
Evaluation of a single transect method for collecting grape samples based on Sentinel-2 
imagery for the characterization of overall vineyard performance 
 
B.S. Sams1*, M. Aboutalebi1, R.G.V. Bramley2, L.A. Sanchez1, and N.K. Dokoozlian1 
 
1Winegrowing Research, E&J Gallo Winery, Modesto, CA, USA 
2CSIRO, Waite Campus, Locked Bag 2, Glen Osmond, SA 5064, Australia 
 
*Corresponding author (brent.sams@ejgallo.com) 
 
Abstract 
 
Commercial vineyards are streamed into different wine programs based on analysis of grape 
or juice samples collected from the field, but spatial and temporal variability can lead to sub-
optimal tiering of grapes. This is a particularly difficult problem to overcome in the typically 
large vineyards of California’s Central Valley. Due to economic and laboratory constraints on 
sample collection, processing, and analysis, a single sample is often expected to represent the 
overall fruit quality of a given vineyard. Recently, a sampling method was developed to 
account for the spatial variability of vineyards using remotely sensed imagery. This method, 
originally based on imagery from Landsat 7, attempts to find a set of three contiguous pixels 
in an image captured over a vineyard with normalized difference vegetation index (NDVI) 
values spanning different bins in a histogram analysis. The output was a single transect (3P) 
in each vineyard for sample collection. The objective of this study was to validate this 
method with imagery from the Sentinel-2 satellite constellation using maps of grape 
composition produced from a relatively high-density sampling project. In the 2017, 2018, and 
2019 growing seasons, 125 samples were collected at harvest in each of four vineyards in the 
Lodi American Viticulture Area (AVA) to produce geostatistically rigorous maps of grape 
composition and served as the ground validation for the sampling method under investigation 
here. Results showed that in most cases, the total soluble solids (TSS) values extracted from 
the fruit composition maps in the single Sentinel-2 based transects were within an acceptable 
range (-1 to +1 °Brix) of the mean values of the 125 samples. The implementation of this 
method could save the winegrowing industry countless hours necessary for traditional 
sampling, processing, and analysis of fruit samples by incorporating spatial awareness into 
sampling plans.  
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Introduction 
 
Vineyard maturity sampling methods, the processes by which vineyard ripening is tracked to 
determine optimal harvest timing, varies considerably across organizations. Most rely on 
collecting grape clusters from as few as one and as many as 20 locations, and some try to 
sample based on some pre-existing knowledge of variability. However, sampling in this 
manner can be extremely costly and time consuming. Recently, a Landsat satellite imagery-
based solution using a single sampling transect based on the distribution of pixel values was 
developed and evaluated for sugar sampling (Meyers et al. 2020). This method used 
histogram binning of the input raster values of the normalized difference vegetation index 
(NDVI) to find three contiguous 30 m Landsat pixels (90 m total transect) that would 
represent different sections of each histogram with the limitation of a single transect aligned 
with the orientation of vine rows in each vineyard. The quicker return interval and improved 



spatial resolution from the European Space Agency’s Sentinel program could allow for even 
smaller transects that could adequately represent the sugar variability in wine grape 
vineyards. The objective of this project was to validate this approach to vineyard sugar 
sampling using the higher resolution Sentinel 2 satellite imagery (10 m pixel resolution) for 
an even smaller transect (30 m total transect; 3P).  
  
Materials and Methods 
 
Vineyards 
 
In the 2017, 2018, and 2019 growing seasons, 125 samples were collected within a few days 
prior to commercial harvest from each of four Vitis vinifera L. cv. Cabernet Sauvignon 
vineyards in the Lodi AVA in central California (38° 7’ 44” N, 121° 16’ 51” W). The 
vineyards and samples were the same as those in Sams et al. (2022a, b). All four vineyards 
were drip-irrigated, spur-pruned, and machine harvested. Vineyard A was planted on 
rootstock 039-16, clone FPS 08, in 2010 and has been pruned to a single bilateral sprawling 
training system with no inter-row cover crop. Vineyard B was planted on rootstock SO4, 
clone 7, in 2013. Vineyard C was planted on rootstock 1103P, clone 7, in 1998. Vineyards B 
and C were both trained to a quadrilateral sprawling system with a perennial inter-row grass 
cover crop. Vineyard D was planted on rootstock 039-16, clone 15, in 2012. Vineyard D was 
a mechanized high wire sprawling canopy and used the same inter-row cover crop as 
Vineyards B and C. Vineyards A and C varied by less than 2 m in elevation, while Vineyard 
B sloped approximately 20 m from north to south. Vineyard D had an elevation range of 
around 8 m and was characterized by rolling hills.  
 

 
Figure 1. Vineyards and sample layouts used in the analysis (from Sams et al. 2022a). 

 



Sams et al. (2022a) outlined the sampling design intended for spatial analysis of fruit 
chemistry and yield. This design used modified regular grids based on row and vine distance 
of each vineyard but with random offsets applied to each data vine location and allowed for 
the spatial dependence and variability to be characterized at uneven distances between 
samples for robust variogram generation.  
 
Commercial harvest for the four vineyards occurred within 10 days of one another in all 3 
years, with the entire 2019 sample collection occurring over just 5 calendar days. In most 
cases, the vineyards were sampled either the day before or on the day of commercial harvest. 
Fruit from each data vine was completely removed and yield for each vine recorded. Twenty 
bunches, sampled at random from each vine, were then set aside for laboratory analysis.  
 
Laboratory 
 
Upon arrival at the laboratory, the collected samples of whole bunches were mechanically 
destemmed and homogenized prior to extraction with an acidified 50% ethanolic solution. A 
WineScan FT-120 Fourier Transform Infrared Spectroscopy (FOSS North America, Eden 
Prairie, MN, USA) was used to analyze total soluble solids (TSS). The calibration was 
created by WinISI II software (FOSS, Hillerød, Denmark) using E&J Gallo’s internal grapes 
and reference chemistry quality standards. 
 
Image analysis and data processing 
 
Sentinel 2 images from mid-June were downloaded and processed to compute the NDVI 
using Google Earth Engine (Gorelick et al. 2017). Digital boundaries of each vineyard were 
used to extract only those pixels which represented vineyard area and eliminated those from 
outside roads, buildings, trees, and other objects which could compromise the spectral signal 
of vines. An algorithm for determining the optimum single transect of three contiguous pixels 
(3P) representing as much variation in NDVI values as possible was calculated for each 
vineyard in each season. Figure 2 shows the workflow outlining the steps of the algorithm. 



 
Figure 2. The workflow diagram of the three-pixel (3P) algorithm illustrating the procedure 
for selecting the best transect for sampling in vineyards using NDVI maps. 
 
The algorithm begins by sorting the NDVI values from high to low. After sorting, it divides 
the NDVI values into the first, second, and third tertiles, which correspond to high, medium, 
and low vigor classes, respectively. Following this, the mean NDVI for each category is 
computed. The next step is to start scanning the NDVI map, selecting each 3P based on the 
row orientation (vertical for north to south, horizontal for east to west and diagonal for the 
rest). For each 3P, the algorithm sorts NDVI values from high to low and calculates the 
differences between the NDVI values of the 3P and the average vigor classes (high vigor, 
medium vigor, and low vigor). The sum of these differences is considered the score or 
objective function for this search problem. As shown in the workflow, this objective function 
can be mathematically defined as follows: 
  
 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒	𝐹𝑢𝑐𝑡𝑖𝑜𝑛 ∶ 	 |𝑃!"#! − 𝐻𝚤𝑔ℎ	$%#&'|66666666666666+|𝑃()* −𝑀𝑒𝑑𝚤𝑢𝑚	$%#&'666666666666666666| + |𝑃+&, − 𝐿𝑜𝑤	-%#&'666666666666| 
 
where 𝑃!"#!, 𝑃.)*, 𝑃+&, represent the high, medium, and low NDVI values of 3P, 
respectively. Based on this objective function, the optimal transect is identified by the 
smallest difference between the NDVI values of the 3P and the average vigor classes. 
Therefore, the 3P corresponding to the lowest value of the objective function indicates the 
optimal single transect. 



 
 

 
Figure 3. Gridded NDVI map from Sentinel 2 of Vineyard C showing the three-pixel (3P) 
line straddling different pixel values.  
 
To produce maps of TSS, experimental variograms were estimated from the 125 samples per 
vineyard per season using a spherical model and maps were interpolated using global point 
kriging in VESPER (Minasny et al. 2005). Values of TSS from the 3P were extracted from 
the interpolated maps using the Sentinel 2 grids (Figure 4). The mean TSS value from the 3P 
transect was then compared against the histograms of TSS computed from the 125 samples 
collected from each vineyard in each season (Figure 5). 
 



 
Figure 4. An example of the three-pixel transects overlaid on a map of total soluble solids 
(TSS).  
 
Results 
 
Comparing the TSS histograms of the 125 sampling campaigns in 2017, 2018, and 2019 with 
the values extracted from the three pixel transects identified by the Sentinel 2 NDVI based 
sampling algorithm showed general consistency across vineyards and seasons (Figure 5). In 
most cases, the mean value from the three-pixel transects overlapped with the histogram peak 
of TSS. Exceptions include Vineyard B in 2017 and 2019 and Vineyard D in 2017, though all 
three of these were within one degree brix of the histogram peak. The TSS values in Table 1 
confirm this consistency as none of the blocks in any season showed values outside of the 
standard deviation of the 125-sample average.   
 



 
Figure 5. Histograms from the 125 sampling campaigns in 2017, 2018, and 2019 with the 
mean value extracted from maps of TSS in the three pixel transects based on Sentinel 2 
NDVI. (Alternatively, this figure could be broken up into either 1) three figures, one per year 
with all four blocks OR 2) four figures, one per block with all three years.) 
 
Table 1. Mean and standard deviation of total soluble solids from the 125 samples collected 
in each block and year and the values extracted from the interpolated maps using the three-
pixel transect in each of the four vineyards from 2017-2019.  
 
 Total Soluble Solids (°Brix) 
 2017 2018 2019 
Vineyard Avg 125 3-pixel Avg 125 3-pixel Avg 125 3-pixel 

A 24.4±0.5 24.4 24.4±0.7 24.3 24.4±0.8 24.6 
B 24.8±1.0 23.8 26.5±0.8 26.3 25.4±1.3 24.8 
C 24.6±0.9 24.1 25.4±0.8 25.5 25.0±1.2 25.5 
D 24.3±1.2 23.8 24.7±1.4 25.0 25.3±1.6 25.8 

 
Discussion 
 
Large growing operations or wineries with significant vineyard holdings/contracted vineyards 
must try to account for spatial variability with as little time and effort as possible, a process 
usually done through manual in-field sampling. Precision agriculture techniques show 
promise for variable rate management in wine grape vineyards, but smart implements 
designed to address variability have been slow to develop. Many tools are available for 



characterizing spatial variability of yield and fruit quality, such as high-density field sampling 
(Bramley 2005; Sams et al. 2022a), yield monitors and mapping (Bramley 2001; Taylor et al. 
2016), remotely sensed imagery from aircraft and satellites (Hall et al. 2011; Fiorillo et al. 
2012; Sozzi et al. 2020), soil surveys (Bramley et al. 2011a;  Sams et al. 2022b), and 
proximal sensing (Trought and Bramley 2011; Baluja et al. 2012; Gutiérrez et al. 2019), but 
very few solutions exist to react to this variability. Given this lack of options, viticulturists 
and receiving wineries must attempt to account for spatial variability of yield and fruit quality 
rather than try to eliminate it through variable rate practices since grapes from a given 
vineyard are typically streamed into a single wine program. Zonal sampling (Hall et al., 2002; 
Dorin et al., 2022), taking samples from zones of similar yield/quality, may be an option for 
some operations but will inherently increase the cost of sampling versus only one sample 
location. There is also an opportunity to evaluate the spatial consistency and variance of the 
3P transects when using images from different phenological stages, prior seasons, or different 
aerial providers or resolutions and will be the topic of a future paper.  
 
Conclusion 
 
While some of the values extracted from the three pixel transects fell away from the peak of 
the respective histograms, most were still within ±1° brix of the field averages and all were 
within the standard deviation of each of the field averages. This method could be useful to 
growers, vineyard managers, or wineries interested in a repeatable, robust, cost-effective 
sampling strategy for understanding how vineyard variability could affect the winemaking 
process.  
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