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Functional Soil Property Mapping with Electrical Conductivity, Spectral and 
Satellite Remote Sensors 

Abstract.  
Proximal electrical conductivity (EC) and spectral sensing has been widely used as a cost-
effective tool for soil mapping at field scale. The traditional method of calibrating proximal 
sensors for functional soil property prediction (e.g., soil organic matter, sand, silt, and clay 
contents) requires the local soil sample data, which results in a field-specific calibration. In this 
large-scale study consisting of 126 fields, we found that the traditional local calibration method 
had suffered weak correlation or uninterpretable models due to confounding factors (e.g., soil 
moisture) and small field variability. We proposed a new global calibration method that 
integrates satellite remote sensing (i.e., SMAP soil moisture, Landsat 8, and MODIS) and 
topographic information to explicitly account for the confounding effects in a large domain for a 
more robust calibration. Results show that both global and local calibration showed marked 
reduction in total root mean squared error (RMSE) over SSURGO. Global calibration without 
local soil samples had comparable accuracy as the local calibration in predicting organic matter 
(OM), sand, silt, and clay at the depths of 0-30, 30-60, and 60-90 cm. Adding five local sample 
measurements to the global models (spiking) reduced the overall errors for all four soil attributes 
by correcting the cross-field errors resulting in the most accurate predictions. Our findings 
suggest that global calibration is a robust, accurate, and cost-effective solution for operational 
functional soil property mapping.  
Keywords.   
apparent electrical conductivity, spectroscopy, proximal sensing, remote sensing, soil organic 
matter, soil texture 
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Introduction 
Precision agriculture technologies, such as variable-rate technology and crop-growth models 
require high-quality soil information as input (Corbeels et al., 2016; Jones et al., 2003; Maleki et 
al., 2008). While traditional soil survey maps can provide spatial soil information at landscape to 
regional scales, they often fall short to well represent the field-scale soil variability due to their 
small cartographic scales (Brevik et al., 2003; Stermitz et al., 1999). Soil sampling, on the other 
hand, can provide high-accuracy-precision and up-to-date soil information at point-scale, but the 
prohibitive cost associated with the field and laboratory work limits its scalability.  
In the last two decades, proximal soil sensing technologies have been increasingly popular in soil 
mapping, among which electrical conductivity (EC) and spectroscopic sensors are commonly 
used (England and Viscarra Rossel, 2018; Kitchen et al., 2005; Myers et al., 2007; Viscarra 
Rossel et al., 2011). These proximal sensors capture georeferenced EC and spectral reflectance 
signals close or in contact with the soil in situ, which are then used to infer the functional soil 
properties through empirically calibrated models (Domsch and Giebel, 2004; Reyes et al., 2018; 
Rezaei et al., 2016; Serrano et al., 2014; Zare et al., 2021). Electrical conductivity of the bulk soil, 
also known as apparent EC or ECa is affected by various soil properties, including soil texture, 
bulk density, cation exchange capacity (CEC), and soil moisture (Friedman, 2005; McCutcheon 
et al., 2006). In-situ soil spectral reflectance, e.g., red and near infrared band, is affected by soil 
organic matter (OM) content, soil moisture, and mineral composition, etc. (Angelopoulou et al., 
2020; Bricklemyer and Brown, 2010; England and Viscarra Rossel, 2018). Because several 
factors can change the sensor signal, exploiting the correlation for functional soil property 
prediction is often confounded by the factors of lesser interest (Angelopoulou et al., 2020; 
McCutcheon et al., 2006). A common solution to this equifinality problem is calibrating the sensor 
data to some soil sample measurements in a confined domain, e.g., in a field, where the 
confounding effects are presumably small, resulting in a local calibration specific to the small 
domain (Yang et al., 2022). 
 
A major problem with the local calibration approach without explicitly accounting for the 
confounding effects is that a successful calibration is not guaranteed for every field because 
some fields may display weak or even no correlation between sensor data with the soil sample 
measurements. One solution to address this issue is to expand the calibration domain, e.g., to 
multiple fields at regional scale, with sufficiently large soil sample size and soil covariate data 
from remote sensors to account for the confounding effects. Another benefit of the large-domain 
global calibration is that it eliminates the need for local soil sample data for functional soil 
property predictions. In the case where local soil samples are available, global model calibration 
can incorporate the local data in the recalibration, i.e., model spiking, for improved local 
prediction accuracy. This technique has proved effective by many studies that use laboratory 
near-infrared spectroscopy in soil property prediction including soil organic carbon, total 
nitrogen, sand, silt, clay, pH, and phosphorus (Jiang et al., 2017; Kuang and Mouazen, 2013). 
 

In this study, a global calibration approach that integrates proximal EC, spectral, and remote 
sensing data from multiple fields was proposed. The objectives of this study were to 1) 
understand the variability of the field-specific relationships between proximal sensor data (ECa, 
NIR, and red) and functional soil properties (OM, sand, silt, and clay), 2) investigate the 
effectiveness of the large-domain global calibration compared with the local calibration 
approach in the accuracy of functional soil property predictions, and 3) how the spiking of. 
global calibration with local samples affects the accuracy of the global models.		
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Materials and Methods 

Field Data Collection and Laboratory Analysis 
This large-scale study consists of field soil and sensor data collected from a total of 126 fields 
across the Corn Belt in the USA from 2016 to 2019. A typical field workflow started with a Veris® 
sensor survey. After the data had passed the quality checked by Veris, the ECa deep channel 
data was used to guide the soil sampling of 5 to 15 locations in the field such that the full range 
of ECa was well represented. Soil samples were taken at three depths, i.e., 0-30, 30-60, and 60-
90 cm, and then sent to Waypoint AnalyticalTM for OM and texture test. Within 1 m of the soil 
sample cores, additional cores were pulled for gravimetric soil moisture and bulk density 
measurement.  

 

 
Fig. 1. Veris survey and field sampling locations of 126 fields in the United States. 

Proximal Soil Sensors 
Veris model used in this study was V3210 (Veris Technologies, Salina, Kansas) equipped with an 
ECa and an OpticMapper sensor. The ECa sensor had a dual-channel array that responds to 
signals from shallow (0-30 cm) and deep (0-90 cm) depths. A simple average of the two channels 
was calculated to represent a mid-depth (0-60 cm). The OpticMapper sensor collected red and 
near-infrared reflectance through a sapphire window on the bottom of a furrow ‘shoe’ that cut in 
the surface soil at 2.5-7.6 cm depth. 

Soil Covariates 
Various spatio-temporal soil covariates were collected to characterize the field condition when 
field data collection occurred. 

Table 1. Summary of covariates 
Data Category  Resolution/Scale  Covariates  

SMAP  9 km  surface, rootzone soil moisture  
Landsat 8  30 m  blue, green, red, NIR, SWIR, TIRS, BSI  
MODIS  250 m - 1 km  blue, green, red, NIR, BSI, SWIR  
DTA  10 m  elevation, slope, curvature, channel distance, TPI, SWI 
SSURGO  1:24,000  organic matter, sand, silt, clay  

SMAP Soil Moisture 

SMAP L4 surface and root zone soil moisture analysis update data provides global volumetric soil 
moisture at 9 km spatial resolution and 3-hour frequency (Reichle et al., 2019). The 3-hourly 
SMAP data of the same Veris survey date was temporally averaged to get daily soil moisture.  
Digital Terrian Attributes 

USGS National Elevation Dataset (10 m resolution) from USGS was used to derive digital terrain 
attributes (DTA) (Gesch et al., 2018). Smoothed elevation, slope, curvature, topographic position 
index (TPI), channel distance, and SAGA wetness index (SWI) were generated with SAGA GIS 
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(Conrad et al., 2015). 
Long-term Bare Soil Imagery Composite  

Large-scale bare soil imagery composites from 2014 to 2018 were generated for multiple satellite 
data sources: Landsat 8 Surface Reflectance (SR), Landsat 8 Top of Atmosphere (TOA) 
Brightness Temperature, and MODIS daily products (i.e., MOD09GQ, MOD09GA and 
MODTBGA). The raw satellite data was obtained for each available day in the period of 120 days 
prior to the county-level planting dates surveyed by USDA annually, and the obscuration (e.g., 
cloud, shadow, snow, waterbody) in the raw data were masked out by using the corresponding 
pixel quality bands. The Bare Soil Index (BSI) was computed pixel-wise to filter out the non-bare-
soil pixels as in Eq. (1). The resultant bare soil images were then temporally averaged to form the 
2014-2018 composites with reduced temporal noises from soil moisture, crop residue, etc.  
  

		
𝐵𝑆𝐼 =

(𝑆𝑊𝐼𝑅 + 𝑅𝑒𝑑) − (𝑁𝐼𝑅 + 𝐵𝑙𝑢𝑒)
(𝑆𝑊𝐼𝑅 + 𝑅𝑒𝑑) + (𝑁𝐼𝑅 + 𝐵𝑙𝑢𝑒)

		
(1)		

		

Data Analysis 
For covariates with the depth dimension, i.e., SSURGO and SMAP data, they are resampled to 
the sample depth interval as the soil samples using depth-weighted average. Then all the 
covariates were joined to the soil sample data with longitude, latitude, and depth as the composite 
primary key. Finally, for the proximal sensor data, five nearest sensor readings to a soil sample 
location were averaged and joined to form a complete dataset for analysis.  
Feature Selection 

The Boruta all-relevant variable selection method was applied to identify the covariates that are 
strongly or weakly relevant to the functional soil properties, i.e., OM, sand, silt, and clay (Kursa 
and Rudnicki, 2010). 
Data Split 

The 126 fields were randomly split into three groups: training (70%) for model fitting, validation 
(15%) for hyper-parameter tuning in global calibration, and test (15%). In the test subset, there 
are 10 fields that have more than 10 soil profiles sampled, which were the data for local calibration 
and test of all models.  
Local calibration 

Local calibration was applied to the 10 test fields with more than 10 soil profiles sampled. Five 
samples corresponding to the min, 25th percentile, 50th percentile, 75th percentile, and max of 
ECa deep channel and NIR for texture and OM models, respectively, were selected for depth-wise 
calibration using Ordinary Least Squared linear model as in Eq. 2 and 3. Then the remaining 
samples in the same field were used for local calibration model test.  
 
  𝑆𝑎𝑛𝑑!"#$% , 	𝑆𝑖𝑙𝑡!"#$% , 	𝑜𝑟	𝐶𝑙𝑎𝑦!"#$% = 𝑎 + 𝑏 ⋅ 𝐸𝐶&' + 𝜀 (2)		
where, Sand, Silt, or Clay is the laboratory measured texture fraction content in % mass, depth is 
soil layer depth (i.e., 0-30, 30-60, 60-90 cm), a is the intercept, b is slope, ECDP is the ECa deep 
channel, and ε is the random error. 
		 𝑂𝑀!"#$% = 𝑎 + 𝑏	 ⋅ 𝑁𝐼𝑅 + 	𝜀	 (3)		

where, OM is the laboratory measured OM in % mass, depth is soil layer depth (i.e., 0-30, 30-60, 
60-90cm), a is the intercept, b is slope, NIR is the NIR band, and ε is the random error.  
Global calibration and spiking 

In the global calibration, all fields from the training subset were pooled and used to fit global 
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XGBoost regression models for OM, sand, silt, and clay at 0-30, 30-60, and 60-90 cm depths, 
respectively. For spiking, the five local calibration samples from each of the 10 test fields were 
added to the training set of the global calibration training set and the global calibration models 
were refitted with the expanded training set. Both global calibration and spiked global calibrations 
models were tested against the same set of test samples as in the local calibration to ensure a 
fair comparison of all three models.  
Error Partitioning 

The MSE is decomposed into within-field and cross-field MSE, and then each of the terms was 
reported in the RMSE. The cross-field RMSE is to quantify the bias in the field mean estimation 
and within-field RMSE is to assess the precision in explaining the within-field soil variability.  

		 𝑀𝑆𝐸!"!#$ = 𝑀𝑆𝐸%&"''_)*+$, +𝑀𝑆𝐸-*!.*/_)*+$, 	 (4)		
Model Interpretation 

SHAP values represent a feature’s responsibility contribution for a change in the model output 
(Lundberg and Lee, 2017). The feature importance is summarized as the absolute mean SHAP 
values over the training data.  

Results 
Table 2. Field-level descriptive statistics of measured soil properties 

  Depth  
(cm)  

Field mean    Field standard deviation  
Mean  SD  Min  25%  50%  75%  Max    Mean  25%  50%  75%  

OM  
(%)  

0-30  3.02  1.06  0.75  2.31  3.0  3.72  5.8    0.48  0.29  0.41  0.62  
30-60  2.06  0.62  0.52  1.64  2.1  2.5  3.9    0.37  0.24  0.32  0.47  
60-90  1.57  0.49  0.43  1.23  1.57  1.94  3.17    0.31  0.18  0.26  0.39  

Sand  
(%)  

0-30  34  18  16  22  29  43  93    5  3  4  6  
30-60  36  17  16  22  31  42  93    6  3  6  9  
60-90  37  21  15  20  29  47  93    6  2  5  9  

Silt  
(%)  

0-30  48  16  4  40  52  60  75    4  3  4  5  
30-60  45  15  4  36  50  57  70    6  3  5  7  
60-90  44  18  4  32  50  59  67    5  3  4  7  

Clay  
(%)  

0-30  18  6  3  14  17  21  37    3  2  2  3  
30-60  19  6  3  15  19  22  40    3  2  3  4  
60-90  19  7  3  15  19  23  40    3  2  3  5  

ECsh  
 

38  18  4  26  39  50  85    7  3  6  9  
ECdp    42  19  4  30  44  54  90    6  3  6  8  
Red    159  25  60  149  158  166  323    4  2  2  4  
NIR    451  34  346  434  449  467  570    12  4  7  15  

		 

	  
Fig. 2. Pearson’s correlation between soil moisture and clay content by field statistically tested at 0.9 confidence level 
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Local Calibration 
Measured clay content and ECa channels had positive Pearson’s correlation in more than half of 
the fields at 0-30 and 30-60 cm depths for both shallow and deep channels, while the correlation 
was weaker in the 60-90 cm layer with a near zero median correlation coefficient as shown in Fig. 
3 (a) and (b). The correlation coefficients also showed large variance across fields ranging from -
0.99 to 0.97. In the statistical test, the correlation was significant at 90% confidence level for only 
about 13% of 126 fields across the three layers and five of these fields had significantly negative 
correlation. Fig. 4 (a) and (b) showed that although the mean clay content was not different 
between the group with significant clay-EC correlation and the one not, the within-field variance 
of clay had marked difference between the two groups. This indicates that within-field variability 
of the soil texture is a differentiator of the significance of clay-EC correlation, meaning that it is 
more likely to find significant correlation in fields with greater texture variability. Measured OM 
was mostly negatively correlated with NIR and red bands, with a correlation strength generally 
decreasing along the soil profile as seen in Fig. 3(c) and (d). Large variance in OM-red/NIR 
correlation coefficient was observed across fields ranging from -0.99 to 0.99 with about 15 % of 
the fields had the correlation tested significantly at 90 % confidence level. Similarly, the within-
field variance of OM was a differentiator of whether the OM-red/NIR correlation was significant, 
even though not as strong in the case of clay-EC.  

Fig. 3. Pearson’s correlation between soil laboratory measurements and proximal sensors by field statistically tested at 0.9 
confidence level: (a) clay content (%) and ECa shallow channel; (b) clay content (%) and ECa deep channel; (c) OM content (%) and 

red; (d) OM content (%) and near infrared 
  

 
Fig. 4. Mean and standard deviation of soil measurements by field: (a) clay content (%) and ECa shallow channel; (b) clay content 

(%) and ECa deep channel; (c) OM content (%) and red; (d) OM content (%) and near infrared.  

The validation of local calibration model predictions against measured OM, sand, silt and clay 
content from the independent test dataset showed an overall success across fields with low 
biases (Fig. 5) in texture properties and marked total RMSE reduction compared with the publicly 
available SSURGO data (Fig. 6). This large accuracy improvement came primarily from the cross-
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field error reduction, indicating the local training data had provided improved estimation of the 
field means of all the soil attributes. Although in some of the fields, local calibration did not predict 
the test sample data well, e.g., the red color field as shown in Fig. 5, the overall within-field error 
reduction across all fields and depths was marked, ranging from about 20 to 45 % lower RMSE 
compared with SSURGO.  

 
Fig. 5. Independent validation for local calibration color grouped by fields 

Global calibration and spiking 
Global calibration models without any local samples achieved the same level of within-field RMSE 
as the local calibration, indicating model learning from other fields can be applied to new fields. 
The global calibration generally performed worse in capturing the field level variability compared 
with the local calibrations as seen in the higher cross-field RMSE in Fig. 6, which consequently 
resulted in a higher total RMSE. However, global calibration had much improved error compared 
with SSURGO and was more cost-effective than the local calibration.  
When spiked with local samples, the global calibration models had similar or better cross-field 
and total RMSE compared with the local calibration (Fig. 6), showing that local samples were 
useful to correct the bias in the field means. However, local samples did not help with within-field 
error reduction and did not show any sign of overfitting either.  
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Fig. 6. Independent validation of SSURGO, global calibration, local calibration, and spiked global calibration models 

The interpretation of the non-linear tree-based global calibration models was shown in the variable 
importance that is measured in the mean absolute SHAP values (Fig. 7). Generally, the predictors 
with large-scale effects were most important, e.g., SSURGO, MODIS, SMAP, followed by the fine-
scale proximal sensor data. The reason is that the cross-field variance was much greater than 
the within-field variance dominant component in the total variance in the measured soil data 
(Table 2), so those variables that explained the cross-field variance dominated the models, which 
can be confirmed with the RMSE components in Fig. 6. The SMAP soil moisture ranked high in 
the clay model, suggesting the moisture effect was effectively adjusted by the satellite soil 
moisture data in the global calibration.  
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Fig. 7. Variable importance in global calibration models 

Discussion 
To the best of our knowledge, this is the first large-scale study examining and validating different 
calibration methods for functional soil mapping with proximal EC and optical sensors. The 
diversity in soil types, land management, and topography across the 126 corn/soybean growing 
fields in the United States allows for vigorous test of the feasibility, generalizability, and 
robustness of using the proximal ECa and spectroscopic sensors to map functional soil properties. 

The power and limitations of local calibration  
Proximal sensors allow rapid, continuous field measurement of apparent soil conductivity and 
spectroscopic reflectance, but its comparability and generalizability across fields are commonly 
questioned due to field-specific and dynamic factors that can shift and stretch the distributions of 
sensor readings. Therefore, mapping of ECa and spectroscopic data into functional soil properties 
such as OM, texture is done through field-specific calibration to a few local soil samples with a 
linear regression model, which presumably avoids the need to tease out the main effects among 
the confounding factors to accurately predict the target functional soil attributes.  
From the result of the 126 fields, we found that the success of local calibration varied. Less than 
20 % of the fields exhibited statistically significant correlation between OM, texture and Red/NIR, 
ECa, respectively (Fig. 3). The independent test of local calibration models in the 10 fields also 
showed inconsistent correlation between predictions and observations when examined on a field 
basis (Fig. 5). There are at least three factors that are pertinent to this mixed result: the within-
field inherent soil variability, the spatial correlation between the main and confounding factors, 
and the interaction effects between the main and nuance factors. These three factors can be 
conceptually expressed in a linear model as in Eq. 5:  
		 									𝐸𝐶𝑎 = 	𝑎	 + 	𝑏	 ⋅ 𝐶𝑙𝑎𝑦	 + 	𝑐	 ⋅ 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒	 + 	𝑑	 ⋅ 𝐶𝑙𝑎𝑦 ⋅ 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒	 + 	𝜀											 (5)		
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where, a is the intercept, b⋅Clay is the effect of the main factor clay, c⋅Moisture is the confounding 
effect from soil moisture, d⋅Clay⋅Moisture is the interaction effect of clay and soil moisture, and 𝜀 
is the error term.  
 
However, a typical local calibration only includes the main effect term without accounting for the 
moisture and the interaction effects due to the limited sample size. This leaves the model 
susceptible to the nuance factor and the interaction effects. In fields where the spatial correlation 
between clay and moisture is strong that can be explained by a linear model:  

		 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒	 = 	𝑎1 + 	𝑚	 ⋅ 𝐶𝑙𝑎𝑦	 + 	𝜀1 	 (6)		

where, am is the intercept, m⋅Clay is the effect from clay on soil moisture, and εm is the random 
error. If there is negligible interaction between clay and moisture, then Eq. 5 can be reduced to:  
		 	𝐸𝐶# = 	𝑎/ + 	𝑏/ ⋅ 𝐶𝑙𝑎𝑦	 + 	𝜀/	 (7)		

where, an=a+am, bn=b+bm and εn=ε+εm 
  
Then it is more likely to have reliable local calibration. On the other hand, if there is weak linear 
correlation between the main and nuance factors or strong interaction between them, the 
statistical significance of local calibration is compromised.  
 
Clay and soil moisture are known to have spatial correlation because they are usually associated 
in the depositional geomorphological process and affected by topography. In a catena, footslopes 
and toeslopes tend to accumulate soil water and depositional clay from higher slopes. In addition, 
soils with more clay content to a certain level usually have greater permanent wilting point and 
field capacity. In this study, most of the fields exhibited this positive correlation in all three depths 
as in Fig. 2. However, the strength of the clay-moisture correlation varied markedly, and some 
fields even showed significant negative correlation, which may weaken or cancel out the effect of 
clay on ECa.  
 
The third factor worth noting is signal-noise ratio pertinent to the true soil variability over the 
laboratory measurement and field sensor errors. From Fig. 4, the strong significant correlation 
tends to be found in fields where within-field variability was large. In the fields with small variability, 
the main effects from the OM or texture can be masked by the random error ε. From this study, 
the median within-field standard deviation of the fields that had significant correlation for clay and 
OM were about 4 % and 0.4 %. These findings provide the first the sensitivity of the proximal 
sensor in mapping functional soil attributes.  

Global calibration 
The goal of global calibration by leveraging a much larger pooled dataset to address the issues 
of local calibration, reduce the operational cost, and improve scalability of this soil mapping tool.  
 
One immediate benefit of the large sample size is that it opens the door to more expressive 
machine learning models that allow for more parameters to account for the confounding effects 
and represent the non-linear effects in the main factors. In addition, more covariates such as the 
satellite sensor data from Landsat 8, MODIS, and SMAP, can be integrated to explain the large-
scale cross-field soil variability and account for the confounding effects such as soil moisture. The 
validation in this study in the 10 independent test fields demonstrates that this approach without 
the need to collect any local soil samples can effectively explain both cross-field and within-field 
soil variability with marked improvement over SSURGO. When compared with local calibration, 
global calibration can have similar precision as indicated by the within-field errors. In terms of bias 
of the field means as benchmarked by the local calibration, global calibration indeed showed 
greater errors, suggesting there was still some cross-field soil variability that is not explainable 
with the remote sensing, DTA, and SSURGO predictors. Further exploration of new cross-field 
covariates in correcting the field-mean bias is suggested.  
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Spiking the global model with local samples shows success in correcting the biases in field means 
for all soil attributes. This technique was first introduced by (Kuang and Mouazen, 2013) in their 
research in using laboratory near-infrared spectroscopy for within-field soil characterization and 
shown to considerably improve the RMSE from the global model trained with a national library of 
soil spectroscopy. Since then, it has been reported in many studies in spectroscopic modeling to 
successfully improve local prediction accuracy for various soil attributes including soil organic 
carbon, total nitrogen, sand, silt, clay, pH, and phosphorus (Jiang et al., 2017). This study shows 
that spiking the global calibration model produces the most accurate predictions of OM, sand, silt, 
and clay among all model approaches and proves its effectiveness in much broader environments 
than previous ones. With the error decomposition, this study is the first to show that the source of 
improvement mainly comes from the correction of biases in the field means due to the local 
samples, followed by moderate improvement in explaining the within-field soil variability.  

Applications in precision agriculture and carbon accounting 

While ECa has been used in management zone delineation, functional soil maps are required by 
decision support tools such as crop growth model for farmers to make precise decisions in 
nitrogen, fertility, and water management (Bobryk et al., 2016). The accuracy of input soil data 
has a profound impact on the quality of the decisions. (Varella et al., 2010) conducted a global 
sensitivity analysis on wheat crop model with respect to soil parameters and found a significant 
relation between the global quality of the estimation of seven soil parameters including OM and 
texture. In a global sensitivity analysis on maize crop models, (Corbeels et al., 2016) found the 
genetic coefficients, the mineral nitrogen fertilization, and the organic carbon of the first soil layer 
were the most determining factors for the simulated crop production variables. In our internal local 
sensitivity analysis on DDSAT maize crop growth model, 1 % RMSE from the OM parameter in 
the first layer can lead to 22 kg ha-1 total nitrogen simulation error. These studies suggest that 
given the level of errors in the publicly available SSURGO data as shown in Fig. 6 (i.e., 0.75-1.2 
% RMSE in OM, and 7-26 % in sand, silt, and clay), it is advisable to take note of the errors that 
could be induced by the quality of the soil input when using these decision support tools in 
precision agriculture.  

The other key factor worth noting is the operating cost of the proximal soil sensing tool. Proximal 
sensing has been acclaimed to be a rapid and cost-effective way to map soil ECa. In this study, 
we have proposed and tested the global calibration method integrated with satellite sensors as 
an effective way to map the ECa data into functional soil properties. It is encouraging to find that 
global calibration without the requirement to collect local calibration soil samples can achieve 
comparable accuracy explaining the within-field variability that matters most to the precision 
agriculture application.  

The other promising application that requires accurate soil data is the soil carbon quantification 
to enable the soil carbon sequestration market. Current field proximal sensing based approach 
relies solely on the field VNIR spectroscopy (Jiang et al., 2017). In this study, we found the ECa 
can also be used along with spectroscopic sensors in SOC quantification as indicated by Fig. 7. 
In the soil carbon quantification, the low field-mean bias is the primary objective function to 
optimize for. We proved that spiking of the global calibration model with as few as five local 
samples can achieve 0.25 % OM field mean RMSE in 0-90 cm soil profile, which suggests that 
this approach is sensitive to detect the OM change as low as 0.5 % at field scale. To completely 
remove the local calibration sample requirement, further research in correcting the biases in field 
means with scalable satellite sensor data is warranted.  

Conclusions 
• Although local calibration is used as a common practice in mapping proximal ECa and 
spectroscopy sensor data into functional soil properties, the quality of the result varies and is 



 

Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

12 

highly susceptible to field-specific conditions, e.g., confounding factors, interactions, and 
meaningful inherent within-field soil variability.  
• Global calibration integrating satellite sensor data without local calibration samples 
provides a more cost-effective solution than local calibration for functional soil property mapping 
with a comparable within-field error.  
• Spiked global calibration produces the most accurate models by correcting the cross-field 
errors.  
• The proposed methods have great potential to be used in precision agriculture and soil 
carbon quantification thanks to the high accuracy and reduced cost in quantifying functional soil 
properties.  
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