Login

Proceedings

Find matching any: Reset
Add filter to result:
Robustness of Pigment Analysis in Tree Fruit
M. Zude-Sasse, J. Käthner, C. Regen
ATB

The non-destructive application of spectrophotometry for analyzing fruit pigments has become a promising tool in precise fruit production. Particularly, the pigment contents are interesting to the growers as they provide information on the harvest maturity and fruit quality for marketing. The absorption of chlorophyll at its Q band provides quantitative information on the chlorophyll pool of fruit. As a challenge appears the in-situ measurement at varying developmental stage of the fruit due to its non-linear changes of absorption as well as scattering properties, which appear in the sum signal measured.

Studies were carried out to analyze the absorption and effective scattering coefficients, µa and µs', respectively, by means of spatially resolved spectroscopy. Example is given for pear (Pyrus communis L. 'Conference') over a period of 60 - 150 days after full bloom.

Results are encouraging for calculating µa and µs’ by means of Farrell diffusion theory model using Levenberg-Marquardt algorithm. The measuring uncertainty was <5% when reducing the 300 data points to 3 readings showing a potential for data reduction. With this approach, robust calibration can be carried out for non-destructively analyzing the chlorophyll content of pear over the period ranging from unripe to post-climacteric pears.

Keyword: Backscattering imaging, Farrell, Pear, Plum, Precision horticulture, Spatially resolved spectroscopy