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Abstract.  
Crop yield prediction is an important aspect of farming and food-production. On-farm soybean 
(Glycine max L.(Merr.)) yield estimation enables farmers or crop producers to make some key 
management decisions regarding storage, transport, and sales of the product. Yield prediction 
prior to harvest can be of great values for soybean breeders since it can help to make decisions 
on what genotypes should be advanced or discarded in their breeding programs. Existing 
soybean yield estimation approaches, such as satellite imagery-based yield estimation, has 
various limitations such as a lack of real-time and on-farm decision making capabilities. Moreover, 
due to high-end computation and expertise requirements, present technology that provides on-
farm decision making is not practicable for end-users. The objective of this study was to apply 
transfer-learning to train current Machine Learning (ML) frameworks, compare them, and suggest 
the optimum architecture for small-end devices like smart-phones or embedded systems for real-
time soybean pod counting, which then could be used to estimate yields. This study is aimed to 
aid soybean breeders to estimate yield from infield still images or real-time video data collected 
using smart phone sensors. To enhance the dataset and generalize the trained model and 
improve predictions, various data augmentation techniques were applied to the image dataset. 
Toward this goal, we train a variety of streamlined light-weight Deep Learning (DL) based object 
detection frameworks to compare and find the best architecture by testing and evaluating the 
model using COCO-evaluation metrics. We use transfer-learning to train existing state-of-the-art 
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DL models (YOLOv5-small, YOLOv3-tiny, EfficientDet-Lite, SSDLite Mobilenet v2) and compare 
their performance to identify the architecture taking in consideration the tradeoff between speed 
and accuracy for mobile and embedded systems. Our research shows that YOLOv5-small exhibit 
the best performance in terms of accuracy with an mAP@0.5 of 87.9 and mAP@0.5:0.95 of 
43.7%, outperforming other light-weight architectures by a large margin. This study makes a 
significant contribution towards choosing the best light-weight DL architecture for soybean pod 
count strategy for in-field yield estimation that will aid soybean breeder and farmer alike. 
 
Keywords.   
Plant Phenotyping, Deep learning, embedded devices, object-detection, high-throughput pod 
count.  

INTRODUCTION  

Yield is the quantitative measurement of crop [1]. In precision agriculture, crop yield estimation is 
an essential component that can provide support for agricultural decision-making and 
management [35]. Soybean yield estimation can be performed using three main methods: 
counting the pods per plants (PN), the number of seeds per pod (SPP), and finally by measuring 
the seed size [2]. Predicting yield before harvest can help estimating the net return of the crops, 
particularly if additional investments are to be made, and more importantly, considering the 
environmental factors, and the yield output of the genotype, farmer can plan for the upcoming 
seasons. For soybean breeders it is important to predict the performance of new varieties to 
further maximize its yield capacity [3], which is done via estimating the yield by measuring 
phenotypic features like PN, SPP, or seed size data to develop high-yielding cultivars [2].   

Soybean is one of the most economically important crops in the world with an average production 
of 3378.5 Kg /ha in 2020 alone [4]. Therefore, it is important to understand the underlying genetic 
mechanism behind the agronomic traits of a crop that will help breeders to improve its yield 
potential for the upcoming seasons [6]. During crop development, agronomic and seed quality 
attributes are improved by crossing phenotypically superior soybean cultivars and selecting 
improved offspring in each cycle [17]. Through the combination of selective breeding and genetic 
engineering, soybean production per hectare increased by twofold from 1961 to 2020. Similarly, 
during the last 60 years, the total hectares of grown soybeans have expanded by 32.8% [4].    

Crop yield is affected by several variables, including weather availability, soil types, seed variety, 
fertilizers, etc. In more general terms, the yield production will depend on the crop genotype (G) 
and its interaction with the external environment (E), which in turn produces the variation in the 
yield [7] [3] [8]. Primarily, soybean yield predictions are generated by statistical analysis or 
machine learning application on spectral data, remote sensing vegetation indices, soil properties, 
weather data, among other layers of information [1][9]. Recent trends show an increase in the 
application of digital image processing and Machine Learning for crop yield estimation [8]. In 
addition, a wide variety of imagery techniques have been employed to acquire these digital 
images, such as remote sensing (satellite [34], unmanned aerial vehicles (UAVs)) [10], proximal 
sensing (robots [13], smartphone cameras [2]). While majority of the research has focused on 
RGB images (red, green, and blue), some researchers have also explored the use of multispectral 
sensors to estimate soybean yield [11].  

Previous research has focused on yield estimation based on satellite imaging, which provides 
estimates for a broader region (county, state, country), but this does not satisfy an in-filed real-
time yield estimate for individual farmers and breeders, and there have been very few studies 
carried out in this space [9]. Because pod counting has a higher correlation with yield, it is now 
being used to estimate soybean yield more often than ever before. It is very common that a 
soybean breeder will have field trials with thousands of small plots to test a variety of genotypes 
in their breeding program. As one can image, manually counting the pods from individual plots on 
that kind scale would be expensive, labor intensive, and the results would prone to inaccuracies 
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due to individuals’ fatigue [12] [13]. Therefore, it's more necessary than ever to investigate a DL 
based, scalable, high-throughput pod counting technique that can be applied in real-time on low-
end devices for in-field applications of high-throughput phenotypic research.    

The use of computer vision coupled with machine learning or deep learning have the potential to 
play a big role in the development of solutions for in-field real time soybean pods assessment to 
support the development pre-harvest soybean yield predictions [1][12]. The recent advancement 
in ML and DL that are associated with computer vision (CV) has enabled vision (image) based 
yield estimation more practical and efficient.  In contrast to soybean pod counting, where the pod 
and background are in a noisy environment, current CV yield estimation applications are widely 
seen in occlusion and clutter free background environments [13]. To overcome background and 
noise related hurdles, one can use multiple view angles and image fusion techniques to improve 
the accuracy and performance of the DL architecture deployed [13]. Most of the CV studies have 
demonstrated that larger architectures lead to superior performance, but they are resource 
intensive, making their deployment on mobile devices with limited computing capabilities 
impracticable. The task of finding a light-weight architecture that offers a tradeoff between speed 
and accuracy for edge devices is ever more challenging due to limited research carried out in this 
subject matter [14]. Therefore, this study was carried out to investigate the potential of lightweight 
mobile architectures for DL based object detection for soybean pod counting to support the 
development of better soybean yield predictions. The objective of this study was to compare the 
performance of existing light-weight architectures for pod count and to determine the best 
architecture that provides good performance despite the challenges faced by DL architectures 
during the feature extraction step, such as clutter and background noises and smaller size of the 
target object.    

MATERIALS AND METHODS  

Data acquisition and preprocessing 
Data was collected from one of the NDSU soybean breeding program’s field trials, which was in 
Casselton, ND, USA. A Google Pixel 4a smartphone was used for data collection since the overall 
goal of the project is to deploy the best performing trained neural network on a smartphone 
towards the end goal. A total of 7002 images were acquired, which then were used to generate 
additional augmented images (3000 images), resulting in a dataset with 10,002 images. The 
images were split into training and test sets using a 90:10 ratio, resulting in 8968 images being 
used for training and 997 images being used for testing. During augmentation, photometric and 
geometric transformation were applied. For photometric augmentation, we applied methods like 
brightness, contrast, gamma, smoothness, and gaussian noise arbitrarily. For geometric 
transformations, the images were subjected to random cropping, rotation, flipping, and zooming. 
Each image was then labelled using LabelImg software [36] under YOLO labelling format and 
Pascal VOC format [33] to meet each architecture requirements. After first manual labelling 
process, we use pseudo-labelling technique [32] to expand the dataset and label all 10,002 
images.   
Machine learning framework for soybean pod count 
Since overall goal of the project is to develop a solution for real-time yield estimation in the field, 
training and implementing an object detection algorithm in a device such as a laptop or a desktop 
computer would create some difficulties for field implementation. Hosting the model on a cloud 
computing platform, on the other hand, can solve this problem, but one would still need a reliable 
and fast internet connection for data transfer between the server and the user, which is typically 
limited in rural locations throughout the world. The best method for entirely overcoming those 
issues is to host the DL model on a mobile or embedded device. Toward that end, the focus of 
this study was to train smaller versions of current state-of-the-art (SOTA) object detection 
frameworks, compare their performance in terms of accuracy, and deploy the best performing 
model on a smartphone with edge Tensor Processing Unit (TPU). 
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YOLOv3-tiny 

The YOLO [20] working concept unifies the architecture and, as a result, performs feature 
extraction and bounding box/class prediction in a single stretch, while treating the task as a 
regression problem [37]. While YOLO isn’t particularly good at accurately localizing target objects, 
it generates fewer mistakes in terms of background false positives than Fast R-CNN, a 
predecessor to the SOTA object detection framework Faster- RCNN [23]. K-means clustering is 
used to estimate the bounding box beforehand, whereas to extract features from three scales, a 
technique like feature pyramid networks (FPN) [22] is utilized. For feature extraction, Darknet-53, 
a larger backbone with 53 convolutional layers (an upgrade from Darknet-19 utilized in YOLOv2 
[24]) is employed. Data augmentation also plays a critical role in the performance of YOLOv3 
during training. The network produces a 3-d tensor encoding with bounding box, objectness, and 
class prediction as outputs. YOLOv3 tiny [21], a lightweight architecture of YOLOv3, which is 
based on Glenn Jocher’s Pytorch implementation of YOLOv3 [25] was used on this study. 

YOLOv5-small 

Like the previous versions of YOLO, single-shot object detection architectures, YOLOv5 follows 
the same working principles of its predecessors while having major improvements overall. The 
model size was drastically reduced, enabling it to be deployed on small-end devices while the 
speed and accuracy of the model was increased [28]. Self-adversarial training (SAT) and mosaic 
data augmentation [26, 27] approaches are used during training to improve the model's 
robustness, allowing it to detect target objects out of context from previously unseen data [27]. 
YOLOv5 takes into consideration the size variation of the target objects (i.e., identifies small, 
medium, and big target objects), leading to the development of three distinct sizes (18x18, 36x36, 
and 72x72) of feature maps, allowing for multi-scale prediction [28]. After careful consideration, 
YOLOv5-small, a smaller variant of YOLOv5 (v6.1-61-gbc3ed95) was chosen for this study for its 
optimum size, speed, and accuracy. 
EfficientDet-LiteThe YOLO 

EfficientDet a family of object detection models based on Weighted Bi-directional Feature Pyramid 
Network (BiFPN) (improved Path Aggregation Network (PANet) [28] developed by Google, 
employs EfficientNet (ImageNet-based pre-trained model) [18] as its backbone with the goal of 
improving speed and accuracy. Branching out from this architecture, EfficientNet-Lite [29] was 
developed to optimize the performance of this architecture for mobile devices. To achieve this 
goal, the following changes were made using Tensorflow Model Optimization Toolkit: 1) removal 
of the Squeeze-and-Excitation (SE) building block, 2) post-training quantization for edge TPU, 3) 
substitution of SWISH activation with Relu6, and minor improvements to model backbone and 
head layer to improve efficiency [18,19].   
SSDLite Mobilenet v2The YOLO 

SSDLite, a lightweight architecture variant derived from SSD, is an excellent mobile one-shot 
detection architecture head. In combination with efficient backbone architectures like MobileNet 
V2 or MobileNet V3, SSDLite achieves SOTA performance on mobile and embedded devices 
[14]. Single Shot MutliBox Detector (SSD) was introduced as a single-shot-detector with 
improved speed and accuracy on low-resolution images targeting embedded systems. It 
provides a reasonable performance with a fair tradeoff between speed and accuracy [15]. 

MobileNetV2 is a neural Network architecture tailored to fit mobile computational constraints. This 
architecture is designed to minimize the computational memory requirement while trying to retain 
a reasonable accuracy. The major improvement of this architecture is attributed to its inverted 
residual layer with linear bottleneck, which inputs a low-dimension representation of image which 
is scaled up and passed on to the convolution layer. Later, the extracted features from the 
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convolutional layer are projected back on to the low-resolution representation using a linear 
convolution, thereby reducing the computational requirements [16]. 
Model Evaluation 
We evaluate the performance of each detection architecture using mean Average Precision 
(mAP) with an IoU threshold of 0.5. The average precision (AP) takes a predefined confidence 
threshold into consideration and computes the number of positive detections in each image that 
falls above the confidence threshold. Therefore, the predicted bounding boxes that has 
overlapping over ground truth bounding box with threshold below the predefined confidence 
threshold is considered negative. In a multi-class detection problem, the mean Average Precision 
(mAP), which is the average of Average Precision (AP) of all the class [33], can be computed 
using equation: 

𝑚𝐴𝑃 =	
1
𝐶(𝐴𝑃!

"

!#$

 

COCO evaluation [31] reports object detection performance with two metrics, mAP50 and 
mAP50:95. For our evaluation, due to single class (soybean pod), both mAP and AP are the 
same. To measure the overlapping between the predicted bounding box and the ground truth, 
intersection over union is used. IOU represents the intersected area between the predicted 
bounding box Bp and the ground-truth bounding box Bgt divided by the area of their union [33]. 
IOU can be expressed as: 

𝑂𝑈 =	
𝑎𝑟𝑒𝑎	𝑜𝑓	𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑎𝑟𝑒𝑎	𝑜𝑓	𝑢𝑛𝑖𝑜𝑛  

Model training 
We used NVIDIA RTX A5000 GPU to train YOLO 3, 5, SSDLite-MobileNet V2 and EfficientDet-
lite0. All the models were trained for 300 epochs with an input size of 640x640 pixels. The batch 
size for single-shot detector were set at 64 during the training. Both YOLO architectures were 
trained using Pytorch 1.11.0+cu113 with default training hyperparameters. EfficientDet-lite0 was 
trained with maximum instances per image set to 2500, maximum detections set to 5000, at a 
batch size of 16. SSDLite MobileNet V2 was trained with an Intersection over Union IoU threshold 
of 60%, maximum detections and maximum number of bounding boxes set to 1000, at a batch 
size of 4 due to GPU constrictions. The model was trained for 50,000 steps, after which the 
inference is performed on test data.  After training, the models were evaluated using Microsoft 
COCO-evaluation metrics [31] such as mAP@50 and mAP@0.5:0.95. 

RESULT AND DISCUSSION 

Results showed that YOLO v5 model outperformed other models in terms of average precision 
(Table 1) at 50% and 50-95% IoU thresholds. The results are based on the test performed on 997 
images used for test dataset in this study. 

Table 1: Coco-evaluation metrics of the model on test data. 
DL Architecture AP@50 AP@50:95 

YOLO v3 tiny 61.8% 35.3% 
YOLO v5 small 87.9% 43.7% 

SSDLite MobileNet v2 2.2% 0% 
EffecientDet0 Lite 1% 0% 

After training for 300 epochs, the YOLOv5 showed superior performance by 26.1% improvement 
in AP@50 and 8% increase in AP@50:95 scores in comparison to its predecessor YOLOv3. This 
improvement can be attributed to its improved backbone network, which incorporates Cross Stage 
Partial Network (CSPNet) [30], resulting in significantly better performance at extracting features 
from the data. In addition, incorporation of SAT and MOSAIC augmentation techniques enabled 
the network to learn better from a more challenging training scenario. These techniques also 
improved the resilience of the model to changing background conditions and noise in the data. 
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Figure 1 shows the output of YOLOv5 on random images from test dataset where the soybean 
pods and the background color show some similarity. Based on the output, the model performs 
reasonably well on the data provided despite some false positives and false negatives. Evaluating 
the confusion matrix from Figure 2 , it is more evident that the model still struggles to classify the 
soybean pods from the background where 35% of the time it falsely classified the background as 
soybean pod due to similarity and noise. Some of next steps that will be taken to improve the 
model’s performance are: 1) to train the model at a higher images size (e.g., 1024) which will 
improve the performance, at the cost of speed; and 2) additional data augmentation techniques 
that will alter the background of target object during training, which can be used to overcome 
background related issues. 

 
Fig 1. This output shows the performance of YOLOv5 on different sample images randomly picked for soybean test 

dataset. While the pods were detected with reasonable accuracy, some background noises (debris fallen on ground) are 
also falsely classified as pods. Overall, the performance of the model is much efficient compared to manual counting. 

 
 

Figure 2: Confusion Matrix YOLOv5 (left) YOLOv3 (right) after model inference on soybean dataset.  
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Figure 3: Performance comparison of light-weight DL based object detection architectures on four random soybean plants 

test images.  

The performance of the SSDLite MobileNet v2 and EffecientDet0 Lite models was extremely poor 
on our dataset. This could imply that these models lack the ability to extract and learn from the 
features, especially when the target size of the object is very small, such as a soybean pod. A 
high similarity between the pod color and the background could be another limiting factor 
preventing these networks from performing well. To improve the detection performance, multiple 
viewpoint methods, as described by [13], can be introduced in the smartphone and fed into the 
DL algorithm for prediction, after which the detected bounding boxes can be combined and filtered 
to finalize and count the number of pods per row or plot. 
Based on the results found on this study, it can be concluded that suggest that YOLOv5 small, 
without any prior modification to its neural network, performs better than other light-weight 
architectures when targeting to detect small objects such soybean pods still on the plants under 
field condition. 

CONCLUSION 
The main goal of this study was to find a suitable DL based object detection model that can be 
used in the future for estimation of soybean yield using pod count strategy. To achieve this goal, 
four different DL models, each with its own uniqueness in accuracy and speed, were trained and 
evaluated,  
Based on the coco-evaluation metrics, YOLOv5 small showed the best performance among all 
the four models compared on this study. Not only did that model performed well, but it was also 
able to detect pods accurately under varying conditions induced by data augmentation 
techniques. When the model was deployed on an edge TPU device, it was evident that YOLOv5 
is a good fit for detecting small objects like soybean pod and has the potential for in-field yield 
estimation. As we continue research on this subject matter, future studies will focus on aspects 
to improve YOLOv5 small’s performance (train the model with larger image datasets and use of 
additional augmentation techniques) and to solve the occlusion and background issues for 
soybean yield estimation.   
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