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Abstract.  
Bayesian Network (BN) is the most popular approach for modelling in the agricultural domain. 
Many successful applications have been reported for crop yield prediction, weed infestation, and 
crop diseases. BN uses probabilistic relationships between variables of interest and in 
combination with statistical techniques the data modelling has many advantages, although it is 
crucial to reduce data overfitting to improve the model accuracy.  
In this study, electrical conductivity (EC) from Veris iScan sensor and Dualem scanner, yield data 
from a combine harvester (John Deere), and Sentinel 2 (S2) imageries were collected for ten 
winter wheat (Triticum aestivum L.) fields in Germany and ten fields in the UK for the 2020 and 
2021 seasons. The combine harvester data were analysed using ArcGIS software. For the 
German fields, the topographic wetness index (TWI), a good indicator for soil moisture, was 
calculated based on the digital elevation model (DEM) using ArcGIS software. Additionally, drone 
imageries were collected. An unmanned aerial vehicle (UAV) (DJI Mavic 2 Zoom) was equipped 
with a compact multispectral sensor (Parrot Sequoia+) and flew 60 m above ground level. The 
UAV data were analysed in Pix4D software. For the UK fields, samples of soil organic matter were 
collected. S2 imageries with 10 m spatial resolution and 5-day temporal resolution were 
downloaded from Europe’s Copernicus website for the German and the UK fields respectively. 
The obtained imageries were analysed using SNAP toolbox. 
This paper focuses on developing a Machine Learning Approach (MLA) based on BN model to 
predict wheat yield using two novel parameters which are Prior Inherent Potential (PIP) and 
Inherent Potential (IP). The model has been developed using Netica (Norsys software), 
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categorizing each node within each field from high to low PIP based on the data available for a 
given fields. A high PIP leads to a higher IP and a higher IP leads in turn to a high yield. Yield 
predictions are based on the probabilities of 50%. The actual and predicted yields of 50% 
probability maps had similar patterns of spatial variation and the correlations for the testing fields 
in Germany and UK were 0.42 and 0.35 respectively. 
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Introduction 
Crop yield prediction is one of the most challenging problems in precision agriculture so far, and 
thus numerous models have been developed and tested. To solve this problem, multi-source data 
may be required considering that crop yield depends on different factors such as weather, soil, 
fertilization and seed varieties (Xu et al., 2019). However, crop yield prediction models can predict 
the actual yield, but still, better performance is needed (Filippi et al., 2019a). 
Machine Learning (ML) has been studied by several authors (Elavarasan et al.,2018, Liakos et 
al., 2018, Somvanshi and Mishra, 2015) and can be used to provide promising yield predictions 
(Willcock et al., 2018). ML algorithms have the advantage of modeling non-linear relationships 
between different sources of data (Chlingaryan et al., 2018) and the model performance is 
improved when more data for training are available (Goodfellow et al., 2016). The most popular 
machine learning approach for modelling in the agricultural domain is the Bayesian Network (BN). 
A BN is a directed acyclic graph with nodes that represent variables and the links represent the 
relationships between nodes. This relation is specified by conditional probability tables. Handling 
missing data, and learning the relationships between variables are the two main advantages of 
BNs (Uusitalo, 2016). Moreover, BNs are a useful tool for combining expert knowledge with multi-
sources of data (Walters and Martell, 2004). On the other hand, BNs cannot deal with continuous 
data (Jensen, 2001), and thus they need to be discretized. 
Several studies, such as the yield of malting barley in absence of pesticides (Kristensen, 2002), 
the yield of energy crops in Western Canada (Newlands et al., 2010), and the influence of climate 
on sweet potato yield (Villordon et al., 2011), rice crop yield in India (Gandhi et al., 2016), country-
level corn yield in Iowa (Chawla et al., 2016) have applied BNs to the problem of yield prediction. 
Most of the studies used available climatic data and satellite data. For instance, Fu et al., 2020, 
have created a prediction model using six machine learning methods to improve the accuracy of 
the model. Normalized difference vegetation index (NDVI) was used to construct the model. The 
correlation between actual and predicted yields was 0.78 in the random forest regression (RFR). 
Wang et al. 2020, created a two-branch deep learning model to predict wheat yield on a country 
level. The model performance reached an overall R2 of 0.75. However, few previous studies have 
applied BNs for wheat yield prediction using a combination of multi-source of data i.e, topographic, 
soil, historical and weather data.  
This study aims to use collected multi-source data to develop an algorithm that predicts the future 
wheat yield using the minimum number of variables in combination with a probable weather effect. 
The novelty of this algorithm is the introduction of the concept of ‘Prior Inherent Potential’ (PIP) 
and ‘Inherent Potential’ (IP) to reduce the number of parameters of the developed model to avoid 
overfitting and increase the accuracy.  

Materials and methods 

Study area  
This study was conducted in winter wheat fields located in two countries, i.e., Germany and the 
UK. In 2020 and 2021, a total of twenty fields, ten fields in each of the two countries involved.  
In Germany, the acquired data were obtained from ten fields near Gauersheim (49o40’38.39’’N, 
8o03’22.93’’E).  All ten fields are from Füge and Landfried Farm (Fig. 1).  The criteria for the field 
selection were based on the known spatial variability in soil type and topography (mainly farmer 
knowledge), the availability of historical data (yield maps of previous crops, soil types, soil 
electrical conductivity), and the farmer’s access to precision agriculture technology especially 
yield mapping and VRA (variable-rate application) techniques.  
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Fig. 1. Google Earth image showing the study sites and the locations of the German winter wheat fields int Füge and 

Landfried Farm based in Gauersheim, Rhineland-Palatinate, Germany. 

In the UK, the ten fields are located near Reading (51o29’58.02’’N, 0o56’40.63’’E). All ten fields 
are from Coppid Farming Enterprises llp (Fig. 2) and were selected using the same criteria as in 
Germany. 
 

 
Fig. 2. Google Earth image showing the locations of the UK winter wheat fields (Coppid Farming Enterprises llp, Reading, 

UK). 
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Data sources 
Multi-source data with a various spatial and temporal resolutions, including data on current and 
historical yields, soils, satellite and drone imagery and weather, were collected for the twenty 
fields.  
Yield data for the current and previous crops and elevation above sea level were provided by 
John Deere combine harvester at 2 m intervals with a 9 m swath. Thousands of observations per 
field were collected, providing a clear picture of the spatial variability. The number of observations 
varied from one field to another based on their areas. Sentinel-2 (S2) images were downloaded 
from the European Space Agency (ESA) website (https://scihub.copernicus.eu/dhus/#/home) and 
the data were used to calculate NDVI at 10 m spatial resolution for different times during the 
growing season. Additionally, UAV-based imagery was collected 2 weeks before and after 
nitrogen application using a Mavic 2 Zoom UAV (DJI, Nanshan, Shenzhen, China Mavic), 
equipped with a compact Parrot Sequoia+ multispectral camera (Sensefly, Lausanne, 
Switzerland). The UAV with the camera flew 60 m above ground level. The camera provides a 
set of four bands: green (550 ± 40 nm); red (660 ± 40 nm); red edge (735 ± 10 nm); and near-
infrared (790 ± 40 nm). The NDVI was calculated based on the following formula: 

  NDVI = !"#$#%&
!"#'#%&

  (1) 

 
Soil Electrical Conductivity (EC) was provided by Veris iScan-sensor. Weather data was provided 
by Weierhof, a weather station located close to Füge and Landfrield farm. An overview of the data 
is shown in Table 1.  
 
Table 1. Overview of available and collected data from the German fields. 

Fields Yield data Year 

Hinteres Tal (12 ha) Wheat 
Barley 

2020 
2017 

Morgen (9.8 ha) Wheat 
Wheat 

2020 
2017 

Rosengarten (5.5 ha) Wheat 
Wheat 

2020 
2016 

Schanzgewanne (2.7 ha) Wheat 
Wheat 

2020 
2016 

Wiederschein (4.8 ha) Wheat 
Wheat 

2020 
2017 

Alzeyer (5.76 ha) Wheat 2021 

Birnbaum (4.52 ha) 
Wheat 
Wheat 
Wheat 

2021 
2018 
2016 

Brunnenwiese (3.13ha) 

Wheat 
Barley 
Barley 
Wheat 

2021 
2020 
2018 
2017 

Horn (3.12 ha) 
Wheat 
Wheat 
Wheat 

2021 
2018 
2016 

Morgen Unten (3.61 ha) Wheat 2021 

 
For the UK fields, yield data, grain and elevation were collected by a combine harvester from John 
Deere. S2 images were downloaded from the ESA website and the data were used to calculate 
NDVI at 10 m spatial resolution for different dates during the growing season. Soil Electrical 
Conductivity (EC) was provided by SOYL and was measured using a Dualem scanner at 6 m 
intervals along rows and 24 m between rows. Data of soil available nutrients were also provided 
by SOYL based on one sample per hectare and the maps of soil types were created by SOYL 
based on EC data and one soil sample/ha data. An irregular grid sampling scheme with some 
nested samples was designed by the University of Reading to collect soil samples for organic 
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matter analysis by SOYL. Weather data was provided by the University of Reading on a daily 
basis from a weather station located approximately 5 km from Coppid Farm. An overview of the 
aforementioned data is presented in Table 2.  
 
Table 2. Overview of available and collected data from the UK fields. 

Fields Yield data Year 

Camp A (9.6 ha) Wheat 
 Barley 

2020 
2017 

Chalkhouse (12 ha) Wheat 
Wheat 

2020 
2017 

Top Lane Right (7.6 ha) Wheat 
 Wheat 

2020 
2016 

Top Lane Left (4.4 ha) Wheat 
Wheat 

2020 
2016 

Homewood (4.8 ha) Wheat 
Wheat 

2020 
2017 

Audreys (13 ha) 
Wheat 
Barley 
Wheat 

2021 
2019 
2018 

Crowsley (14.8 ha) 
 Wheat 
 Barley 
Wheat 

2021 
2019 
2018 

Ladyshaw (14.7 ha) 

Wheat 
Barley 
Barley 
Wheat 

2021 
2020 
2019 
2018 

Cliff 1 (12 ha) 

Wheat 
Wheat 

Oilseed rape 
Barley 

2021 
2018 
2017 
2017 

Homestead (13 ha) 

Wheat 
Barley 
 Wheat 
 Beans 

2021 
2019 
2018 
2017 

 

Data  processing and integration 
The data came from a different number of sources, including sensors on the combine harvester, 
soil electrical conductivity data, and satellite and drone data. The points at which measurements 
were taken varied in their spatial distribution and densities within the field. Consequently, it was 
necessary to create a regular grid of data points in which all data sources were interpolated or 
extrapolated to a common grid in ArcGIS software. A 6×6 m grid was chosen because the section 
control of agricultural machinery used in precision agriculture applications is 6 m. Interpolation 
maps were created for each variable (current and previous yields, elevation, and electrical 
conductivity) based on the Kriging method of interpolation. The interpolation maps were converted 
to a raster map on which the 6x6m grid was overlayed and the value at each grid point extracted. 
For the topographic wetness index (TWI), a raster map based on the digital elevation model 
(DEM) and the slope was created and the value at each grid point was extracted. For vegetative 
indices (NDVI), the 6×6 m grid was overlayed onto the raster map of each satellite band, and the 
value of any pixel was assigned to all points located within that pixel. However, for variable rate 
N fertilizer application, it was not possible to create a map and extract the value at points, as the 
value at the neighbouring points for a 30 m swath will be the same, therefore, a “Spatial Join with 
K-nearest neighbour” method as described in the following paragraph, was used to extract the 
values of these points. 
Yield data provided by combine harvesters were filtered based on an automated data cleaning 
protocol proposed by Natale et al. (2020). This method filters the data in three steps. First, null 
points, where yield is equal to 0, are eliminated from the dataset. Second, removing overlapping 
points with the same yield value. Third, a data cleaning method, which is based on the concept 
of a ``moving window`` is applied such that each point is classified as an ``outlier`` or ``non-
outlier`` based on values occurring in neighbouring points included in a circle of radius=R. The 
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validation of points in each circle includes the following steps:  1. Definition of maximum 
acceptable coefficient of variation (CVmax- threshold of acceptability of the coefficient of variation: 
20% was used). 2. Definition of R of the neighbourhood. - defined here as 1.5 times the working 
swath width of the machine meaning that circles with a diameter of three working widths were 
used to define a window. 2.1 Calculation of the number of points included in the neighbourhood 
(N), 2.2 Calculation of coefficient of variation (CV) of the points included in the neighbourhood, 
2.3 Calculation of the number of points with CV > CVmax within the neighbourhood (NCVmax), 
2.4 Definition of the outlier: points where N=NCVmax are identified as outliers. Then, removing 
the points not included in the numeric interval between (μ-3σ) and (μ+3σ) where μ is the 
population mean and σ is the standard deviation. The protocol was applied for the yield data 
collected in both countries. 

Learning from the soil, topographic and yield data 
The MLA uses a Bayesian Network, in which the ‘nodes’ of the network represent each variable 
and links between nodes represent the interactions between variables. The resulting structure 
can be used for probabilistic inference, that is the probability that a yield at a specified grid point 
will equal or exceed a given value. It also allows the conditional dependence of variables to be 
represented so that variables are not considered to contribute additive effects, but rather a 
Bayesian Network can combine the information from correlated variables. For example, to infer 
that in situations when a particular location in a field repeatedly provides high relative yields over 
two or more years there is likely to be higher Inherent Potential than a location that has a more 
variable yield in different years. 
To “learn” what we have called the ‘Prior Inherent Potential’ (PIP) of each grid point in each field 
and also its ‘Inherent Potential’, a machine learning algorithm (MLA) works on the logic that 
locations with a high Prior Inherent Potential typically led to higher Inherent Potential and a high 
Inherent Potential lead in turn to high yield. The PIP and the IP are what are known as ‘latent 
variables’ which means they are not properties that can be measured or observed in the traditional 
sense. They summarize several factors that influence the potential of the crop to develop. Many 
of these factors are likely to be due to soil properties. For instance, the soil structure affects how 
water is stored and regulated and soil nutrient cycling affects nutrient availability to the crop. 
Observations of soil properties such as texture and carbon content may, therefore, improve the 
inference of the IP. IP also captures other factors influencing crop growth such as weeds. 
In this study, the Bayesian Network used with the MLA aims to categorise each node within each 
field from high to low PIP based on the data available for a given field. Thus, in Germany (Fig. 3), 
electrical conductivity and topographic wetness index were used to characterise the PIP whereas 
electrical conductivity and soil organic matter was used in the UK (Fig. 4). Learning was performed 
using the Expectation Maximisation approach in Netica, a Bayesian Belief Network software 
(http://www.norsys.com). 
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Fig. 3. Diagram for the MLA of ‘Prior Inherent Potential’ in the ten German fields. Topographic Wetness Index (TWI) and 
electrical conductivity (EC) have been separated into three discrete states where each state shows the range of the 
measured values. The probability distribution across states is shown as a %-probability and visualized with black 

horizontal bars. At the bottom of the EC and TWI nodes, the numbers show the mean and the SD of the values for each 
node. The model was applied to grid point locations in all wheat fields being studied for the 2020 and 2021 crop seasons 

on a given farm. There were up to ten fields per farm. 

 

 
Fig. 4. Diagram for the MLA of ‘Prior Inherent Potential’ in the ten UK fields. Organic matter (OM) and electrical 

conductivity (EC) have been separated into three discrete states where each state shows the range of the measured 
values. The probability distribution across states is shown as a %-probability and visualized with black horizontal bars. At 
the bottom of the EC and OM nodes, the numbers show the mean and the SD of the values for each node. The model was 
applied to grid point locations in all wheat fields being studied for the 2020 and 2021 crop seasons on a given farm. There 

were up to ten fields per farm. 

For the German fields, data were available for two crops. In two fields these data corresponded 
to the observed yields in 2016 and 2018, in one other field yield data were observed in three years 
(2017, 2018 and 2020). To facilitate comparisons between yields of different crops in different 
fields in different years, the yield data for a given field was normalized as percentages of the mean 
yield for that field The Inherent Potential for all ten fields was learned using the data from all fields 
simultaneously. As an example, the IP learned from the previous yields for the German fields is 
shown in Fig. 5. 
For the UK fields, data were available for five crops. In four fields this data corresponded to 
observed yields in 2018 and 2019, in one other field yield data were observed in 2017, 2019, and 
2020. IP model is presented in Fig. 6. 
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Fig. 5. Diagram for the MLA of ‘Inherent Potential’ from yields of previous crops (2016-2020) in ten German fields. The 
observed Yield node has been discretized into three categories, where each category represents a range of measured 

data. The probability distribution across states is shown as a %-probability and visualized with black horizontal bars. At 
the bottom of the Observed yield node, the numbers show the mean and the standard deviation (SD) of the values. The 

model was applied to grid point locations in all wheat fields being studied in 2020 and 2021 on a given farm. There were up 
to ten fields per farm. Crops varied and so yields were normalized for each year (taking the percentage of mean). 

 

 
Fig. 6. Diagram for the MLA of ‘Inherent Potential’ from yields of previous crops (2016-2020) in ten UK fields. The observed 

Yield node has been discretized into three categories, where each category represents a range of measured data. The 
probability distribution across states is shown as a %-probability and visualized with black horizontal bars. At the bottom 

of the Observed yield node, the numbers show the mean and the standard deviation (SD) of the values. The model was 
applied to grid point locations in all wheat fields being studied in 2020 and 2021 on a given farm. There were up to ten 

fields per farm. Crops varied and so yields were normalized for each year (taking the percentage of mean). 
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Representing weather variability  
A significant variation in yields of winter wheat from season to season is caused by the variability 
in weather conditions. The weather variables that were expected to have more influence on wheat 
yield are rainfall and mean temperature (Addy et al., 2020).  
To represent this is the model we used a Reference Yield node that described the expected 
average yield due to the weather conditions throughout the season. 

Model development 
The output of IP and the entire weather algorithm were used with in-season crop biomass (base 
on the NDVI in May) to predict grain yield. Additionally, the variable-rate nitrogen fertilizer 
application (VRA-N) which was available for German and UK fields was also used only as an 
input variable to predict grain yield. The model structure (Fig. 7) showed how variables were linked 
to predict yield for the UK fields. The model was, however, applied on a farm basis which included 
ten winter wheat fields for each country, five fields in the 2020 season and five fields in the 2021 
season. The conditional interdependencies of these variables were learned using 75% of the data 
from eight fields (four fields from each season) using expectation maximization within Netica 
software and then applied to the 25% of the data and to the other two fields (one from each 
season) to test the model. The eight fields were split randomly using Matlab R2020a software 
(www.matlab.mathworks.com). The yields were normalized based on farm level. In Germany, 
Morgen and Birnbaum were used as a testing set. In the UK the fields that were selected as a 
testing set were Camp A and Crowsley. Probabilities for each grid point were extracted from 
Netica and then the output file was processed in Matlab to calculate the predicted values with a 
50% probability. The predicted grain yield was mapped for each field and compared to the 
observed yield.  

 
Fig. 7. Diagram for MLA learning model for predicting wheat yield based on Inherent Potential, NDVI in May, weather 

algorithm and total nitrogen application. The model was applied on a farm basis. Eight fields were used to learn the model 
and two to test it. 
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Results and discussion 

Validation of predictions against ground-truthing field observations 
For each country, some fields were used to train the model and some to test the model. Testing 
the model, a confusion matrix (Table 3) helps to evaluate the goodness of predictions. 
Table 3. Confusion matrix from the German and UK fields. 

Germany Predicted Very 
Low Low Medium High Very High Actual 

  243 95 117 51 14 Very Low 
  78 172 216 68 101 Low 
  45 96 169 70 129 Medium 
  24 134 189 136 183 High 
  18 49 174 300 1104 Very High 
        

UK Predicted Very 
Low Low Medium High Very High Actual 

  243 95 117 51 14 Very Low 
  78 172 216 68 101 Low 
  45 96 169 70 129 Medium 
  24 134 189 136 183 High 
  18 49 174 300 1104 Very High 

 
To evaluate the confusion matrix the following metrics were considered:  

 Accuracy = ()'(!
(!'(!'*)'*!

  (2) 

   

  Precision = ()
()'*)

  (3) 

where TP = true positive, TN = true negative, FP = false positive and FN = false negative. 
In Table 4, the outcomes of the confusion matrix to calculate the precision and the accuracy of 
the model are presented. 
Table 4. Outcomes from the confusion matrix for Germany and UK. 

Germany  Very Low Low Medium High Very High 
 TP 243 172 169 1104 1824 
 TN 3290 2966 2770 2820 1903 
 FP 277 463 340 530 427 
 FN 165 374 696 489 541 
       

UK  Very Low Low Medium High Very High 
 TP 255 147 145 108 271 
 TN 1278 1202 1225 1293 1187 
 FP 106 238 168 206 109 
 FN 114 166 215 146 186 

The accuracy and the precision of the German and UK model were calculated using the equations 
mentioned above. The accuracy and precision for the model are 77%, 67% and 81%, 51% for 
Germany and UK respectively. 
However, the predictions in the fields used to test the model were not as good as those in the 
fields used to train the model. For example, using two of the German fields, the Kriged maps of 
predicted and observed showed similar patterns of spatial variation (Fig. 8 and Fig. 9). Alzeyer 
field was used as a training field and Birnbaum field as a testing field. 
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Fig. 8. Maps of actual and predicted wheat yield (t/ha) in Alzeyer (5.76 ha) field in Germany which was used to train the 
model. The predicted map on the right side is based on 50% probability. The values on the colour ramp cover slightly 

different ranges. 

 
 
 

 
Fig. 9. Maps of actual and predicted wheat yield (t/ha) in Birnbaum (4.52 ha) field in Germany which was used to test the 

model. The predicted map on the right side is based on 50% probability. The values on the colour ramp cover slightly 
different ranges. 

In the Birnbaum field which is one of the fields used for testing the model the correlation between 
actual and predicted values is 0.42 compared to the Alzeyer field that was used for training where 
the correlation between actual and predicted yield is 0.78. The fitted 1:1 line shows that the model 
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overestimated the yield in low areas of the field and underestimated the yield in high areas of the 
fields (Fig. 10). Sources of inaccuracy in predictions can be explained by the weed infestation, 
diseases or the model being overfitted.  
 

 
Fig. 10. Linear regression (yellow line) between actual and predicted grain yield in Alzeyer (left graph) and Birnbaum (right 
graph) fields. Data points are for each 6x6 m grid square in the fields. Predicted yields are at 50% probability. The dashed 

line is a 1:1 relationship. 

 
In the UK, the predicted yield is again better for the fields that were used to train the model than 
the fields that were used to test the model. Fig. 11 shows similar patterns for the observed and 
predicted yield in the testing field. The correlation between actual and predicted yield for the 
testing field is 0.35 (Fig. 12).  
 

 
Fig. 11. Maps of actual and predicted wheat yield (t/ha) in Crowsley (14.8 ha) field in the UK which was used to test the 
model. The predicted map on the right side is based on 50% probability. The values on the colour ramp cover slightly 

different ranges. 



 

Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

14 

 

 
Fig. 12. Linear regression (yellow line) between actual and predicted grain yield in Crowsley (left graph) and Ladyshaw 
(right graph) fields. Data points are for each 6x6 m grid square in the fields. Predicted yields are at 50% probability. The 

dashed line is a 1:1 relationship. 

Conclusion 
The proposed model which is based on a Machine Learning Approach and more specifically on 
Bayesian Networks showed a good performance for both study areas, i.e Germany and the UK. 
The driving variables which were used for the yield predictions were Inherent Potential (IP), the 
normalized difference vegetation index (NDVI), the variable rate of nitrogen application and the 
weather data. The introduction of IP was an indicator of the representation of different spatial 
locations to support wheat growth based on Prior Inherent Potential (PIP) and historical yield data.  
The PIP was calculated based on topographic and soil data. The accuracy and precision of the 
model reached 77%, 67% and 81%, 51% for Germany and UK respectively. The correlation 
between actual and predicted yield of 50% probability was better for the fields that were used for 
training. For example, in Germany, the correlation between actual and predicted yield of 50% 
probability was 0.78 for the training field and 0.42 for the testing field. In the UK, the training and 
the testing field showed a correlation of 0.53 and 0.35 respectively.  
Future work is needed to improve the model accuracy as the final algorithm will be integrated into 
the Agricolus platform.  Thus, more fields will be added in 2022. In this platform the users could 
upload individual field data and depend on the output, they could decide their next strategies.   
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