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Abstract

Soils have a large carbon storage capacity and sequestering additional carbon in agricultural
fields can reduce CO2 levels in the atmosphere, helping to mitigate climate change. Efforts are
underway to incentivize agricultural producers to increase soil organic carbon (SOC) stocks in
their fields using various conservation practices. These practices and the increased SOC provide
important additional benefits including improved soil health, water quality and — in some cases —
biodiversity. Many current initiatives offer only a relatively modest payment per acre with little or
no field validation of actual SOC sequestered. This is due to the concern that measuring actual
SOC change accurately in farm fields is impractical and uneconomical. However, if agricultural
producers are to receive adequate compensation for their carbon sequestering efforts, baseline
soil carbon inventories and follow-up measurement and verification are needed. In late 2021 an
intensive soil measurement project was conducted on four 16 ha fields in the US Midwest. This
project included collecting lab-analyzed soil samples to depths of 90 cm and 30 cm on .4 ha and
.1 ha grids respectively, and soil sensor profiling technology that included NIR, EC, and
compaction sensing. In all, 184 0-90 cm sensor probe investigations were completed and over
1200 lab samples were analyzed. The objectives of the project were to: 1) Create a high quality,
lab-analyzed SOC baseline that could be used to evaluate SOC measurement and modeling
approaches, 2) Evaluate the extensive lab sample dataset to improve understanding of lab
estimations of field SOC, bulk density, and soil profile SOC, and 3) Evaluate the performance of
sensor probe technology including using sensors to estimate SOC at unsampled locations.
Results of the project reveal important considerations for measuring bulk density, lab-analyzed
sample repeatability, and soil sensor calibration methods.
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Introduction

Since 1850, soils have lost an estimated 78 gigatons (GT) of carbon, primarily due to cultivation
(Lal, 2009). This loss of soil carbon represents a significant portion of greenhouse gas emissions
and has resulted in the degradation of agricultural soil quality worldwide. Using practices that
restore carbon, such as no-till farming and planting cover crops during fallow periods, carbon can
be sequestered in the soil. Carbon sequestration has the potential to offset fossil fuel emissions
by 0.4 to 1.2 GT of carbon per year, or 5 to 15% of the global fossil-fuel emissions (Lal, 2004).
Farmers and landowners would be adequately paid for adopting carbon-sequestration
techniques, provided their increases in carbon can be measured, reported, and verified. Currently,
most programs offer small payments for merely adopting practices, with few if any soil carbon
measurements. Growers are accustomed to being compensated for the value of what they
produce and have been reluctant to enroll in programs that do not compensate them for the tons
of carbon their fields sequester (Gullickson, 2021).

Accounting for soil carbon changes is difficult, because carbon increases due to farming practice
changes are very small, and carbon varies widely within a field, even within a few meters, and
within the soil profile. In addition to the variances in carbon %, the soil bulk density must also be
accounted for, especially since adopting conservation practices will likely change the bulk density.
To verify that carbon has been sequestered, a baseline must be established at the beginning of
the project, along with subsequent measuring to verify the carbon change. The amount of carbon
that is accredited will be based on the confidence, likely at the 90% level of those measurements
(Willey and Chameides, 2007). The confidence interval is determined by the number of samples
and the variability of the carbon. If the standard deviation is large, additional samples are required
to reduce the confidence interval. If the sampling rate is insufficient, the carbon payment discount
due to the uncertainty will be large. If an adequate number of samples are collected, the cost of
conventional soil sampling and lab analysis could be excessive. An alternative that generates
large numbers of carbon measurements at a very low cost per sample must be considered. In
addition to lab analyses, rapid carbon assessment methods being proposed include near-infrared
reflectance (NIR), remote imagery, carbon cycle modeling, passive gamma sensing, laser-
induced breakdown spectroscopy, and more. To ultimately evaluate and compare the
performance of different methods, a baseline carbon inventory using extensive sampling and lab
analysis was conducted on a set of fields in lowa, Nebraska, and Kansas. The first approach that
was evaluated on these fields was a proximal sensing technology that uses a suite of sensors
including visible and NIR optical measurements. Soil NIR has been shown to correlate well with
soil carbon (Sudduth and Hummel, 1993; Reeves et al.,1999; Shepherd and Walsh, 2002).

Materials and Methods
Soil Sampling and Lab Analyses

Four fields were selected that represent typical Midwest fields, with varying levels of soil
variability. The lowa field contained seven different USDA-SSURGO soil types, while the
Nebraska field had one USDA-SSURGO soil type (Table 1).
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Table 1. Field locations, soil types, and data collected

No.of 0-90  No.of 0-30  No. of 0-90 cm
Field Size- cmcoreson cmcoreson  Sensor Probe
State County SSURGO soil types ha 4 ha grid .1 ha grid insertions
Wiota silt loam, Nevin silty clay loam,
Bremer silty clay loam, Radford silt
| Mahask ’ 17 42 168 47
owa anasia loam, Ely silty clay loam, Otley silty
clay loam, Judson silty clay loam
Nebraska York Hastings silt loam 17 42 168 47
Kansas1 Saline Cozad silt loam, Hord silt loam, Detroit 16 40 160 45
silty clay loam, Sutphen silty clay loam
Kansas2 Saline Longford silt loam, Crete silt loam 16 40 160 45

Data collection on all fields was done in the fall of 2021 following harvest prior to any tillage
activity. On each field, samples were collected on .4 ha (1 ac) and .10 ha (.25 ac) grids (Figures
1-4). The .4 ha grid samples were 0-90 cm (35.4 in) deep and sample tube dimensions as follows:
cutting shoe diameter 3.5 cm (1.375 in.), liner inner diameter 4.1 cm (1.625 in.). the .10 ha grid
samples were collected to a depth of 30 cm (11.8 in.) with sample tube dimensions as follows:
cutting shoe diameter 4.76 cm (1.875 in), sample tube inner diameter 5.4 cm (2.125 in). Samples
were segmented into 30 cm lengths (11.8 in) and analyzed by Ward Laboratories, Kearney NE
using dry combustion methods for carbon percentage and bulk density using undisturbed soil
methodology. Coarse gravel fragments were not evident in any of the soil samples.
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Figures 1-2. (Left to right) lowa and Nebraska fields showing U3 transects (monochrome), 0-30

cm MgC/ha lab analyzed values for .10 ha grids (circles) and .4 ha grids (squares)
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Figures 3-4. (Left to right) Kansas 1 and Kansas 2 fields showing U3 transects (monochrome), 0-
30 cm MgC/ha lab analyzed values for .10 ha grids (circles) and .4 ha grids (squares)

Proximal Sensor Mapping and Profiling

Each field was mapped with a Veris® U3 Soil Mapping System which measures soil electrical
conductivity (EC), and soil optical reflectance using red and infrared wavelengths (Figure 5). EC
measurements have been shown to be correlated with soil texture (Kitchen et al., 1998), and
optical reflectance with soil organic matter (Kweon, 2012). Fields were mapped on 15.2 m (50 ft)
transects. These maps were used to provide an overall view of the soil variability and to aid in
selecting calibration points for the Veris® P4000 sensor probe (Kweon, et al., 2009). The P4000
probe containing EC, optical, and insertion force sensors was used to collect soil profile
measurements to a depth of 90 cm (Figure 6). At each of the .4 ha grid sample locations on each
field the sensor probe was inserted hydraulically adjacent to each of the 0-90 cm core samples.
At five additional locations in each field, a set of 0-90 cm lab-analyzed soil cores and adjacent O-
90 cm sensor probe insertions were conducted to calibrate the sensor readings to the adjacent
cores (Figure 7).
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Figure 5 and 6. Veris U3 (left) and P4000 (center). Figure 7. Example map showing blue X’s that
mark sensor probe calibration location. Squares mark .4 ha grid samples, sensor probe insertions,
and location of sensor probe estimates of SOC.
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To evaluate the accuracy of the carbon estimates from the sensor probe, a regression model from
five calibration sites on each field was created and evaluated, using 30 cm soil segments matched
with 30 cm of sensor probe data (Figure 8). The model was subsequently applied to the profile
sensor data from the .4 sites to estimate the carbon, and those estimated were compared to the
actual from the adjacent lab-analyzed soil cores.
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Figure 8. P4000 sensors, segmented probe insertion data with segmented calibration core.

Results
Soil Sampling and Lab Analyses

Lab-analyzed soil carbon %, bulk density, and MgC/ha from the 0-90 cm core samples collected
on a .4 ha grid reveal that each field had a wide range of carbon within the field and within the
profile. Bulk density was less variable (Table 2).

Table 2. Soil Properties (at .4 ha grid points)

Range Field Average Co-efficient of Variation
Depth- Carbon  Bulk Carbon  Bulk Carbon  Bulk

State cm % Density MgC/ha % Density MgC/ha % Density MgC/ha
lowa 0-30 1.1-24 1317 51-109 1.81 152 826 0.18 0.05 017
lowa 3160 422 1317 20-101 1.3 152 586 0.38 0.06 0.36
lowa 61-90 2-21 14417 1295 0.78 158 365 0.56 0.05 0.53
Nebraska 0-30 1.3-21 1315 57-87 1.61 1.44 693 0.12 0.05 0.1
Nebraska 31-60 3-19 1216 15-74 0.9 143 381 0.35 0.07 0.29
Nebraska 61-90 212 1016 9-48 0.49 14 209 0.43 0.08 0.44
Kansas1 0-30 T17 1416 31-75 1.31 146 577 0.19 0.06 0.21
Kansas1 3160 7-15 1316 3063 1.08 144 468 0.19 0.05 0.19
Kansas1 6190 6-14 1316 2667 0.93 1.5 417 0.26 0.05 0.26
Kansas2  0-30 713 13415 2957 1.02 143 435 02 0.04 0.19
Kansas2 3160 412 1316 20-55 0.75 146 329 0.27 0.05 0.27
Kansas2 6190 218 1317 9-73 0.65 1.51 289 0.46 0.05 04
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The intense soil sampling on each field provided an opportunity to compare the field carbon
measured from two detailed sets of samples on all four fields. The lab-measured carbon from the
.10 ha 0-30 cm samples was compared to nearby 0-30 cm segments from the .4 ha grid 0-90 cm
cores. Only cores that were within 10 m of the .40 ha grids were used. The results show a
difference for carbon at the 0-30 cm on each field that ranged from just over 1 Mg C/ha to nearly
7 Mg C/ha (Table 3). The differences in sample tube diameters could be part of the cause,
however there was no systematic bias between the two probe sizes. Also, the % C showed similar
differences and % C is independent of sample tube sizes.

Table 3. Variance in estimates of 0-30 cm field carbon

% Cfrom 9% Cfrom Field Mg C/ha Field Mg C/ha

1 ha 4 ha estimated from estimated from Mg C/ha
State samples samples .1 hasamples .4 hasamples Difference
lowa 1.78 1.84 77.0 84.0 70
Nebraska 1.57 1.60 705 69.3 1.2
Kansas1 1.50 1.31 62.7 577 50
Kansas2 1.13 1.02 483 435 48

Proximal Sensor Mapping and Profiling

At five locations within each field, the 0-90 cm readings of visible and NIR reflectance, soil EC,
and insertion force from the sensor probe was calibrated to adjacent 0-90 cm lab-analyzed core
samples. The sensor datasets were divided in 0-30, 31-60, and 61-90 cm segments and values
averaged for each segment and then matched with the corresponding core segments. The results
of the bivariate regression between NIR and fifteen 30 cm soil carbon segments were significantly
correlated (Figure 9).
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Figure 9. Correlation of sensor probe data with lab-measured C at calibration sites
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The regression model from the five calibration sites was subsequently applied to the profile sensor
data from the .4 sites to estimate the carbon, and those estimates were compared to the actual
from the adjacent lab-analyzed soil cores. Estimated C at those .4 ha grid points using only
sensor probe data were well correlated with the actual C measured (Figure 10).

Mg C/ha Estimated

o

Sensor-estimated Mg C/ha

100

Lab-measured Mg C/ha

Figure 10. Correlation between carbon measured and estimated at .4 ha grid points on all four
fields using sensor probe regression model from five 0-90 cm samples/field.

An important component of optimizing the sensor probe’s calibration is to capture a range of
carbon in the calibration set that represents the field’s full carbon variability. Two methods of
selecting calibration sites for the sensor probe were evaluated: 1) Using visual cues from the U3
transect map and topography to identify areas of suspected significant variations, and 2)
Stratifying the reflectance values from the sensor probe to choose calibration sites. The second
method proved to result in closer estimates of the carbon measured in the lab samples (Table 4).

Table 4. Two sets of lab-measured C and two sensor probe estimation approaches (0-30 cm)

Field Mg C/ha Field Mg C/ha Field Mg C/ha estimated Field Mg C/ha estimated

measured by .1 measured by .4 by sensor probe by sensor probe
State ha samples ha samples (unstratifed sites) (stratified sites)
lowa 77.0 84.0 71.1 822
Nebraska 705 69.3 66.2 71.3
Kansas1 62.7 577 598 65.1
Kansas?2 48.3 435 53.1 452

Discussion and Summary

The intensive soil sampling and lab analyses, coupled with equally intensive proximal sensor
investigations, produced several findings that will likely impact future efforts to measure and verify
soil carbon levels:
¢ As other studies of soil carbon have found, there can be a wide range of soil carbon levels
within a field (McBratney and Pringle, 1997; Kweon, 2012). This study confirmed those
variations and showed significant soil carbon variability exists within the soil profile as well.
On every field, at least one core location had comparable or greater carbon at 60-90 cm
than another location within the same field had in the 0-30 cm depth.
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e 55% of the soil carbon was discovered deeper than 30 cm. Some of the current carbon
measurement initiatives are limited to that depth due to the challenge of collecting cores
deeper than 30 cm. Other modeling approaches are attempting to model the deeper
depths based on measurements from the shallower depths. However, the 31-90 cm
carbon was only weakly related to the 0-30 cm carbon (Figure 11).

Mg C/ha: shallow vs deep
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Figure 11. 0-30 cm carbon correlated with 31-90 cm carbon

e The variation in bulk density was low, compared to the carbon variations. All sampling was
completed in the fall following harvest, prior to any tillage operation and winter freeze-thaw
effects, which may have contributed to bulk density consistency within fields, within the
profile, and even between fields and profiles.

e Two intensely sampled lab C inventories produced different results, with differences
ranging from 1.2 to 7.0 Mg C/ha. Across all four fields, the carbon from one 0-30 cm
inventory to another varied by an average of 7%. This difference has implications for
measuring sequestered soil carbon, which may only increase by 10% over several years.

e The difference between lab-analyzed carbon inventories also has implications for
comparing alternative methods of estimating carbon, including proximal sensors. The
carbon estimated by sensor probes showed a smaller variance between the average of
the two lab-analyzed inventories, than the two inventories from each other.

e The sensor probe measurements were well-correlated with lab measurements. To
accurately predict carbon at locations that are not part of the calibration, it was found that
selecting calibration locations that represent field variations is crucial.

e Sensors can quickly collect a large number of measurements which provides an affordable
opportunity to reduce the confidence interval and subsequent uncertainty discount. The
cost for collecting and analyzing a 0-90 cm core sample vs. a 0-90 cm sensor probe
insertion is likely a factor of 5-10X.

e Next steps: Future projects need to investigate and attempt to reduce the differences
between lab-analyzed carbon inventories, and at the same time identify possible
differences between testing labs, which was not part of this project. The relative
consistency of bulk density needs to be confirmed, especially when collecting data in the
spring or whenever bulk density variations may be more pronounced. The use of proximal
sensors was found to be promising and needs ongoing inclusion in soil carbon research.
Continual advancements in sensors and in stratification/calibration methodologies likely
improve their effectiveness.
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