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Abstract.  
The use of unmanned aerial systems (UAS) in precision agriculture has increased rapidly due to 
the availability of reliable, low-cost, and high-resolution sensors as well as advanced image 
processing software. Lint yield in cotton is the product of three physiological parameters: 
photosynthetically active radiation intercepted by canopy (IPAR), the efficiency of converting 
intercepted active radiation to biomass (RUE), and the ratio of economic yield to total dry matter 
(HI). The relationships between lint yield and vegetation indices (VI’s) in cotton have been 
extensively studied; however, reports addressing the yield determining physiological parameters 
are far less common. A study was conducted during the 2021 growing season with the objective 
of relating different VI’s derived from UAS multispectral imagery with yield-determining 
physiological parameters (IPAR, RUE, and HI) of cotton. Five different nitrogen treatments were 
applied to generate substantial variability in canopy development and yield. Multispectral imagery 
was collected fortnightly along with light interception and biomass measurements throughout the 
season. Several different VI’s were computed using the red (668 nm), blue (475 nm), green (560 
nm), near-infrared (842 nm), and red-edge (717 nm) spectral bands. A regression analysis was 
performed to identify VI’s that can be used to predict IPAR, biomass, and RUE in cotton. Data 
analysis indicated that power functions best described the relationship of IPAR and cotton 
biomass with VI’s. GNDVI and SCCCI explained more than 90% of variation in IPAR with R2 value 
of 0.929 and 0.906, respectively. Similarly, cotton biomass was found to be strongly related with 
RVI (R2 = 0.932) and NDRE (R2 = 0.916). In context of RUE, most of the variation was best 
explained by GRVI (linear relationship with R2 0.549) and GNDVI (linear relationship with R2 
0.419). The results from this study show that VI’s such as GNDVI, RVI, and GRVI derived from 
UAS multispectral imagery could potentially be used to predict certain physiological parameters 
(IPAR, biomass, and RUE) of cotton within a growing season. Utilizing UAS technology to predict 
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these parameters can help in advancing high throughput phenotyping and prediction of yield 
driving parameters in response to nitrogen. 
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Introduction 
Remote sensing has gradually evolved from low-resolution orbital satellite imagery to utilization 
of advanced, high-resolution unmanned aerial systems (UAS) in recent years. The availability of 
reliable, low-cost, and high-resolution sensors as well as advanced and automated image 
processing software have increased the application of UAS in crop phenotyping and agricultural 
management (Barnes et al., 1996; Schuckman & Dutton, 2017). Unmanned aerial vehicles 
configured with multispectral sensors capture reflected spectral signature, within the spectral 
wavelength range from 475 nm to 842 nm, that can be used to define important crop 
characteristics like canopy cover, biomass as well as detection of stress symptoms. 
In the field of precision agriculture, UAS can assist in real-time crop information collection and 
further utilizing that information for in-season crop management decisions (Stafford, 2000; Warren 
and Metternicht, 2005). UAS imagery has been used for mapping field variability and soil 
properties, crop species classification, growth monitoring, phenotyping, stress detection, yield 
prediction, etc. (Ballester et al., 2019; Gutierrez et al., 2012; Xu et al., 2019). Also, UAS has very 
wide compatibility for different vegetations and crops as it can be used in forestry, turf grasses, 
berries, grapes, and especially row crops like cotton.   
Cotton has global importance as a commercial crop with high export value and substantial 
contribution to the global clothing and textile industry (Sui et al., 2017). The United States (US) is 
one of the top three cotton producing countries with yield forecasted around 18.3 million bales in 
2021. The US is also a prime exporter of cotton with around 35% of global cotton exports (USDA, 
2021). Out of all cotton producing states in the US, Georgia comes at the second place in terms 
of cotton harvested area of 1.2 million acres with production of 2.2 million bales for the cropping 
year of 2020 (USDA and NAS, 2021). 
Cotton possesses unique growth dynamics, such as indeterminate growth and sympodial 
branching, which makes it a challenging task to predict and manage efficiently. The fact that it is 
grown as an annual crop despite being a perennial requires extensive crop management for 
efficient yield production (Mauney, 1986; Sui et al., 2017). According to Monteith (1972), yield is 
the function of cumulative intercepted photosynthetically active radiation (IPAR) during the 
growing season, the efficiency with which the crop converts the radiation into biomass (RUE) and 
the fraction of total biomass allocated to the economically important part of the crop (HI). 
 Yield = IPAR × RUE × HI  (1) 
Out of the several applications of UAS in precision agriculture, yield prediction is one of the areas 
that needs more exploration. Cotton yield estimation during its growing season can provide 
producers an early opportunity to manage their limiting inputs to attain profitable yield as well as 
the knowledge of cotton yield variability in the field makes both defoliation and harvesting process 
efficient (Huang et al., 2013; Tedesco-Oliveira et al., 2020). There are extensive studies that have 
related lint yield with derived vegetation indices from multispectral imagery; however, studies 
relating vegetation indices with yield determining physiological parameters are limited. Therefore, 
the main objective of this study was to relate yield determining physiological parameters to 
vegetation indices derived from UAS multispectral imagery. 

Materials and Methods 

Experimental Layout 
A study was conducted at the Lang-Rigdon Farm Station of the University of Georgia Tifton 
Campus during the growing season of 2021 using Deltapine (DP) 1646 cotton cultivar. The study 
plots were 6 rows wide by 15 m long, arranged in a completely randomized block design with five 
different nitrogen application treatments (0, 44, 89, 134, and 179 kg N ha-1) and each treatment 
replicated 5 times within the field. The different nitrogen application rates were applied to create 
significant variability in crop growth and yield. All other crop management practices, beside 
nitrogen treatments, were performed according to the Georgia Cotton Production Guide 2021 
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(Hand et al., 2021).  

Measurements 
In-season Data Collection 

Above canopy (PARabove) and below canopy (PARbelow) light intensities, and dry weight 
samples were collected fortnightly throughout the season. Light intensities were measured using 
AccuPAR LP-80 Ceptometer (Meter Environment, Pullman, WA). For dry weight measurements, 
above ground biomass samples were collected from 1 m2 area, followed by oven drying at 80o C 
for 48 hours or until constant weight was obtained. There were total 5 sampling times for the 
growing season of 2021 at 43, 56, 69, 93, and 115 days after planting (DAP). These in-season 
measurements were further used to calculate two physiological parameters – intercepted 
photosynthetically active radiation (IPAR) and radiation use efficiency (RUE). The formula to 
calculate these physiological parameters are shown below: 
 Fraction of IPAR (IPARf) = (PARabove - PARbelow)/PAR above (2) 
 Total IPAR (IPAR) (MJ m-2) = Total Cumulative PAR * IPARf (3) 
 RUE (g MJ-1) = Dry Weight (g m-2)/IPAR (MJ m-2) (4) 
where, total cumulative PAR = 46% of total solar radiation 
UAV Imagery Collection 

Both RGB and Multispectral imagery were acquired at each sampling period from the altitude of 
45 m. The images were acquired on the same sampling periods as for the physiological 
measurements i.e. 43, 56, 69, 93, and 115 DAP. The RGB images were acquired using a DJI 
PHANTOM™ Pro 4 V2.0 (Shenzhen, China) system with an inbuilt visual camera and multispectral 
imagery was acquired using MicaSense RedEdge-MX™ (Seattle, WA) sensor mounted on a DJI 
INSPIRE™ 2 (Shenzhen, China) platform. For georeferencing, ground control points (GCPs) were 
collected using a handheld Trimble GNSS Unit (Sunnyvale, CA) with RTK correction enabled. 

Table 1. Technical specifications of camera sensors used for imagery collection.  
Technical specification 
 

DJI’s PHANTOM™ Pro 4 V2.0  MicaSense RedEdge-MX™ 

Sensor 1-inch CMOS; 20 Megapixel  RedEdge-MX sensor 
Bits per pixel 16 bits  12 bits 
Spectral Range RGB combined  Blue (475 nm), Green (560 

nm), Red (668 nm), Red edge 
(717 nm), near-IR (842 nm) 

Ground Resolution 1.33 cm per pixel  3.29cm per pixel per band 
Image Overlap Side 70% 

Front 80% 
 Side 80% 

Front 80% 
Flight altitude 45 m  45 m 

  
Fig 1. Instruments used for the measurement of physiological parameters and collection of aerial imagery. (a) AccuPAR 

LP-80 Ceptometer used for collection of below and above canopy light intensities, (b) DJI INSPIRE™ 2 UAV with 
MicaSense RedEdge-MX™ sensor (c)DJI PHANTOM™ 4 Pro V2.0 with visual sensor. 

(a) 

(b) 

(c) 
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Image Processing 

The Pix4Dmapper® software (Pix4D, Switzerland) was used to process images and create 
orthomosaic imagery. Radiometric calibration was done for the multispectral imagery using a 
calibrated reflectance panel recommended for MicaSense RedEdge-MX™. GCPs were also used 
while processing the images for each acquisition date to georeferenced stitched orthomosaic 
imagery. 
Image Analysis 

After image processing, further extraction of the reflectance values for each band of multispectral 
raster image from the center two rows (ROI) was done in ArcMap® 10.7.1 (ESRI, Redlands, CA). 
The methodology used in ArcMap is illustrated in the steps below: 

1. Classification of aerial raster image for separation of 
soil and cotton plant was done using multiplication 
of two indices- Excessive Greeness (ExG) and 
Normalized Difference Vegetation Index (NDVI); 
Classification Index: ExG*NDVI 
ExG = 2*Green – Red – Blue  (5) 
NDVI = (NIR-Red) / (NIR +Red) (6) 

 
 
 
 
 
2. Visual imagery was used to lay out the plots for 

data extraction and cross check the effectiveness of 
soil and plant classification.  
 
 
 
 
 
 
 
 

3. Binary soil mask raster layer was created by 
determining the threshold value for ExG*NDVI that 
separates soil and plant. This mask layer was 
crosschecked with visual imagery. 
 
 
 
 
 
 
 
 

4. Finally, soil removed reflection indices for all 
multispectral bands was created using the binary 
mask layer. Further, reflectance indices values for all 
5 bands were extracted from the center two rows 
(ROI) enclosed by the red line.  

  

Fig 2. Example of classified aerial image for soil 
and cotton plant using ExG*NDVI 

Fig 3. Example of Visual (RGB) imagery 

Fig 4. Example of binary mask layer for soil and 
cotton plant 

Fig 5. Example of soil removed raster layer and 
region of interest (ROI) 
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Vegetation Indices (VI’s) 

Twenty different vegetation indices (Appendix-Table 2) were identified from available literature 
related to cotton growth, management and lint yield prediction and calculated from the extracted 
values for reflectance bands in Microsoft Excel® (Redmond, WA).  

Statistical Analysis 
Regression analysis was performed to determine the relation of VI’s with yield determining 
physiological parameters and identify VI’s that can be used to predict them. Scatterplots for VI’s 
vs IPAR, biomass, and RUE were created for observing coefficient of determination and 
comparison among the VI’s and physiological parameters. Based on the scatterplots, the power 
function best described the relationship of VI’s with IPAR and biomass, which were determined 
using equation 7. 
  y = axb  (7) 
For curve fitting, the power function was converted to simplified linear logarithmic form with natural 
log-transformed y and x, as shown in equation 8.  
  ln(y) = ln(a) + ln(x)  (8) 
where, y = IPAR (MJ m-2) or biomass (g m-2), and x is the value of VI’s. 
However, the relationship between VI’s and RUE was explained by a simple linear regression, as 
in equation (9). 
  y = bx+ a  (9) 
where, y = RUE (g MJ-1), and x is the value of VI’s. 
All statistical analysis was performed in JMP® Pro 16 (SAS Institute, Cary, NC) while graphs were 
created using SigmaPlot 14.0 (Systat Software Inc., San Jose, CA). 

Results 

IPAR and Biomass related with VI’s 
IPAR and biomass both showed a power function relationship with VI’s; to simplify, the power 
function (equation 7) was natural log transformed to linear form (equation 8). Out of the 20 VI’s, 
the top 6 VI’s, that explained more than 88% variation in both IPAR and Biomass, are shown in 
the scatterplots in Fig 6 and Fig 7.  
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Fig 6. Graphs showing the relationship between different VI’s and IPAR. The y axis represents the log-transformed IPAR 

and x axis represents the log-transformed VI’s. ** represents the significance probability level of 0.01.  
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Fig 7. Graphs representing the relationship between different VI’s and biomass. The y axis represents the log-transformed 

biomass and x axis represents the log-transformed VI’s. ** represents the significance probability level of 0.01. 

 
The Ratio Vegetation Index (RVI) explained 93.2% of variation in IPAR followed by Normalized 
Difference Red-edge Index (NDRE) (R2 = 0.916), Red-edge to Red ratio (RE/R) (R2 = 0.912), and 
Normalized Difference Vegetation Index (NDVI) (R2 = 0.910). Similarly, Green Normalized 
Difference Vegetation Index (GNDVI) predicted biomass with coefficient of determination value of 
0.93, followed by Simplified Canopy Chlorophyll Content Index (SCCCI) (R2 = 0.906), RVI (R2 = 
0.904), and NDRE (R2 = 0.902). 

RUE correlation with with VI’s 
Out of total 20, only two VI’s showed simple linear relationship with RUE explaining more than 
41% of variation (Fig 8). Green Ratio Vegetation Index (GRVI) showed a moderate correlation 
(R2 = 0.549) with RUE followed by GNDVI (R2

 = 0.419). 
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Fig 8:  RUE correlation with GRVI and GNDVI. Simple linear regression best explained the relationship between RUE and 

VI’s. The y axis represents RUE and x axis represents VI’s. ** represents the significance probability level of 0.01.  

Derived RUE and Observed RUE 
The two best related VI’s with IPAR and biomass were used to derive predicted IPAR and 
predicted biomass. As we know, biomass is the product of IPAR and RUE. This relationship was 
used to compute derived RUE using predicted IPAR and predicted biomass.  
 Derived RUE = Predicted Biomass / Predicted IPAR (10)  
The scatterplots showed that derived RUE with GNDVI (as predictor of biomass) and RVI (as 
predictor of IPAR) was related to observed RUE with highest R2 value of 0.598; however, this 
relationship would not be accurate due to observed clustering of data points in the scatterplot. 
Therefore, derived RUE with GNDVI (as predictor of biomass) and NDRE (as a predictor of IPAR) 
was the best relationship which explained 44.4% of variation for observed RUE (Fig 9). 
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Fig 9.  Scatterplots of observed RUE vs derived RUE. Simple linear regression best explained the relationship. The y axis 

represents observed RUE and x axis represents derived RUE. The indices in parenthesis are the indices used to get 
predicted biomass and predicted IPAR respectively. ** represents the significance probability level of 0.01.  

Summary  
In conclusion, VI’s derived from multispectral imagery could potentially be used to predict IPAR, 
biomass, and RUE. Analysis of first-year data of this study showed that the relationship between 
IPAR, biomass, and VI’s can be best explained by power relationships with RVI and NDRE as the 
predictor of IPAR, and GNDVI and SCCCI as the predictor of biomass. Among the VI’s studied, 
only two VI’s, GRVI and GNDVI were linearly related with RUE. Both of these VI’s are computed 
using green and near-infrared spectral bands. These particular bands of light, near infrared and 
green, are reflected by plants, whereas red and blue spectral bands are absorbed for 
photosynthesis. This may indicate that the reflectance of green and near-infrared can be related 
to RUE of cotton canopy. Also, derived RUE using GNDVI and NDRE, as predictor of biomass 
and IPAR respectively, explained nearly half of the variation in RUE. Findings of this study indicate 
that multispectral imagery and VI’s can be used to predict yield determining physiological 
parameters like IPAR and RUE of cotton. 
Future work aims to determine the VI’s that highly correlates with cotton harvest index. If all the 
cotton physiological parameters can be predicted using multispectral imagery, derivation of a yield 
prediction model for cotton will be explored further. Future research in 2022 and further will include 
validation of the yield prediction models as well as improvements to data collection and modelling 
approaches. 
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Appendix  
Table 2. List of 20 different VI’s derived from multispectral imagery in this study. 

Abbreviated VI’s Nomenclature Formula 
ExG Excessive Greenness 2 × G − R − B 
NDVI Normalized Difference Vegetation Index NIR − R

NIR + R 

ExG*NDVI ExG multiplied by NDVI (Classification Index) (2 × G − R − B) ,
NIR − R
NIR + R- 

GNDVI Green Normalized Difference Vegetation Index NIR − G
NIR + G 

NDRE Normalized Difference Red Edge Index NIR − RE
NIR + RE 

RVI Ratio Vegetation Index NIR
R  

SCCCI Simplified Canopy Chlorophyll Content Index NDRE
NDVI  

RE/R Red edge and Red Ratio RE
R  

GRVI Green Ratio Vegetation Index NIR
G  

VARI Visible Atmospherically Resistance Index G − R
G + R − B 

TCARI Transformed Chlorophyll Absorption Reflectance 
Index 

3 2(RE − R) − 0.2(RE − G) × ,
RE
R -

5 

OSAVI Optimized Soil Adjusted Vegetation Index (1 + 1.6) ,
NIR − R

NIR + R + 0.16- 

TCARI/OSAVI TCARI normalized by OSAVI TCARI
OSAVI 

SAVI Soil Adjusted Vegetation Index (1 + 0.5) ,
NIR − R

NIR + R + 0.5- 

RGBVI Red Green Blue Vegetation Index G − B × R
G! + (B × R) 

RE/G Red edge and Green Ratio RE
G  

GRedVI Green Red Vegetation Index G − R
G + R 

WDRVI Wide Dynamic Range Vegetation Index 0.2 × NIR − R
0.2 × NIR + R 

MSAVI2 Modified Soil Adjusted Vegetation Index (2NIR + 1) − >(2NIR + 1)! − 8(NIR − R)
2  

EVI Enhanced Vegetation Index 2.5 × NIR − R
(NIR + 6 × R − 7.5 × B) + 1 

 


