset (σ = 2.9%), which was observed in Quebec. The standard deviation 
value of Na measurements was larger in Manitoba (σ = 121.42 ppm) than in Ontario (σ = 9.01 
ppm). Less variability was found in P measurements (μ = 57.80 ppm in Quebec; μ = 58.88 ppm 
in Ontario, while K showed high variability (μ = 339.24 ppm in Manitoba; μ = 145.17 ppm in 
Ontario. 

 

 

Table 4: Descriptive statistics of soil nutrients in the three provinces of Canada. 
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Al (ppm)  

 
SOM (%) 

Province Mean Std Min Max  Province Mean Std Min Max 
Manitoba 337.02 235.07 0.00 995.00  Manitoba 6.25 2.54 1.60 12.20 
Ontario 878.98 198.28 454.00 1584.00  Ontario 4.82 1.80 2.10 12.20 
Quebec 941.84 290.07 228.00 1895.00  Quebec 5.25 2.91 1.50 57.10 

            
B (ppm)  

 
P (ppm) 

Province Mean Std Min Max  Province Mean Std Min Max 
Manitoba 3.22 2.53 0.30 14.30  Manitoba 62.33 57.84 6.25 295.98 
Ontario 1.01 0.43 0.10 2.20  Ontario 58.88 46.73 11.61 262.05 
Quebec 0.60 0.58 0.00 16.90  Quebec 57.80 49.20 4.91 495.09 

            
CEC (meg/100g)  

 
K (ppm) 

Province Mean Std Min Max  Province Mean Std Min Max 
Manitoba 47.96 28.93 11.10 175.90  Manitoba 339.24 260.18 35.71 1337.05 
Ontario 22.64 5.93 12.50 42.50  Ontario 145.17 55.33 55.80 319.64 
Quebec 19.02 5.55 8.80 50.50  Quebec 128.07 75.76 19.64 840.63 

            
Ca (ppm)  

 
Ca_sat (%) 

Province Mean Std Min Max  Province Mean Std Min Max 
Manitoba 6868.12 5478.43 1211.16 33037.50  Manitoba 68.45 14.89 37.00 94.00 
Ontario 3131.23 1415.20 691.07 8201.34  Ontario 67.10 17.70 22.00 96.00 
Quebec 2167.28 875.13 516.07 7389.73  Quebec 56.19 13.13 18.00 97.00 

            
Cu (ppm)  

 
K_sat (%) 

Province Mean Std Min Max  Province Mean Std Min Max 
Manitoba 3.04 2.22 0.00 11.79  Manitoba 2.23 1.61 0.00 7.80 
Ontario 2.58 2.03 0.63 21.96  Ontario 1.74 0.75 0.60 4.00 
Quebec 2.34 1.63 0.26 15.50  Quebec 1.73 0.88 0.20 9.50 

            
Fe (ppm)  

 
KMgCa_sat (%) 

Province Mean Std Min Max  Province Mean Std Min Max 
Manitoba 130.02 80.97 0.00 558.16  Manitoba 92.31 12.38 46.10 100.00 
Ontario 206.80 56.58 113.99 345.46  Ontario 77.66 17.70 28.00 100.00 
Quebec 227.21 71.67 72.78 594.82  Quebec 67.56 14.06 20.40 100.00 

            
ISP (%)  

 
Mg_sat (%) 

Province Mean Std Min Max  Province Mean Std Min Max 
Manitoba 15.50 12.19 1.40 49.30  Manitoba 21.63 11.44 5.21 51.51 
Ontario 6.73 5.40 1.60 40.80  Ontario 8.82 4.62 2.61 17.81 
Quebec 6.56 6.05 0.50 47.50  Quebec 9.64 5.24 1.67 30.34 

            
Lime index  

 
Na (ppm) 

Province Mean Std Min Max  Province Mean Std Min Max 
Manitoba 73.09 4.26 61.00 76.00  Manitoba 61.48 121.42 0.00 1204.91 
Ontario 69.93 4.22 62.00 76.00  Ontario 25.67 9.01 10.71 50.89 
Quebec 68.57 2.67 58.00 76.00  Quebec 22.82 12.30 0.00 89.29 

            
Mg (ppm)  

 
Zn (ppm) 

Province Mean Std Min Max  Province Mean Std Min Max 
Manitoba 1254.23 894.94 117.86 4337.05  Manitoba 5.77 7.71 0.90 45.80 
Ontario 223.39 103.83 53.57 591.96  Ontario 4.24 1.82 1.60 11.50 
Quebec 238.33 193.33 29.02 1437.50  Quebec 3.44 2.47 0.50 46.60 

            
Mn (ppm)  

 
pH 

Province Mean Std Min Max  Province Mean Std Min Max 
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Manitoba 107.57 71.34 22.00 305.20  Manitoba 7.02 0.72 5.10 8.10 
Ontario 82.43 61.97 7.40 266.90  Ontario 6.40 0.69 5.10 7.50 
Quebec 35.42 33.60 3.50 286.00  Quebec 6.24 0.41 4.90 7.70 

           
      

 
Buffer pH 

      Province Mean Std Min Max 

      Manitoba 7.31 0.43 6.10 7.60 
      Ontario 6.99 0.42 6.20 7.60 
      Quebec 6.86 0.27 5.80 7.60 

Alfalfa is growing in an optimum condition of soil pH between 6.5 and 8.0 [2]. Lower pH level 
(<6.0) was mostly found in Quebec. The soil sample analysis observed lower K values (<80 ppm), 
mainly in Manitoba and Quebec. According to the regional guideline, lower levels (<80 ppm) of 
soil exchangeable K caused more winter damage. 

 

Correlation analysis 
According to the relationship between the predictor variables (soil analysis) found in Fig. 8, most 
variables were minimal colinear and considered for the prediction model. Pairwise relationships 
between the stem count, soil properties, and their strengths are shown in a correlogram (Fig. 9). 
SOM correlated positively (r = 0.16) with Spring Stem count measurements. However, no 
systematic correlations of the micronutrients were found with Fall stem measurements.   

 
Fig 8. Correlogram between soil nutrients of four provinces.  
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           Stem count:  Fall   Spring 

Fig 9. Correlation between soil nutrients and stem count (Fall and Spring 2021 measurements)  

 

Development of the random forest regression 
Training datasets were prepared for the model prediction after a rigorous statistical assessment 
of the field measured data. In the RF regression model, from the original data (8242 data points) 
of soil properties, 80% of the dataset was randomly selected for the training data, and 20% served 
as a test set and a final validation set. About 60% of the training data were randomly selected for 
developing forest model estimators and evaluating the parameters in the trained model. About 
20% of the data were selected for cross-validation and performance evaluation of the regression 
model estimator at this initial stage. In this study, approximately one-sixth of the data points (1374 
out of 8242 sample datasets) served for the regression models' final validation and accuracy 
assessment. In the regression model, the predictor variables (number of sample points, n= 1374) 
that have a different effect in stem count assessment.  
The sensitivity analysis of individual variables was evaluated by the degree of contribution when 
the RF model split a node for decision. This study tested a single approach variable reduction 
(default settings). The RF model evaluated the relative importance of 21 variables. Less influential 
variables (micro-nutrients) were removed for testing the model performance. Fig. 10 showed the 
relative variable importance when selected nutrients were considered for predicting the stem 
count for winter assessment. The selected variables were pH, soil organic matter (SOM), 
phosphorus (P), potassium (K), cation exchange capacity (CEC), Magnesium (Mg), Calcium (Ca), 
and Aluminum (Al). The n-estimators values were selected from a range in the trained model. The 
optimum value for n-estimators with a ten-fold (k = 10) CV procedure was within a range from 120 
to 230 for the different stem count values. Based on the initial results, the optimum value of n-
estimators was 100, where R2 improved for Spring and Fall stem prediction. After several runs, 
R2 reached the maximum level (R2 = 0.47) in the independent cross-validation phase when the 
number of dominant variables among the soil chemical analysis was selected. 
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Fig 10. Feature importance of the selected variables for the regression model 

 

Conclusion 
The prediction model and data-driven decisions pose challenges in assessing winter mortality, 
identifying influential agronomic and environmental factors and their potential for improvement. 
The RF regression (training and testing) analysis indicates that soil variability determined using 
field measurements and methods improved the construction of precise prediction models for 
winter assessments. The emerging risk assessment tools and the application of generalized 
models will assist Canadian forage growers in improving their productivity by using alternative 
management practices, including species selection and soil recommendations, by using the 
information on survival rates and persistency to increase financial returns [6]. 
Besides many challenges in the data collection system, only reliable field measurements deploy 
to build a numeric simulation for improving alfalfa’s winter assessment. Along with the RF model, 
internal model validation and independent cross-validation would increase accuracy and 
efficiency for the alfalfa stand assessment. Immediate research work will be emphasized on other 
variables – weather variables, drainage characteristics, seeding rate, and cultivar type – along 
with feature scaling and error optimization of the numeric simulation, which will be better off the 
decision support tool. The developed algorithm and model will improve the prediction methods 
and provide tools for a decision support system in any dynamic production system across the 
provinces. Further research will validate and implement results through a set of case studies, after 
which the findings will be disseminated among the agricultural farming communities. Thus, 
erroneous data removal techniques and supervised machine learning prediction frameworks 
could be implemented as web applications to facilitate appropriate site-specific agronomic and 
environmental decisions. 
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Nomenclature 
 
Aluminum (Al) 

Bore (B) 

Calcium (Ca) 

cation exchange capacity (CEC) 
Copper (Cu) 

High-resolution digital elevation model (HRDEM) 

Integral suspension pressure (ISP)  

Iron (Fe) 

Light detection and ranging (LiDAR) 

Magnesium (Mg)   

Manganese (Mn)  

Maximum value (Max) 
Minimum value (Min) 

Out of bag (OOB) 

Phosphorous (P) 

Potassium (K) 

Random Forest (RF) 

Saturation of Ca, K, Mg, K+Mg+Ca)  

Sodium (Na)   
Soil organic matter (SOM) 

Standard deviation (Std) 

Topographic wetness index (TWI)  

Zinc (Zn) 


