Login

Proceedings

Find matching any: Reset
2022
2016
Add filter to result:
Authors
Aasen, H
Abbas, A
Abbas, F
Abdala, M
Abenina, M
Abukmeil, R
Acquah, H.D
Acuna, T
Adamchuk, V
Adamchuk, V.I
Adedeji, O
Adedeji, O.I
Adhikari, K
Adu-Gyamfi, Y
Aggarwal, V
Agneroh, T
Aguilera, A.P
Ahmad, A
Ahrends, H.E
Aijun, Z
Aikes Junior, J
Akune, V.S
Al Amin, A
Al-Gaadi, K
Alarcon, V.J
Albrecht, H
Alchanati, V
Alchanatis, V
Alderman, P
Alderman, P.D
Aldridge, K
Ali, A
Ali, U
Allegro, G
Almallahi, A
Amado, T.J
Amaral, L.R
Ameglio, L
Amin, S
Amouzou, K.A
Ampatzidis, Y
Anaba, C.I
Andersen, P
Anderson, S.H
Andersson, K
Andvaag, E
Anselmi, A.A
Antunes, J.F
Applegate, D.B
Araujo, R
Archer, J.K
Archila-Diaz, J.F
Archontoulis, S
Arias, A
Arias, A.C
Arnall, B
Arnall, D.B
Ashworth, A
Astillo, P
Attanayake, A
Attanayake, A.U
Ayık, M
Badua, S
Baeck, P
Bajwa, S
Baklouti, I
Balboa, G
Balkcom, K
Balla, I
Balzarini, M
Bao, H
Bareth, G
Barker, D
Barwick, J.D
Bastos, L
Baumbauer, C
Bautista, F
Bazakos, M
Bazzi, C
Bazzi, C.L
Bean, G
Bean, G.M
Bean, M
Becker, M
Bede, L
Bedwell, E
Been, T
Beeri, O
Behrendt, K
Beitz, T
Bekkerman, A
Belford, R
Belmont, K
Ben-Gal, A
Beneduzzi, H.M
Benez, S.H
Benke, S
Bennett, J
Bennett, S
Berger, A
Berger, A.W
Bergheim, R
Berne, D.T
Berti, M
Berzins, R
Best, S
Betzek, N
Betzek, N.M
Bhandari, S
Bier, J
Bisognin, M.B
Biswas, A
Blommaert, J
Bobryk, C.W
Bodson, B
Boejer, O
Bolfe, E
Bolten, A
Bolton, C
Bongiovanni, M
Bongiovanni, R
Bonnardel, B
Boonen, M
Borůvka, L
Bosompem, M
Bourouah, M
Bouroubi, M.Y
Boydston, R
Boyer, C.N
Brand, H
Brasco, T
Brazda, D
Bridges, R.W
Brinkhoff, J
Brockgreitens, J
Brorsen, W
Bruce, A.E
Brungardt, J.J
Bui, M
Bullock, R.J
Buschermohle, M.J
Butts, C
Büchele, D
Bückmann, H
Cabrera Dengra, M
Camberato, J
Camberato, J.J
Cambouris, A
Cambouris, A.N
Cammarano, D
Canata, T
Canata, T.F
Canavari, M
Cao, Q
Capolicchio, J
Cardoso, G.M
Carlier, A
Carneiro Amado, T.J
Carneiro, F.M
Carriedo, L
Carter, P
Carter, P.R
Castro, S.G
Cavayas, F
Cendrero Mateo, M.P
Cerliani, C
Cesario Pereira Pinto, J
Chaplin, Y
Charvat Jr., K
Charvat jr., K
Charvat, K
Chau, M
Chavan, H
Cheema, S.J
Chen, J
Chen, L
Chen, P.L
Chen, Y
Chen, Z
Cho, W
Cho, Y
Choi, D
Choi, J
Choi, M
Chok, S.E
Christensen, A
Chudy, T
Chung, S
Ciampitti, I
Cisneros, M
Citon, L.C
Clay, D.E
Clay, S.A
Codjia, C
Cohen, Y
Colaço, A
Colaço, A.F
Connor, J
Constas, K
Conway, L
Conway, L.S
Corassa, G.M
Cosby, A.M
Coulter, J.A
Craker, B.E
Cruse, R
Csenki, S
Cushnahan, M.Z
Cushnahan, T
Custer, S
Cutulle, M
D.C, H
DUMONT, B
Dafnaki, D
Daggett, D.G
Dalla Nora, D
Dandrifosse, S
Das, A
Das, A.K
Dash, M
Davadant, P
De Neve, S
De Poorter, E
De Waele, T
DeBruin, J
Degioanni, A
Delalieux, S
Delauré, B
Delgadillo, C.A
Demattê, J.M
Denton, A.M
Destain, M
Dhal, S
Dhawale, N
Dillen, J
Dobos, R
Dong, R
Dornbusch, T
Dos Reis, A.A
Dos Santos, R.S
Dr., N
Dr., S
Drew, P
Dreyer, J.G
Drummond, S
Drzazga, T
DuPont, E.M
Duarte de Val, M
Duchemin, M
Duddu, H
Duddu, H.U
Duff, H
Duff, H.D
Dufrasne, I
Duft, D.G
Dumont, B
Dunbabin, M
Duncan, S
Dunn, D
Dutilleul, P
Dworak, V
EMİNOĞLU, B.M
Eberle, D
Ehsani, R
Eitelwein, M.T
El Gamal, A
El-Mejjaouy, Y
Ellixson, A
Ellsworth, J.W
Elmore, R
Elsen, A
Elvir Flores, A
Emmi, L
Enger, B.D
Ennadifi, E
Erbe, A
Erickson, B
Erickson, B.J
Esau, T
Esau, T.J
Escolà, A
Esposito, G
Evers, B
Eyster, R
Farooque, A
Farooque, A.A
Fasso, W
Fausti, S
Ferguson, A
Ferguson, R.B
Fernandez, F.G
Fernández, F.G
Ferraz Pueyo, C
Ferraz, M.N
Ferreyra, R
Fey, S
Figueiredo, G.K
Filippetti, I
Fiorio, P.R
Fleming, K
Flint, E.A
Flippo, D
Flores, P
Flores, P.J
Floyd, W
Fontenelli, J.V
Fornale, M
Fortes, R
Fortunato, M
Fountas, S
Franco, H.C
Franklin, K
Franklin, K.F
Franz, F
Franzen, D.W
Franzen, J
Freitas, R.G
Friell, J
Frimpong, K.A
Friskop, A
Fritz, A
Frizzel, L
Frotscher, K.J
Fu, W
Fulton, J.P
Gacek, E.S
Gailums, A
Gallios, I
Gamble, A
Gan, H
Ganascini, D
Garza, C
Gauci, A
Gavioli, A
Gaviraghi, R
Ge, Y
Gebbers, R
Gebert, F.H
Gebler, L
Gelder, B.K
George, D
Gerighausen, H
Ghimire, B.P
Ghimire, D
Gholizadeh, A
Gill, N
Gillingham, V
Gips, A
Glewen, K
Gnatowski, T
Gnyp, M.L
Gobezie, T.B
Goeringer, P
Goffart, J
Goldshtein, E
Goldwasser, Y
Gonzalez, J
Goodrich, P
Goodrich, P.J
Goorahoo, D
Gornushkin, I
Gosselin, B
Gowler, A
Gozdowski, D
Graff, N
Grafton, M.C
Green, S
Greene, J
Gregory, S
Grewal, K
Griffin, T
Griffin, T.W
Grisham, M.P
Gritten, F
Gu, H
Guerrero, H.B
Gumero, J
Gunther, D
Gunzenhauser, B
Gunzenhauser, R
Guo, W
Guo, Y
Guohua, W
Gupta, S
Gutiérrez, V
Gutteridge, M
Gérard, B
HIguti, V.A
Ha, T
Hachisuca, A
Hachisuca, A.
Hachisuca, A.M
Hajda, C
Hama Rash, S
Hamida, A
Hammond, J
Hammond, K
Han, K
Han, X
Han, Y.J
Haneklaus, S
Hansel, D
Hansen, N
Hanumanthappa, D
Haringx, S.C
Harkin, S.J
Harper, J
Harris, G
Harsha Chepally, R
Hartmann, B
Hartschuh, J
Hartschuh, J.M
Hatfield, J
Hatfield, J.L
Hawkins, E
Hayhurst, K
He, L
He, Z
Hegedus, P
Hegedus, P.D
Heggemann, T
Heggemann, T.W
Heil, K
Hejl, R
Hennessy, P.J
Henry, B
Hensley, R
Hernandez, C
Herppich, W.B
Herzmann, D
Hettiarachchi, G
Hillyer, C
Hirai, Y
Hock, M.W
Hoffmann Silva Karp, F
Hokanson, G.E
Hong, S
Hongo, C
Hopkins, B
Hopkins, B.G
Horakova, S
Horbe, T
Horbe, T.
Howatt, K
Howatt, T
Hu, Q
Hu, T.H
Huang, S
Huang, Y
Hunt, A
Hunt, E
Hüging, H
Ingram, B
Inoue, E
Inunciaga Leston, G
Irwin, M.E
Isakeit, T
Isono, S
Jackson, C
Jacquemin, G
Jalem, R.S
James, D
Jang, S
Jansen, M
Jansky, T
Jarolimek, J
Jasper, J
Jenal, A
Jensen, N
Jensen, R
Jeon, C
Jia, M
Jiang, J
Jianli, S
Jimenez, A
Johal, G
Johnson, A
Johnson, E
Johnson, E.U
Johnson, R.M
Jones, B
Jones, J
Jorgensen, R
K, S
Kaiser, D
Kalafatis, S
Kalmar, J
Kang, C
Karam, A
Karampoiki, M
Karkee, M
Karn, R
Kashetri, S
Katz, L
Kazula, M
Keller, B
Keller, M
Kelley, A
Kempenaar, C
Kepka, M
Kereszturi, G
Kerry, R
Kersebaum, C
Khakbazan, M
Khalilian, A
Khan, H
Kharel, T
Khosla, R
Khot, L
Khun, K
Kidd, J
Kiel, A
Kim, D
Kim, H
Kim, J
Kim, S
Kim, Y
Kindred, D
Kiran, A
Kitchen, N
Kitchen, N.R
Kizer, E
Klopfenstein, A
Knappenberger, T
Ko-Madden, C
Koch, G
Kocks, C
Kolar, P.R
Kolln, O.T
Kombali, G
Kotlyarov, D
Kotlyarov, V
Kovacs, A.J
Krienke, B
Krishnaswamy, K
Krmenec, A
Krys, K
Kshetri, S
Kubickova, H
Kuehner, K
Kukal, S
Kulesza, S.E
Kulmany, I.M
Kumar R, M
Kumke, M
Kumpatla, S
Kwarteng, J.A
Kyveryga, P
Kyveryga, P.M
Käthner, J
LENOIR, A
Laacouri, A
Laboski, C
Laboski, C.A
Lacerda, L
Lacerda, L.N
Lajunen, A
Lamb, D.W
Lambert, D.M
Lamichhane, R
Lamparelli, R.A
Lang, V
Langovskis, D
Larbi, P.A
Lare, M
Larson, J.A
Lattanzi, P
Lauzon‎, S
Le Roux, M
Lebeau, F
Leduc, M
Lee, J
Lee, K
Lee, W
Leemans, V
Leenen, M
Lehmann, J
Lena, B.P
Lenssen, A
Lenz-Wiedemann, V
Lessl, J
Leszczyńska, E
Leszczyńska, R
Levi, M
Li, D
Li, J.C
Li, L
Li, Y
Liakos, V
Liang, X
Lianqing, Z
Liburd, O.E
Licht, M.A
Lilienthal, H
Lima, J.P
Lin, Z
Lindblom, J
Lindsey, A
Litaor, I
Liu, H
Liu, J
Livens, S
Loewen, S
Loewen, S.D
Long, J
Longchamps, L
Longlong, L
Lotsi, A.K
Louis, J
Lowenberg-DeBoer, J
Lowenberg‑DeBoer, J
Lowrance, C
Lu, J
Luck, J
Lukas, V
Luker, E
Lum, C
Lund, E
Lund, T
Lundström, C
Luo, B
Lusher, J
Ma, Y
MacEachern, C
Mackenzie, M
Macura, J
Madugundu, R
Magalhaes, P.S
Magalhães, D.V
Magalhães, P.G
Magalhães, P.S
Maggi, M.F
Magyar, F
Mahanta, S
Maharjan, B
Maharlooei, M
Mahmood, S
Mahmoudi, S
Mahns, B
Mailwald, M
Maiwald, M
Maja, J
Maja, J.J
Maja, J.M
Maldaner, L
Maloof, J
Mandal, D
Manfield, A
Mangus, D.L
Manoj, K
Mansouri, M
Marchant, B.P
Marjerison, R
Marlier, G
Marshall, J
Martelli, R
Martello, M
Martin, D.E
Martinez, M.M
Martins, M.R
Martinsson, J
Massey, R
Mathew, J
Mathew, J.J
Maurer, J.L
Maxton, C
Maxwell, B
Maxwell, B.D
Maxwell, T
Mayer, J
Mazzoleni, R
McArthor, B
McArtor, B
McBeath, T
McClintick-Chess, J
McDonald, T.P
McEntee, P
McLellan, E
McVeagh, P.J
Medici, M
Melchiori, R
Melgar, J
Melkonian, J
Melnitchouck, A
Mendes, I
Meng, Z
Mennuti, D
Mercante, E
Mercatoris, B
Miao, Y
Mieno, T
Miklas, P.N
Milani, I
Miles, R.J
Milics, G
Milori, D.M
Miranda, C
Mireei, S.A
Mitsuoka, M
Mizgirev, A
Mizuta, K
Moebiu-Clune, B
Moebius-Clune, D
Molin, J
Molin, J.P
Montull, J.M
Moon, H
Moorhead, R.J
Morales Luna, G.L
Morales, A.C
Morales, G
Morales, G.L
Morata, G
Morata, G.T
Moreira, W
Morellas, V
Moreno Heras, L
Morlin, F
Moro, E
Morris, C
Morris, T
Mouazen, A.M
Mouazen, D
Moulin, A
Moulton, H
Moyle, J
Mueller, D
Mueller, N
Mueller, T
Mueller-Linow, M
Mulla, D
Mulla, D.J
Muller, O
Munnaf, M.A
Murdoch, A
Murdoch, A.J
Murrell, S
Musil, M
Muth, D
Myers, B
Myers, D
Nadagouda, D
Nadav, I
Nafziger, E
Nafziger, E.D
Nagel, P
Nakazawa, P.H
Nambi, E
Naor, A
Nascimento-Silva, K
Nawar, S.M
Nef, B.K
Neményi, M
Nerpel, D
Nguyen, A.T
Nguyen, T
Nichols, R.L
Nielsen, M.B
Nielsen, R.L
Nieman, S.T
Nišavić, N
Noorasma, S
Norquest, S
Nowatzki, J
Nowatzki, J.F
Nuyttens, D
Nyeki, A
Nysten, S
Nze Memiaghe, J
Nze Memiaghe, J.D
O'Sullivan, N
Odvody, G.N
Ogasawara, C
Oh, S
Okayasu, T
Oliveira, L.P
Oliveira, M.F
Oliveira, S.R
Orellana, M.C
Ortega, A.F
Ortega, R
Ortega, R.A
Ortiz, B
Ortiz, B.V
Ortiz-Monasterio, I
Ossowski, M
Ostermann, M
Otto, R
Oukarroum, A
Owens, P
Owens, P.R
Owusu Ansah, E
Ozmen, S
PATIL, B
Pajuelo Madrigal, V
Palacios, D
Panitzki, M
Papanikolopoulos, N
Paraforos, D
Parkash, V
Parrish, J
Pasquel, D
Passalaqua, B
Passalaqua, B.P
Pastore, C
Patto Pacheco, E
Paulus, S
Pauly, K
Payero, J.O
Paz, L
Pearson, R
Pecze, R
Peerlinck, A
Peerlinck, A.D
Peeters, A
Pelta, R
Penn, C
Pennington, D
Peralta, D
Pereira, F.R
Pereira, J.C
Pereira, N.D
Petix, R
Pezzi, F
Peña, J
Phillips, S
Pieruschka, R
Piikki, K
Pimstein, A
Pinto, F
Pires, J.L
Pitrat, T
Plum, J
Poblete, H.P
Pokhrel, A
Poland, J
Poncet, A.M
Porter, L
Porter, W
Portz, G
Postelmans, A
Pourreza, A
Poursina, D
Prabhudeva, D
Prasad, R
Prasad, V
Prestholt, A
Prince Czarnecki, J.M
Pritsolas, J
Privette, C.V
Prostko, E.P
Pullanagari, R.R
Puntel, L
PÄTZOLD, S
Pätzold, S
Qiao, X
Qingchun, F
Quanbeck, J
Quinn, D.
Quirós, J.J
Quoitin, B
Raheja, A
Rahman, M.M
Rai, N
Ramachandran, B
Ranieri, E
Ransom, C
Ransom, C.
Ransom, C.J
Rascher, U
Rathee, G
Reddy, K
Reddy, L
Regen, C
Reich, R
Reimche, G.B
Rekhi, M
Reusch, S
Reyes Gonzalez, J
Reynolds, D.B
Reznik, T
Rhea, S.T
Riebe, D
Ritenour, M.A
Roberts, D
Roberts, J
Roberts, P
Robson, A
Rodrigues Jr., F.A
Rodrigues, M
Roel, A
Rojo, F
Roka, F.M
Romanelli, T.L
Rondon, S.I
Rosell-Polo, J.R
Rosen, C
Rossetti, G
Roux, S
Rudolph, S
Ruma, F.Y
Rund, Q
Russo, J.M
Rutter, B
Rutter, M.S
Rydahl, P
Ryu, S
Rühlmann, J
Rühlmann, M
SEYHAN, G.T
SVIERCOSKI, R
Saberioon, M
Sade, Z
Sadler, E
Sadler, J
Saeys, W
Saifuzzaman, M
Salvi, J
Samborski, S.M
Samiappan, S
Sampath, N
Sampson, T
Sanches, G
Sanches, G.M
Sanders, P
Sandoval-Green, C
Santana Neto, A.J
Santi, A.L
Sanz-Saez, A
Saraswat, D
Sassenrath, G.F
Saurette, D
Savoy, H.J
Sawyer, J
Sawyer, J.E
Saxena, A
Scaramuzza, F
Schacht, R
Schaefer, M.T
Scharf, P
Scharf, P.C
Scheithauer, H
Schenatto, K
Schepters, J.S
Scheve, A
Schickling, A
Schill, S
Schindelbeck, R
Schmid, T
Schneider, D
Schneider, S
Schnug, E
Schottle, N
Schueller, J.K
Schuenemann, G.M
Schulthess, U
Schultz, E.D
Schumacher, L
Schumann, A.W
Schurr, U
Schwalbert, R
Schwalbert, R.A
Sedinina, N
Seepersad, G
Seepersad, S
Seger, J
Sela, S
Selbeck, J
Seyhan, G.T
Shafian, S
Shahid, A
Shanahan, J
Shanahan, J.F
Shannon, K
Sharda, A
Sharma, A
Sharma, V
Shaw, J
Shaw-Feather, C
Shcherbatyuk, N
Shearer, S
Shearer, S.A
Shearouse, T.W
Shen, F
Sheppard, J
Sheppard, J.W
Shi, G.L
Shi, W
Shibusawa, S
Shilo, T
Shirtliffe, S
Shirtliffe, S.J
Shirtliffe, S.U
Shirzadi, A
Shorkey, R
Shoup, D
Shoups, D
Shumate, S
Siegfried, J
Sielenkemper, M
Sigit, G
Silva, A.E
Silva, F.V
Silva, R.P
Sima, A
Simek, P
Sinha, N
Siqueira, R.D
Sivarajan, S
Sklenar, T
Skouby, D
Slaughter, D
Smith, A.P
Smith, D.R
Smith, L
Snevajs, H
Snider, J.L
Sobjak, R
Soerensen, M
Soetan, M
Sogbedji, J.M
Son, J
Song, X
Songchao, C
Sornapudi, S
Souza, E.G
Souza, W.J
Sparrow, R
Spekken, M
Splichal, M
Squires, T
Sridharan, S
Stadig, H
Stanitsas, P
Stavness, I
Stefanini, M
Stelford, M
Stelford, M.W
Stenberg, M
Stenger, J
Stettler, E
Stoces, M
Stočes, M
Straw, C
Stueve, K
Stępień, M
Sudduth, K
Sudduth, K.A
Suh, C
Sumpf, B
Sun, C
Sun, X
Sung, N
Sunkevic, M
Sutherland, A
Swain, D
Swoboda, K
Sylvester-Bradley, R
Szatylowicz, J
Söderström, M
T, S
TALEBPOUR, B
TORGBOR, B.A
Tabaldi, F.M
Taberner, A
Takahashi, T
Tamura, E
Tang, Q
Tarshish, R
Tavares, T.R
Taylor, J
Taylor, J.A
Taylor, R
Tedesco, D
Tekin, A
Tevis, J.W
Thimmegowda, M
Thomasson, J.A
Thompson, A.L
Thompson, C
Thompson, L
Thomson, S.J
Thornton, M
Thurmond, M
Tilly, N
Tiscornia, G
Tisseyre, B
Todman, L
Tola, E
Toledo, F.H
Torresen, K
Townsley, B
Trebilcock, P
Tremblay, N
Trevisan, R
Trevisan, R.G
Trotter, M
Trotter, T
Tsibart, A
Tubaña, B.S
Tucker, M.A
Tucker, M.W
Turner, I
Turner, R.W
Tyler, D.D
TÜRKER, U
Tóth, G
Ulman, M
Underwood, H
Upadhyaya, P
Upadhyaya, S.K
Utoyo, B
VANDOORNE, B
Valentini, G
Van de Ven, G
Vaněk, J
Varco, J.J
Varela, S
Varga, P.M
Vargas, M.R
Velasquez, A.E
Vellidis, G
Verma, A.P
Vermeulen, P
Verschwele, A
Verstynen, H
Vetch, J.M
Veum, K
Veum, K.S
Videla, H
Vigil, M
Vigneault, P
Virk, S
Virk, S.S
Vitali, G
Vona, V
Vong, C
Vories, E
Vories, E.D
Wagner, P
Waine, D
Wakahara, S
Wallor, E
Walsh, O
Walsh, O.S
Walthall, C
Wang, N
Wang, R
Wang, S.Y
Wang, X
Warren, J
Watkins, E
Watkins, K
Watkins, P
Webber, H
Weckler, P
Wehrle, R
Wei, X
Welch, M
Welch, S
Welp, G
Weltzien, C
Westerdijk, K
Whattoff, D
White, M
White, S.N
Wieland, S
Wijewardane, N
Wilde, P
Wilhelm, N
Williams, D
Williams, E
Williams, R
Willis, L.A
Wilson, C
Wilson, J.A
Wilson, J.W
Wilson, R
Wood, B.A
Woolley, E
Wu, G
Wyatt, B
Xiaonan, W
Xiong, X
Xiongkui, H
Xiu, W
Xu, G
Xu, M
Xu, Z
Yafei, Y
Yajia, L
Yamakawa, T
Yang, C
Yang, G
Yang, Q
Yao, Y
Ye, D
Ye, Y
Yegul, U
Yi, T
Yilma, W
Yilma, W.A
Yin, X
Yogananda, S
Yost, M
Yost, M.A
Young, J
Yuan, F
Yule, I.J
Yun, H
Zadrazil, F
Zaman, Q
Zaman, Q.U
Zamzow, M
Zarco-Tejada, P.J
Zermas, D
Zhai, C
Zhang, H
Zhang, J
Zhang, L
Zhang, Q
Zhang, R
Zhang, X
Zhang, Y
Zhang, Z
Zhao, C
Zhao, H
Zhao, J.C
Zhao, T
Zhao, X
Zhou, C
Zhou, J
Zhou, S
Ziadi, N
Zikan, A
Zillmann, E
Zude-Sasse, M
Zuniga-Ramirez, G
Zur, Y
da Silva, T.R
de Carvalho, H.W
de Castro, A
de Souza, E.G
del Val, M.D
eitelwein, M.T
giriyappa, M
han, K
hassanijalilian, O
maddalon, J
neogi, N
song, S
van Es, H
van Evert, F
van-Es, H
ÇOLAK, A
Topics
Precision Crop Protection
Unmanned Aerial Systems
Spatial Variability in Crop, Soil and Natural Resources
Profitability, Sustainability and Adoption
Remote Sensing Applications in Precision Agriculture
Proximal Sensing in Precision Agriculture
Engineering Technologies and Advances
Food Security and Precision Agriculture
Precision Nutrient Management
Sensor Application in Managing In-season Crop Variability
Decision Support Systems in Precision Agriculture
Big Data Mining & Statistical Issues in Precision Agriculture
Precision Horticulture
Precision Conservation Management
Standards & Data Stewardship
Precision Agriculture and Climate Change
Agricultural Education
Precision Dairy and Livestock Management
No Group Selected
Geospatial Data
Drainage Optimization and Variable Rate Irrigation
On Farm Experimentation with Site-Specific Technologies
Decision Support Systems
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Robotics, Guidance and Automation
Precision Crop Protection
In-Season Nitrogen Management
Education and Outreach in Precision Agriculture
Applications of Unmanned Aerial Systems
Wireless Sensor Networks
Factors Driving Adoption
Precision Horticulture
Land Improvement and Conservation Practices
Smart Weather for Precision Agriculture
Site-Specific Nutrient, Lime and Seed Management
Big Data, Data Mining and Deep Learning
ISPA Community: Economics
Farm Animals Health and Welfare Monitoring
Site-Specific Pasture Management
Profitability and Success Stories in Precision Agriculture
ISPA Community: Latin America
Precision Agriculture and Global Food Security
ISPA Community: Nitrogen
Small Holders and Precision Agriculture
Precision Dairy and Livestock Management
Plenary
Industry Sponsors
Type
Poster
Oral
Year
2016
2022
Home » Year » Results

Year

Filter results371 paper(s) found.

1. Field Evaluation of a Variable-rate Aerial Application System

Variable rate aerial application systems are becoming more readily available; however, aerial applicators typically only use the systems for constant rate application of materials, allowing the systems to compensate for upwind and downwind ground speed variations. Much of the resistance to variable rate application system adoption pertains to applicator’s trust in the systems to turn on and off automatically as desired.  If an application system operating in an automatic mode ... D.E. Martin, C. Yang

2. Integration of High Resolution Multitemporal Satellite Imagery for Improving Agricultural Crop Classification: a Case Study

Timely and accurate agriculture information is vital for ensuring global food security. Satellite imagery has already been proved as a reliable tool for remote crop mapping. Planet satellite imagery provides high cadence, global satellite coverage with higher temporal and spatial resolution than the Landsat-8 and Sentinel-2. This study examined the potential of utilizing high-resolution multitemporal imagery along with and normalized difference vegetation index (NDVI) to map the agricultural ... U. Ali, T. Esau, A. Farooque, Q. Zaman

3. #DigitAg France

#DigitAg, the Digital Agriculture Convergence Laboratory, is one of 10 French Convergence Institutes financed by the Investissements d'Avenir (Investment for the Future) program. #DigitAg conducts interdisciplinary research between agronomic sciences, engineering sciences (computer science, mathematics, electronics, physics, etc.) and social and management sciences (economics, sociology, business management), bringing together more than 700 experts in these fields to produce the scientifi... J. Taylor

4. 'Spatial Discontinuity Analysis' a Novel Geostatistical Algorithm for On-farm Experimentation

Traditional agronomic experimentation is restricted to small plots. Under appropriate experimental designs the effects of uncontrolled environmental variables are minimized and the measured responses (e.g. in yields) are compared to controllable inputs (seed, tillage, fertilizer, pesticides) using well-trusted design-based statistical methods. However, the implementation of such experiments can be complex and the application, management, and harvesting of treated areas might have to... S. Rudolph, B.P. Marchant, V. Gillingham, D. Kindred, R. Sylvester-bradley

5. 25 Years Precision Agriculture in Germany - a Retrospective

It all started with the availability of Global Positioning Systems for civil services in 1988. In the same year variable rate applications of fertilizers were demonstrated in northern Germany and Denmark, which were globally the first of their kind and introduced a new era of agricultural production. The idea of Computer Aided Farming (CAF) was born. Only one year later the first yield maps were established. In 1992 at the Soil Specific Crop Management Workshop in Bloomington, Minnesota which... H. Lilienthal, E. Schnug, S. Haneklaus

6. A Bayesian Network Approach to Wheat Yield Prediction Using Topographic, Soil and Historical Data

Bayesian Network (BN) is the most popular approach for modeling in the agricultural domain. Many successful applications have been reported for crop yield prediction, weed infestation, and crop diseases. BN uses probabilistic relationships between variables of interest and in combination with statistical techniques the data modeling has many advantages. The main advantages are that the relationships between variables can be learned using the model as well as the potential to deal with missing... M. Karampoiki, L. Todman, S. Mahmood, A. Murdoch, D. Paraforos, J. Hammond, E. Ranieri

7. A Content Review of Precision Agriculture Courses Across the US

Knowledge of what precision agriculture (PA) content is currently taught across the United States will help build a better understanding for what PA instructors should incorporate into their classes in the future. The University of Missouri partnered with several universities throughout the nation on a USDA challenge grant. Precision Agriculture faculty from 24 colleges/universities from across the U.S. shared their PA content by sharing their syllabi from 43 different courses. The syllabi we... D. Skouby, L. Schumacher, M. Yost, N.R. Kitchen

8. A Context Changing with Precision Agriculture in Japan

A new context is emerging under introducing of precision agriculture, impacted by top-down ICT policies and bottom-up collaborative activities. Food chain is changing by a holistic technology policy of integration in the fields of breeding, farm production, processing, transportation, and market in consumers. A new ICT strategy was issued by the government for precision agriculture to enhance the interoperability and portability of data/information sets collected from the field. The administr... S. Shibusawa

9. A Data Fusion Method for Yield and Soil Sensor Maps

Utilizing yield maps to their full potential has been one of the challenges in precision agriculture.  A key objective for understanding patterns of yield variation is to derive management zones, with the expectation that several years of quality yield data will delineate consistent productivity zones.  The anticipated outcome is a map that shows where soil productive potentials differ.  In spite of the widespread usage of yield monitors, commercial agriculture has found it dif... E. Lund, C. Maxton, T. Lund

10. A Decade of Precision Agriculture Impacts on Grain Yield and Yield Variation

Targeting management practices and inputs with precision agriculture has high potential to meet some of the grand challenges of sustainability in the coming century, including simultaneously improving crop yields and reducing environmental impacts. Although the potential is high, few studies have documented long-term effects of precision agriculture on crop production and environmental quality. More specifically, long-term impacts of precision conservation practices such as cover crops, no-ti... M.A. Yost, N. Kitchen, K. Sudduth, S. Drummond, J. Sadler

11. A Dynamic Variable Rate Irrigation Control System

Currently variable rate irrigation (VRI) prescription maps used to apply water differentially to irrigation management zones (IMZs) are static.  They are developed once and used thereafter and thus do not respond to environmental variables which affect soil moisture conditions.  Our approach for creating dynamic prescription maps is to use soil moisture sensors to estimate the amount of irrigation water needed to return each IMZ to an ideal soil moisture condition.  The UGA Sma... G. Vellidis, V. Liakos, W. Porter, X. Liang, M.A. Tucker

12. A Framework for Imputation of Missing Parts in UAV Orthomosaics Using Planetscope and Sentinel-2 Data

In recent years, the emergence of Unmanned Aerial Vehicles (UAV), also known as drones, with high spatial resolution, has broadened the application of remote sensing in agriculture. However, UAV images commonly have specific problems with missing areas due to drone flight restrictions. Data mining techniques for imputing missing data is an activity often demanded in several fields of science. In this context, this research used the same approach to predict missing parts on orthomosaics obtain... F.R. Pereira, A.A. Dos reis, R.G. Freitas, S.R. Oliveira, L.R. Amaral, G.K. Figueiredo, J.F. Antunes, R.A. Lamparelli, E. Moro, N.D. Pereira, P.S. Magalhães

13. A Generative Adversarial Network-based Method for High Fidelity Synthetic Data Augmentation

Digital Agriculture has led to new phenotyping methods that use artificial intelligence and machine learning solutions on image and video data collected from lab, greenhouse, and field environments. The availability of accurately annotated image and video data remains a bottleneck for developing most machine learning and deep learning models. Typically, deep learning models require thousands of unique samples to accurately learn a given task. However, manual annotation of a large dataset will... S. Sridharan, S. Sornapudi, Q. Hu, S. Kumpatla, J. Bier

14. A Harvesting Robot System for Fresh Cherry Tomato in Greenhouse

In order to improve the , a new harvesting robot system for cherry tomato was designed and tested, which mainly consisted of a railed-type vehicle, a visual servo unit, a manipulator, a picking end-effector, and other accessories. According to the greenhouse environment and the standard planting mode, the robot configuration was determined, whose operating space could be adjusted horizontally and vertically in order to enlarge the harvesting range. Besides, a harvested fruits automatic transp... F. Qingchun, W. Xiu, W. Xiaonan, W. Guohua

15. A Hyperlocal Machine Learning Approach to Estimate NDVI from SAR Images for Agricultural Fields

The normalized difference vegetation index (NDVI) is a key parameter in precision agriculture used globally since the 1970s. The NDVI is sensitive to the biochemical and physiological properties of the crop and is based on the Red (~650 nm) and NIR (~850 nm) spectral bands. It is used as a proxy to monitor crop growth, correlates to the crop coefficient (Kc), leaf area index (LAI), crop cover, and more. Yet, it is susceptible to clouds and other atmospheric conditions which might al... R. Pelta, O. Beeri, T. Shilo, R. Tarshish

16. A Low-tech Approach to Manage Within Field Variability – Toward a Territorial Scale Application

Managing within field variability is promising to achieve European objectives of sustainability in crop production. Technological development has allowed to precisely characterize fields heterogeneity in space and time. However, learnings from low adoption of yield maps in west-European context have highlighted the importance of reliable methods to support decisions. Blackmore et al. designed a delineation method considering yield as an integrative variable that reflects spatial and ... A. Lenoir, B. Vandoorne, B. Dumont

17. A Multi Sensor Data Fusion Approach for Creating Variable Depth Tillage Zones.

Efficiency of tillage depends largely on the nature of the field, soil type, spatial distribution of soil properties and the correct setting of the tillage implement.  However, current tillage practice is often implemented without full understanding of machine design and capability leading to lowered efficiency and further potential damage to the soil structure. By modifying the physical properties of soil only where the tillage is needed for optimum crop growth, variable depth tillage (... D. Whattoff, D. Mouazen, D. Waine

18. A Passive-RFID Wireless Sensor Node for Precision Agriculture

Accurate soil data is crucial for precision agriculture.  While existing optical methods can correlate soil health to the gasses emitted from the field, in-soil electronic sensors enable real-time measurements of soil conditions at the effective root zone of a crop. Unfortunately, modern soil sensor systems are limited in what signals they can measure and are generally too expensive to reasonably distribute the sensors in the density required for spatially accurate feedback.  In thi... P.J. Goodrich, C. Baumbauer, A.C. Arias

19. A Photogrammetry-based Image Registration Method for Multi-camera Systems

In precision agriculture, yield maps are important for farmers to make plans. Farmers will have a better management of the farm if early yield map can be created. In Florida, citrus is a very important agricultural product. To predict citrus production, fruit detection method has to be developed. Ideally, the earlier the prediction can be done the better management plan can be made. Thus, fruit detection before their mature stage is expected. This study aims to develop a thermal-visible camer... H. Gan, W. Lee, V. Alchanatis

20. A Precise Fruit Inspection System for Huanglongbing and Other Common Citrus Defects Using GPU and Deep Learning Technologies

World climate change and extreme weather conditions can generate uncertainties in crop production by increasing plant diseases and having significant impacts on crop yield loss. To enable precision agriculture technology in Florida’s citrus industry, a machine vision system was developed to identify common citrus production problems such as Huanglongbing (HLB), rust mite and wind scar. Objectives of this article were 1) to develop a simultaneous image acquisition system using multiple c... D. Choi, W. Lee, J.K. Schueller, R. Ehsani, F.M. Roka, M.A. Ritenour

21. Accuracy of Differential Rate Application Technology for Aerial Spreading of Granular Fertiliser Within New Zealand

Aerial topdressing of granular fertilizer is common practice on New Zealand hill country farms because of the challenging topography. Ravensdown Limited is a New Zealand fertilizer manufacturer, supplier and applicator, who are funding research and development of differential rate application from aircraft. The motivation for utilising this technology is to improve the accuracy of fertilizer application and fulfil the variable nutrient requirements of hill country farms.  The capability ... I.J. Yule, S.E. Chok, M.C. Grafton, M. White

22. Active and Passive Crop Canopy Sensors As Tools for Nitrogen Management in Corn

The objectives of this research were to (i) assess the correlation between active and passive crop canopy sensors’ vegetation indices at different corn growth stages and (ii) assess sidedress variable rate nitrogen (N) recommendation accuracy of active and passive sensors compared to the agronomic optimum N rate (AONR). The experiment was conducted near Central City, Nebraska on a Novina sandy loam planted to corn on 15 April 2015. The experiment was a randomized complete-block design w... L. Bastos, R. Ferguson

23. Adjustment of Corn Population and Nitrogen Fertilization Based on Management Zones

The main objective of this study was to adjust the corn population and nitrogen fertilization according to management zones, based on past grain yield maps (seven of soybean and three of corn) and soil electrical conductivity. The study was carried out in Não-Me-Toque, Rio Grande do Sul, Brazil, and it was conducted in a factorial strip blocks with 3 repetitions in each management zone, being the treatments: corn populations (56000, 64000, 72000, 80000 and 88000 plants ha-1)... R. Schwalbert, T.J. Carneiro amado, T. Horbe, G.M. Corassa, F.H. Gebert

24. Aerial Photographs to Predict Yield Loss Due to N Deficiency in Corn

Nitrogen fertilizer is a crucial input for corn production, and in the U.S. more nitrogen is applied to corn than to all other crops combined.  In wet weather, nitrogen can be lost from soil by leaching and by denitrification.  Which process predominates depends largely on soil drainage.  Nitrogen deficiency in nearly any plant is expressed by a lighter green color of leaves than in nitrogen-sufficient plants.  Nitrogen deficiency in corn can be easily seen from the air.&n... P. Scharf

25. AgDataBox-IoT Application Development for Agrometeorogical Stations in Smart Farm

Currently, Brazil is one of the world’s largest grain producers and exporters. Brazil produced 125 million tons of soybean in the 2019/2020 growing season, becoming the world’s largest soybean producer in 2020. Brazil’s economic dependence on agribusiness makes investments and research necessary to increase yield and profitability. Agriculture has already entered its 4.0 version, also known as digital agriculture, when the industry has entered the 4.0 era. This new paradigm ... A. Hachisuca, E.G. Souza, E. Mercante, R. Sobjak, D. Ganascini, M. Abdala, I. Mendes, C. Bazzi, M. Rodrigues

26. AgDataBox: Web Platform of Data Integration, Software, and Methodologies for Digital Agriculture

Agriculture is challenging to produce more profitably, with the world population expected to reach some 10 billion people by 2050. Such a challenge can be achieved by adopting precision agriculture and digital agriculture (Agriculture 4.0). Digital agriculture has become a reality with the availability of cheaper and more powerful sensors, actuators and microprocessors, high-bandwidth cellular communication, cloud communication, and Big Data. Digital agriculture enables the flow of informatio... E.G. Souza, C. Bazzi, A. Hachisuca, R. Sobjak, A. Gavioli, N. Betzek, K. Schenatto, E. Mercante, M. Rodrigues, W. Moreira

27. AGOC: Agriculture Operations Center

After another long day, the farmer sits down in front of a computer (wishing this time was instead spent on the front porch catching a last glimpse of the sunset), and reflects once again ...     What if   ...  I actually knew the health of 100% of my crops rather than what I know today. a mere 20%. What if   ...  there was an effective, simple way to synchronize crop scouting and crop imagery efforts. ... M. Zamzow, H. Moulton

28. Agricultural Robots Classification Based on Clustering by Features and Function

Robotic systems in agriculture (hereafter referred to as agrobots) have become popular in the last few years. They represent an opportunity to make food production more efficient, especially when coupled with technologies such as the Internet of Things and Big Data. Agrobots bring many advantages in farm operations: they can reduce humane fatigue and work-related accidents. In contrast, their large-scale diffusion is today limited by a lack of clarity and exhaustiveness in the regulatory fram... M. Canavari, M. Medici, G. Rossetti

29. Agriculture Machine Guidance Systems: Performance Analysis of Professional GNSS Receivers

GNSS (Global Navigation Satellite Systems) plays nowadays a major role in different civilian activities and is a key technology enabling innovation in different market sectors. For instance, GNSS-enabled solutions are widespread within the Precision Agriculture and, among them, applications in the field of machinery guidance are commonly employed to optimize typical agriculture practices. The scope of this paper is to present the outcomes of the agriculture testing campaign performe... J. Capolicchio, D. Mennuti, I. Milani, M. Fortunato, R. Petix, J. Reyes gonzalez, M. Sunkevic

30. Agronomic Characteristics of Green Corn and Correlations with Productivity for the Establishment of Management Zones in Vale Do Ribeira, SP, Brazil

In Brazil, the progressive development in the cultivation of the corn for consumption in the green stadium stands by the relevant socio-economic role that this related to multiple applications, the attractive market price and continuous demand for the product in nature. Therefore, this study was to analyze the correlations and spatial variability of the productivity of the culture of the green corn in winter, in alluvial soil of the type Cambisols eutrophic in the amount areas and Hydromorphi... W.J. Souza, V.S. Akune, S.H. Benez, L.C. Citon, P.H. Nakazawa, A.J. Santana neto

31. Agronomic Opportunities Highlighted by the Hands Free Hectare and Hands Free Farm Autonomous Farming Projects

With agriculture facing various challenges including population increase, urbanisation and both mitigating and managing climate change, agricultural automation and robotics have long been seen as potential solutions beyond precision farming. The Hands Free Hectare (HFH) and Hands Free Farm (HFF) collaborative projects based at Harper Adams University (HAU) have been developing autonomous farming systems since 2016 and have conducted multiple autonomous field crop production cycles since a wor... K.F. Franklin

32. AGTECH CHILE: an Outreach and Technology Transfer Platform for Closing Gaps in Emerging Chilean Precision Agriculture Companies

Precision agriculture (PA) is being developed in Chile since 1997. Today there are approximately 20 companies providing products and services in PA at different levels. Most of them are young entrepreneurships which have important knowledge gaps, particularly on technology basis and data management to transform them into useful information. In order to help closing some of the gaps, and contributing to the development of an innovation ecosystem, an extension proposal was developed, ... R.A. Ortega, P. Trebilcock

33. Airspeed and Pressure Affect Spray Droplet Spectrum from an Aerial Nozzle for Fixed-wing Applications

The atomization of the droplets generated by a flat fan nozzle has been studied in the IEA-I high speed wind tunnel at NERCIEA with Marvern Spraytec Laser Diffraction system. The measurement point is set at 0.15m, 0.25m and 0.35m away from the orifice of the nozzle. The wind speed range is from 150km/h to 305km/h, and the tube pressure is set about 0.3MPa, 0.4MPa and 0.5MPa. The measuring distance from the orifice of the nozzle is found important to the diameter and relative span of the dropl... Q. Tang, L. Chen, R. Zhang, M. Xu, G. Xu, T. Yi

34. Almond Canopy Detection and Segmentation Using Remote Sensing Data Drones

The development of Unmanned Aerial System (UAV) makes it possible to take high resolution images of trees easily. These images could help better manage the orchard. However, more research is necessary to extract useful information from these images. For example, irrigation schedule and yield prediction both rely on accurate measurement of canopy size. In this paper, a workflow is proposed to count trees and measure the canopy size of each individual tree. The performances of three different m... T. Zhao, M. Cisneros, Y. Chen, Q. Yang, Y. Zhang

35. An IoT-based Smart Real Time Sensing and Control of Heavy Metals to Ensure Optimal Growth of Plants in an Aquaponic Set-up

The concentration of heavy metals that needs to be maintained in aquaponic environments for habitable growth of plants has been a cause of concern for many decades now as it is not possible to eliminate them completely in a commercial set-up. Our goal is to design a cost-effective real-time smart sensing and actuation system in order to control the concentration of heavy metals in aquaponic solutions. Our solution consists of sensing the nutrient concentrations in the aquaponic solution, name... S. Dhal, J. Louis, N. O'sullivan, J. Gumero, M. Soetan, S. Kalafatis, J. Lusher, S. Mahanta

36. Analysis of High Yield Condition Using a Rice Yield Predictive Model

Rice production in Japan is facing problems of yield and quality instability owing to recent climate changes and a decline in rice prices, and possible competition with foreign inexpensive rice. Thus, it is becoming more important to stably achieve high yield and quality, while reducing production costs. Various data, including crop growth, farmer’s management styles, yield and quality, has recently become accessible in actual fields using advanced information and communication technolo... Y. Hirai, T. Yamakawa, E. Inoue, T. Okayasu, M. Mitsuoka

37. Analysis of the Mapping Results Using SoilOptix TM Technology in Chile After Two Seasons

Soil mapping is a key element to successfully implement Integrated Nutrient Management (INM) in high value crops.  SoilOptixTM is a mapping service based on the use of gamma radiation technology that arrived in Chile in 2019. Since then, around 2000 ha have been mapped, mainly in fruit orchards and vineyards. The technology has demonstrated its value in determining the most limiting factors in new and old orchards, and the possibility of correcting them in a site-spe... R.A. Ortega, A.F. Ortega, M.C. Orellana

38. Analytical and Technological Advancements for Soybean Quality Mapping and Economic Differentiation

In the past, measuring soybean protein and oil content required the collection of soybean seed samples and laboratory analyses. Modern on-the-go near-infrared (NIR) sensing technologies during the harvest and proximal remote sensing (aerial and satellite imagery) before harvest time can be used to provide an early estimate of seed quality levels, benchmark in-season predictions with at-harvest final seed quality and enable seed differentiation for farmers leading to better marketing strategie... A. Prestholt, C. Hernandez, I. Ciampitti , P. Kyveryga

39. Apparent Electrical Conductivity Sensors and Their Relationship with Soil Properties in Sugarcane Fields

One important tool within the technological precision agriculture (PA) package are the apparent electrical conductivity (ECa) sensors. This kind of sensor shows the ability in mapping soil physicochemical variability quickly, with high resolution and at low cost. However, the adoption of this technology in Brazil is not usual, particularly on sugarcane fields. A major issue for farmers is the applicability of ECa, how to convert ECa data in knowledge that may assist the producer in decision-m... G.M. Sanches, L.R. Amaral, T. Pitrat, T. Brasco, P.S. Magalhaes, D.G. Duft, H.C. Franco

40. Application of Drone Data to Assess Damage Intensity of Bacterial Leaf Blight Disease on Rice Crop in Indonesia

The Government of Indonesia has launched agricultural insurance program since 2016. A key in agricultural insurance is damage assessment which is required to be as precise, quick, quantitative and inexpensive as possible. Current method is to inspect the damage by human eyes of specialist having experiences. This method, however, costs much and is difficult to estimate disease infected fields precisely in wide area. So, there is increasing need to develop effective, simplified and low cost me... C. Hongo, S. Isono, G. Sigit, B. Utoyo, E. Tamura

41. Assessing Soybean Injury from Dicamba Using RGB and CIR Images Acquired on Small UAVs

Dicamba is an herbicide used for postemegence control of several broadleaf weeds in corn, grain sorghum, small grains, and non-cropland. Currently, dicamba-tolerant (DT) soybean and cotton are under development, which provide new options to combat weeds resistant to glyphosate, the most widely used herbicide.  With the use of DT-trait cotton and soybean, off-target dicamba drift onto susceptible crops will become a concern. To relate soybean injury to different rates of dicamba applicati... Y. Huang, H. Brand, D. Pennington, K. Reddy, S.J. Thomson

42. Assessing the Potential of Sentinel-1 in Retrieving Mango Phenology and Investigating Its Relation to Weather in Southern Ghana

The rise in global production of horticultural tree crops over the past few decades is driving technology-based innovation and research to promote productivity and efficiency. Although mango production is on the rise, application of the remote sensing technology is generally limited and the available study on retrieving mango phenology stages specifically, was focused on the application of optical data. We therefore sought to answer the questions; (1) can key phenology stages of mango be retr... B.A. Torgbor, M.M. Rahman, A. Robson, J. Brinkhoff

43. Assessing the Variability of Red Stripe Disease in Louisiana Sugarcane Using Precision Agriculture Methods

Symptoms of red stripe disease caused by Acidovorax avenae subsp. avenae in Louisiana between 1985 and 2010 were limited to the leaf stripe form which caused no apparent yield loss.  During 2010, the more severe top rot form was observed, and a study was initiated to investigate the distribution of red stripe in the field and determine its effects on cane and sugar yields. Two fields of cultivar HoCP 00-950, one plant-cane (PC) crop and one first-ratoon (FR) crop, affected by top rot wer... R.M. Johnson, M.P. Grisham

44. Assessment of Active Crop Canopy Sensor As a Tool for Optimal Nitrogen Management in Dryland Winter Wheat

Optimum nitrogen (N) fertilizer application is important for agronomic, economic, and environmental reasons. Among different N management tools, active crop canopy sensors are a recent and promising tool widely evaluated for use in corn but still under-evaluated for use in winter wheat. The objective of this study was to determine whether vegetation indices derived from in-season active crop canopy sensor data can be used to predict winter wheat grain yield and protein content and subsequentl... D. Ghimire

45. Assessment of Goss Wilt Disease Severity Using Machine Learning Techniques Coupled with UAV Imagery

Goss Wilt has become a common disease in corn fields in North Dakota.  It has been one of the most yield-limiting diseases, causing losses of up to 50%. The current method to identify the disease is through visual inspection of the field, which is inefficient, and can be subjective, with misleading results, due to evaluator fatigue. Therefore, developing a reliable, accurate, and automated tool for assessing the severity of Goss's Wilt disease has become a top priority. The use of un... A. Das, P. Flores, Z. Zhang , A. Friskop, J. Mathew

46. Automated Geometrical Field Boundary Delineation Algorithm for Adjacent Job Sites

Establishing farmland geometric boundaries is a critical component of any assistive technology, designed towards the automation of mechanized farming systems. Observing farmland boundaries enables farmers and farm machinery contractors to determine; seed purchase orders, fertiliser application rate, and crop yields. Farmers must supply acreage measurements to regulatory bodies, who will use the geometric data to develop environmental policies and allocate farm subsidies appropriately. Agricu... S.J. Harkin

47. Automated Lag Phase Detection in Wine Grapes

Crop yield estimation, an important managerial tool for vineyard managers, plays a crucial role in planning pre/post-harvest operations to achieve desired yield and improve efficiency of various field operations. Although various technological approaches have been developed in the past for automated yield estimation in wine grapes, challenges such as cost and complexity of the technology, need of higher technical expertise for their operation and insufficient accuracy have caused major concer... P. Upadhyaya, M. Karkee, X. Zhang, S. Kashetri

48. Automated Support Tool for Variable Rate Irrigation Prescriptions

Variable rate irrigation (VRI) enables center pivot management to better meet non-uniform water and fertility needs. This is accomplished through correctly matching system water application with spatial and temporal variability within the field. A computer program was modified to accommodate GIS data layers of grid-based field soil texture properties and fertility needs in making management decisions. The program can automatically develop a variable rate application prescription along the lat... A.T. Nguyen, A.L. Thompson, K.A. Sudduth, E.D. Vories, A.T. Nguyen

49. Can Topographic Indices Be Used for Irrigation Management Zone Delineation

Soil water movement is affected by soil physical properties and field terrain changes. The identification of within-field areas prone to excess or deficit of soil moisture could support the implementation of variable rate irrigation and adoption of irrigation scheduling strategies. This study evaluated the use of the topographic wetness index (TWI) and topographic position index (TPI) to understand and explain within-field soil moisture variability. Volumetric water content (VWC) collected in... B.V. Ortiz, B.P. Lena, F. morlin , G. Morata, M. Duarte de val, R. Prasad, A. Gamble

50. Challenges and Successes when Generating In-season Multi-temporal Calibrated Aerial Imagery

Digital aerial imagery (DAI) of the crop canopy collected by aircraft and unmanned aerial vehicles is the yardstick of precision agriculture.  However, the quantitative use of this imagery is often limited by its variable characteristics, low quality, and lack of radiometric calibration.  To increase the quality and utility of using DAI in crop management, it is important to evaluate and address these limitations of DAI.  Even though there have been improvements in spatial reso... P.M. Kyveryga, J. Pritsolas, J. Connor, R. Pearson

51. Changes in Soil Quality when Building Ridges for Fruit Plantation

Many fruit plantations are usually performed in ridges for various reasons including, escaping from a clay horizon, improving overall soil quality and drainage, among others. Normally ridges are built using the surface horizons, producing a mixture of soils layers, and therefore changing the quality of the soil at the rooting zone. We were interested in studying the changes in soil properties when building ridges in a flat alluvial soil that was planted with avocado. A det... H.P. Poblete, R.A. Ortega

52. Claypan Depth Effect on Soil Phosphorus and Potassium Dynamics

Understanding the effects of fertilizer addition and crop removal on long-term change in spatially-variable soil test P (STP) and soil test K (STK) is crucial for maximizing the use of grower inputs on claypan soils. Using apparent electrical conductivity (ECa) to estimate topsoil depth (or depth to claypan, DTC) within fields could help capture the variability and guide site-specific applications of P and K. The objective of this study was to determine if DTC derived from ECa... L. Conway, M. Yost, N. Kitchen, K. Sudduth, B. Myers

53. Climate Sensitivity Analysis on Maize Yield on the Basis of Precision Crop Production

In this paper by prediction we have defined maize yield in precision plant production technologies according to five different climate change scenarios (Ensembles Project) until 2100 and in one scenario until 2075 using DSSAT v. 4.5.0. CERES-Maize decision support model. Sensitivity analyses were carried out. The novelty of the method presented here is that precision, variable rate technologies from relatively small areas (in our case 2500 m2) enable a large amount of data to be co... A. Nyeki, G. Milics, A.J. Kovacs, M. Neményi, J. Kalmar

54. Climate Smart Precision Nitrogen Management

Climate Smart Agriculture (CSA) aims at improving farm productivity and profitability in a sustainable way while building resilience to climate change and mitigating the impacts of agriculture on greenhouse gas emissions. The idea behind this concept is that informed management decision can help achieve these goals. In that matter, Precision Agriculture goes hand-in-hand with CSA. The Colorado State University Laboratory of Precision Agriculture (CSU-PA) is conducting research on CSA practice... L. Longchamps, R. Khosla, R. Reich

55. Closing Yield Gaps with GxExM and Precision Agriculture

There are many challenges to be faced by agriculture if the global population of nine billion people projected for 2050 is to be fed and clothed, especially given the effects of changing climate.  A focus on the interactions of genetics x environment x management (GxExM) offers potential for meeting the yield, and environment and economic sustainability goals that are integral to these challenges.  The yield gap –defined as the difference between current farmer yields and pote... C. Walthall, J. Hatfield, S. Schneider, M. Vigil

56. Cloud Correction of Sentinel-2 NDVI Using S2cloudless Package

Optical satellite-derived Normalized Difference Vegetation Index (NDVI) is by far the most commonly used vegetation index value for crop monitoring. However, it is quite sensitive to the cloud, and cloud shadows and significantly decreases its usability, especially in agricultural applications. Therefore, an accurate and reliable cloud correction method is mandatory for its effective application. To address this issue, we have developed an approach to correct the NDVI values of each and every... A. Saxena, M. Dash, A.P. Verma

57. Comparative Analysis of Light-weight Deep Learning Architectures for Soybean Yield Estimation Based on Pod Count from Proximal Sensing Data for Mobile and Embedded Vision Applications

Crop yield prediction is an important aspect of farming and food-production. Therefore, estimating yield is important for crop breeders, seed-companies, and farmers to make informed real-time financial decisions. In-field soybean (Glycine max L.(Merr.)) yield estimation can be of great value to plant breeders as they screen thousands of plots to identify better yielding genotypes that ultimately will strengthen national food security. Existing soybean yield estimation too... J.J. Mathew, P.J. Flores, J. Stenger, C. Miranda, Z. Zhang, A.K. Das

58. Comparative Benefits of Drone Imagery for Nitrogen Status Determination in Corn

Remotely sensed vegetation data provide an effective means of measuring the spatial variability of nitrogen and therefore of managing applications by taking intrafield variations into account. Satellites, drones and sensors mounted on agricultural machinery are all technologies that can be used for this purpose. Although a drone (or unmanned aerial vehicle [UAV]) can produce very high-resolution images, the comparative advantages of this type of imagery have not been demonstrated. The goal of... N. Tremblay, K. Khun, P. Vigneault, M.Y. Bouroubi, F. Cavayas, C. Codjia

59. Comparing Adapt-N to Static N Recommendation Approaches for US Maize Production

Large temporal and spatial variability in soil N availability leads many farmers across the US to over apply N fertilizers in maize (Zea Mays L.) production environments, often resulting in large environmental N losses.  Static N recommendation tools are typically promoted in the US, but new dynamic model-based tools allow for more precise and adaptive N recommendations that account for specific production environments and conditions. This study compares two static N recommendation tools... H. Van es, S. Sela, R. Marjerison, B. Moebiu-clune, R. Schindelbeck, D. Moebius-clune

60. Comparing Predictive Performance of Near Infrared Spectroscopy at a Field, Regional, National and Continental Scales by Using Spiking and Data Mining Techniques

The development of accurate visible and near infrared (vis-NIR) spectroscopy calibration models for selected soil properties is a crucial step for variable rate application in precision agriculture. The objective of the present study was to compare the prediction performance of vis-NIR spectroscopy at local, regional, national and continental scales using data mining techniques including spiking. Fresh soil samples collected from farms in the UK, Czech Republic, Germany, Denmark and the Nethe... S.M. Nawar, A.M. Mouazen, D. George, A. Manfield

61. Comparison and Validation of Different Soil Survey Techniques to Support a Precision Agricultural System

The data need of precision agriculture has resulted in an intensive increase in the number of modern soil survey equipment and methods available for farmers and consultants. In many cases these survey methods cannot provide accurate information under the used environmental conditions. On a 36 hectare experimental field, several methods have been compared to identify the ones which can support the PA system the best. The methods included contact and non contact soil scanning, yield mapping, hi... V. Lang, G. Tóth, S. Csenki, D. Dafnaki

62. Comparison Between High Resolution Spectral Indices and SPAD Meter Estimates of Nitrogen Deficiency in Corn

Low altitude remote sensing provides an ideal platform for monitoring time sensitive nitrogen status in crops. Research is needed however to understand the interaction between crop growth stage, spatial resolution and spectral indices derived from low altitude remote sensing. A TetraCam camera equipped with six bands including the red edge and near infrared (NIR) was used to investigate corn nitrogen dynamics. Remote sensing data were collected during the 2013 and 2014 growing seasons at four... D. Mulla, A. Laacouri, D. Kaiser

63. Comparison Between Tractor-based and UAV-based Spectrometer Measurements in Winter Wheat

In-season variable rate nitrogen fertilizer application needs a fast and efficient determination of nitrogen status in crops. Common sensor-based monitoring of nitrogen status mainly relies on tractor mounted active or passive sensors. Over the last few years, researchers tested different sensors and indicated the potential of in-season monitoring of nitrogen status by unmanned aerial vehicles (UAVs) in various crops. However, the UAV-platforms and the available sensors are not yet accepted t... M. Gnyp, M. Panitzki, S. Reusch, J. Jasper, A. Bolten, G. Bareth

64. Comparison of Canopy Extraction Methods from UAV Thermal Images for Temperature Mapping: a Case Study from a Peach Orchard

Canopy extraction using thermal images significantly affects temperature mapping and crop water status estimation. This study aimed to compare several canopy extraction methodologies by utilizing a large database of UAV thermal images from a precision irrigation trial in a peach orchard. Canopy extraction using thermal images can be attained by purely statistical analysis (S), a combination of statistical and spatial analyses (SS), or by synchronizing thermal and RGB images, following RGB sta... L. Katz, A. Ben-gal, I. Litaor, A. Naor, A. Peeters, E. Goldshtein, V. Alchanatis, Y. Cohen

65. Comparison of Different Aspatial and Spatial Indicators to Assess Performance of Spatialized Crop Models at Different Within-field Scales

Most current crop models are point-based models, i.e. they simulate agronomic variables on a spatial footprint on which they were initially designed (e.g. plant, field, region scale). To assess their performances, many indicators based on the comparison of estimated vs observed data, can be used such as root mean square error (RMSE) or Willmott index of agreement (D-index) among others. However, shifting model use from a strategic objective to tactical in-season management is becoming a signi... D. Pasquel, S. Roux, B. Tisseyre, J.A. Taylor

66. Comparison of Plant and Soil Mapping in Prunus Domestica L. Orchard

In the present study, the soil apparent electrical conductivity, ECa, and the plant water status were analyzed in plum production (Prunus domestica L 'Tophit plus'/Wavit) targeting (i) the spatial characterization of soil ECa and fruit yield, (ii) instantaneous water status, and (iii) cumulative pattern of water status and yield. The plum orchard is located in semi-humid, temperate climate (Potsdam, Germany), capturing 0.37 ha with 156 trees. Measurements were carried out on... M. Zude-sasse, J. Käthner, W.B. Herppich, J. Selbeck

67. Consequences of Spatial Variability in the Field on the Uniformity of Seed Quality in Barley Seed Crops

Spatial variation is known to affect cereal growth and yield but consequences for seed quality are less well-known. Intra-field spatial variation occurs in soil and environmental variables and these are expected to affect the crop. The objective of this paper was to identify the spatial variation in barley seed quality and to investigate its association with environmental factors and the spatial scale over which this correlation occurs. Two uniformly-managed, commercial fields of wi... S. Hama rash, A.J. Murdoch

68. Considering Farmers' Situated Expertise in AgriDSS Development to Fostering Sustainable Farming Practices in Precision Agriculture

Agriculture is facing immense challenges and sustainable intensification has been presented as a way forward where precision agriculture (PA) plays an important role. More sustainable agriculture needs farmers who embrace situated expertise and can handle changing farming systems. Many agricultural decision support systems (AgriDSS) have been developed to support farm management, but the traditional approach to AgriDSS development is mostly based on knowledge transfer. This has resulted in te... C. Lundström, J. Lindblom

69. Constraint of Data Availability on the Predictive Ability of Crop Response Models Developed from On-farm Experimentation

Due to the variability between fields and across years, on-farm experimentation combined with crop response modeling are crucial aspects of decision support systems to make accurate predictions of yield and grain protein content in upcoming years for a given field. To maximize accuracy of models, models fit using environmental covariate and experimental data gathered up to the point that crop responses (yield/grain protein) are fit repeatedly over time until the model can predict future crop ... P. Hegedus, B. Maxwell

70. Cotton Boll Detection and Yield Estimation Using UAS Lidar Data and RGB Image

Cotton boll distribution is a critical phenotypic trait that represents the plant's response to its environment. Accurate quantification of boll distribution provides valuable information for breeding cultivars with high yield and fiber quality. Manual methods for boll mapping are time-consuming and labor-intensive. We evaluated the application of Lidar point cloud and RGB image data in boll detection and distribution and yield estimation. Lidar data was acquired at 15 m using a DJI Matri... Z. Lin, W. Guo, N. Gill

71. Coupling Machine Learning Algorithms and GIS for Crop Yield Predictions Based on Remote Sensing Imagery and Topographic Indices

In-season yield prediction can support crop management decisions helping farmers achieve their yield goals. The use of remote sensing to predict yield it is an alternative for non-destructive yield assessment but coupling auxiliary data such as topography features could help increase the accuracy of yield estimation. Predictive algorithms that can effectively identify, process and predict yield at field scale base on remote sensing and topography still needed. Machine learning could be an alt... M.F. Oliveira, G.T. Morata, B. Ortiz, R.P. Silva, A. Jimenez

72. Creating Prescription Maps from Historical Imagery for Site-specific Management of Cotton Root Rot

Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivore, is a severe plant disease that has affected cotton production for over a century. Recent research found that a commercial fungicide, Topguard (flutriafol), was able to control this disease. As a result, Topguard Terra Fungicide, a new and more concentrated formulation developed specifically for this market was registered in 2015, so cotton producers can use this product to control the disease. Cotton root rot only inf... C. Yang, G.N. Odvody, J.A. Thomasson, T. Isakeit, R.L. Nichols

73. CropSAT - a Public Satellite-based Decision Support System for Variable-rate Nitrogen Fertilization in Scandinavia

CropSAT is a free-to-use web application for satellite-based production of variable-rate application (VRA) files of e.g. nitrogen (N) and fungicides currently available in Sweden and Denmark. Even in areas frequently covered by clouds, vegetation index maps from data derived from low-cost or freely available optical satellites can be used in practice as a cost-efficient tool in time-critical applications such as optimized nitrogen use. During the very cloudy year 2015, or more useable ima... M. Söderström, H. Stadig, J. Martinsson, M. Stenberg, K. Piikki

74. Data Normalization Methods for Definition of Management Zones

The use of management zones is considered a viable economic alternative for the management of crops due to low cost of adoption as well as economic and environmental benefits. The decision whether or not to normalize the attributes before the grouping process (independent of use) is a problem of methodology, because the attributes have different metric size units, and may influence the result of the clustering process. Thus, the aim of this study was to use a Fuzzy C-Means algorithm to evalua... K. Schenatto, E.G. De souza, C.L. Bazzi, A. Gavioli, N.M. Betzek, H.M. Beneduzzi

75. Data Sources and Risk Management in Precision Agriculture

The digitalisation of the agricultural economy provides more data about the biological processes and technological solutions used for producing agricultural products than ever before. Paralell to the data collection – aiming to provide information for agricultural decision-making and operations – the data informs the farmers, public administration officers and other players in agriculture about the state of the environment. The strategic planning on operation of farms and data han... G. Milics, P.M. Varga, F. Magyar, I. Balla

76. Decision Support from On-field Precision Experiments

Empirically driven adaptive management in large-scale commodity crop production has become possible with spatially controlled application and sub-field scale crop monitoring technology. Site-specific experimentation is fundamental to an agroecosystem adaptive management (AAM) framework that results in information for growers to make informed decisions about their practices. Crop production and quality response data from combine harvester mounted sensors and internet available remote sensing d... B.D. Maxwell, P.D. Hegedus, S.D. Loewen, H.D. Duff, J.W. Sheppard, A.D. Peerlinck, G.L. Morales, A. Bekkerman

77. Deep Learning-Based Corn Disease Tracking Using RTK Geolocated UAS Imagery

Deep learning-based solutions for precision agriculture have achieved promising results in recent times. Deep learning has been used to accurately classify different disease types and disease severity estimation as an initial stage for developing robust disease management systems. However, tracking the spread of diseases, identifying disease hot spots within cornfields, and notifying farmers using deep learning and UAS imagery remains a critical research gap. Therefore, in this study, high re... A. Ahmad, V. Aggarwal, D. Saraswat, A. El gamal, G. Johal

78. Delineation of Site-specific Management Zones Using Spatial Principal Components and Cluster Analysis

The delineation of site-specific management zones (MZs) can enable economic use of precision agriculture for more producers. In this process, many variables, including chemical and physical (besides yield data) variables, can be used. After selecting variables, a cluster algorithm like fuzzy c-means is usually applied to define the classes. Selection of variables comprise a difficult issue in cluster analysis because these will often influence cluster determination. The goal of this study was... A. Gavioli, E.G. Souza, C.L. Bazzi, N.M. Betzek, K. Schenatto, H. Beneduzzi

79. Delineation of Site-specific Management Zones with Proximal Data and Multi-spectral Imagery

Many findings suggested that it’s possible to improve the accuracy of delineating site-specific management zones (SSMZs) through a combination of proximal data with remote sensing imagery. The objective of this study is to assess the feasibility of delineating SSMZs with a wide range of ancillary data (proximal survey and multi-spectral data). The study area is a 22.1acre located 10 miles north of Fort Collins, CO and is known for having a high spatial and temporal variability of soil p... W.A. Yilma, J. Siegfried, R. Khosla

80. Design of a Greenhouse Monitoring System Based on GSM Technologies

Nowadays, internet and mobile technologies are developing and being used in everyday life. Systems based on mobile technologies and IoT (Internet of Things) are being popular in every area of life and science. Innovative IoT applications are helping to increase the quality, quantity, sustainability and cost effectiveness of agricultural production. In this study; a system which monitors temperature, relative humidity and PAR (Photosynthetically Active Radiation) and warns the farmer... G.T. Seyhan, U. Yegul, M. Ayık

81. Design of VAV System of Air Assisted Sprayer in Orchard and Experimental Study in China

One type of new automatic target detecting based on size of canopy with variable chemical dosage and air-flow of fan orchard sprayer was designed and developed to meet the demand of chemical pest control in orchards. Canopy parameter data scanned by infrared sensors and LIDAR (Light Detection and Ranging) were used to detect the target and to design spraying algorithm and PWM (Pulse Width Modulation) control system. Four integrated five-finger atomizers were equipped on each side of sprayer, ... H. Xiongkui, L. Longlong, S. Jianli, Z. Aijun, L. Yajia

82. Detect Estrus in Sows Using a Lidar Sensor and Machine Learning

Accurate estrus detection of sows is labor intensive and is crucial to achieve high farrowing rate. This study aims to develop a method to detect accurate estrus time by monitoring the change in vulvar swollenness around estrus using a light detection and ranging (LiDAR) camera. The measurement accuracy of the LiDAR camera was evaluated in laboratory conditions before it was used in monitoring sows in a swine research facility. In this study, twelve multiparous individually housed sows were c... J. Zhou, Z. Xu

83. Detecting Nitrogen Variability at Early Growth Stages of Wheat by Active Fluorescence and NDVI

Low efficiency in the use of nitrogen fertilizer, has been reported around the world which often times result in high production costs and environmental damage. Today, unmanned aerial vehicles (UAV) cameras are being used to obtain conditions of crops, and can cover large areas in a short time. The objectives of this study were (i) to investigate N-variability in wheat at early growth stages using induced fluorescence indices, NDVI measured by active sensor and NDVI obtained by digital i... E. Patto pacheco, J. Liu, L. Longchamps, R. Khosla

84. Detection of Nitrogen Stress on Winter Wheat by Multispectral Machine Vision

Hand-held sensors (SPAD meter, N-Tester, …) used for detecting the leaves nitrogen  concentration (Nc) present several drawbacks. The nitrogen concentration is gained by an indirect way through the chlorophyll concentration and the leaves have to be fixed in a defined position for the measurements. These drawbacks could be overcome by an imaging device that measures the canopy reflectance. Hence, the objective of the paper is to analyse the potential of multispectral imaging for d... M. Destain, V. Leemans, G. Marlier, J. Goffart, B. Bodson, B. Mercatoris, F. Gritten

85. Detection of Potato Beetle Damage Using Remote Sensing from Small Unmanned Aircraft Systems

Remote sensing with small unmanned aircraft systems (sUAS) has potential applications in agriculture because low flight altitudes allow image acquisition at very high spatial resolution.  We set up experiments at the Oregon State University Hermiston Agricultural Research and Extension Center (HAREC) to assess advantages and disadvantages of sUAS for precision farming. In 2014, we conducted an experiment in irrigated potatoes with 4 levels of artificial infestation by Colorado Potato Bee... E. Hunt, S.I. Rondon, A.E. Bruce, R.W. Turner, J.J. Brungardt

86. Determinants of Ex-ante Adoption of Precision Agriculture Technologies by Cocoa Farmers in Ghana

The study was to identify the best predictors of cocoa Farmers willingness to adopt future Precision Agriculture Technology (PAT) Development in Ghana. Correlational research design was used. The target population was all cocoa farmers who benefited from Cocoa High Technology Programme (an initiative of distributing free fertilizer by government to cocoa farmers) in Ghana. Multistage sampling technique was used to select 422 out of 400,000 cocoa farmers in the six (6) out of the seven (7) coc... M. Bosompem, J.A. Kwarteng, H.D. Acquah

87. Determining the Marginal Value of Extra Precision in Precision Grazing Systems – an Ex Ante Analysis of Impacts on System Productivity, Sustainability and Economics

The development of precision livestock farming (PLF) technologies for application in grazing systems is rapidly evolving. PLF technologies that facilitate the spatial and temporal management of variability in landscapes, pastures and animals promise to improve the efficiency, profitability and sustainability of livestock farming. However, such technologies as a complete package do not yet exist in grazing systems and the question of impacts at the farm system level remains unresolved. Other p... K. Behrendt, T. Takahashi, M.S. Rutter

88. Developing a Machine Learning and Proximal Sensing-based In-season Site-specific Nitrogen Management Strategy for Corn in the US Midwest

Effective in-season site-specific nitrogen (N) management strategies are urgently needed to ensure both food security and sustainable agricultural development. Different active canopy sensor-based precision N management strategies have been developed and evaluated in different parts of the world. Recent studies evaluating several sensor-based N recommendation algorithms across the US Midwest indicated that these locally developed algorithms generally did not perform well when used broadly acr... D. Li, Y. Miao, .G. Fernández, N.R. Kitchen, C. . Ransom, G.M. Bean, .E. Sawyer, J.J. Camberato, .R. Carter, R.B. Ferguson, D.W. Franzen, D.W. Franzen, D.W. Franzen, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J.F. Shanahan

89. Developing a neural-network model for detecting Aflatoxin hotspots in peanut fields

Aflatoxin is a carcinogenic toxin produced by a soilborne fungi, called Aspergillus flavus, causing a difficult struggle for the peanut industry in terms of produce quality, price and the range of selling market. This study aims to develop a successful U-Net CNN (Convolutional Neural Network) model, a reliable image segmentation method, that will help in distinguishing high probability zones of occurrence of Aflatoxin in peanut fields using remotely sensed hyperspectral imagery. The research ... S. Kukal, G. Vellidis

90. Developing Empirical Method to Estimate Phosphorous in Potato Plants Using Spectroscopy-based Approach

Application of non-destructive sensors opens a promising opportunity to provide efficient information on nutrient contents based on leaf or canopy reflectance in different crops. In potatoes, nutrient levels are estimated by conducting chemical tests for the petioles. In thinking of deploying sensors for potato nutrient estimation, it is necessary to study the spectrum based on petiole chemical testing rather than leaf chemical testing. Thus, this study aimed to investigate whether there is a... R. Abukmeil, A. Almallahi

91. Developing UAV Image Acquisition System and Processing Steps for Quantitative Use of the Data in Precision Agriculture

Mapping natural variability of crops and land is first step of the management cycle in terms of crop production. Several methods have been developed and engaged for data recording and analyzing that generate prescription maps such as yield monitoring, soil mapping, remote sensing etc. Although conventional remote sensing by capturing images via satellites has been very popular tool to monitor the earth surface, it has several drawbacks such as orbital period, unattended capture, investment co... A. Tekin, M. Fornale

92. Development of a Crop Edge Line Detection Algorithm Using a Laser Scanner for an Autonomous Combine Harvester

The high cost of real-time kinematic (RTK) differential GPS units required for autonomous guidance of agricultural machinery has limited their use in practical auto-guided systems especially applicable to small-sized farming conditions. A laser range finder (LRF) scanner system with a pan-tilt unit (PTU) has the ability to create a 3D profile of objects with a high level of accuracy by scanning their surroundings in a fan shape based on the time-of-flight measurement principle. This paper des... C. Jeon, H. Kim, X. Han, H. Moon

93. Development of a Granular Herbicide Spot Applicator for Management of Hair Fescue (Festuca Filiformis) in Wild Blueberry (Vaccinium Angustifolium)

Hair fescue has quickly become the pest of greatest concern for the wild blueberry industry. This is largely due to its ability to outcompete wild blueberry for critical resources including water, nutrients and most importantly space. In Nova Scotia, between 2001 and 2019, hair fescue had increased in field frequency from 7% to 68% and in field uniformity from 1.4% to 25%. This rapidly spreading and economically destructive weed is likewise a significant challenge to manage, with only a s... C. Maceachern, T. Esau, Q. Zaman

94. Development of a Multiband Sensor for Citrus Black Spot Disease Detection

Citrus black spot (CBS), or Guignardia citricarpa, is known as the most destroying citrus fungal disease worldwide. CBS causes yield loss as a result of early fruit drop, and it leaves severely blemished and unmarketable fruit. While leaves usually remain symptomless, CBS generates various forms of lesions on citrus fruits including hard spot, cracked spot, and virulent spot. CBS lesions often appear on maturing fruit, starting two months before maturity. Warm temperature and sunlight exposur... A. Pourreza, W. Lee, J. Lu, P. Roberts

95. Development of a Multispectral Sensor for Crop Canopy Temperature Measurement

Quantifying spatial and temporal variability in plant stress has precision agriculture applications in controlling variable rate irrigation and variable rate nutrient application. One approach to plant stress detection is crop canopy temperature measurement by the use of thermographic or radiometric methods, generally in the long wave infrared (LWIR) wavelength range. A confounding factor in LWIR canopy temperature estimation is eliminating the effect of the soil background in the image. One ... P. Drew, K.A. Sudduth, E. Sadler

96. Development of a PWM Precision Spraying System for Unmanned Helicopter

Application of protection materials is a crucial component in the high productivity of agriculture. Motivated by the needs of aerial precision application, in this paper we present a pulse width modulation (PWM) based precision spraying system for unmanned helicopter. The system is composed of the tank, pipelines, pump, nozzles and the automatic control unit. The system can spray with a constant rate automatically when the speed of the UAV fluctuates between 1 m/s to 8 m/s. The application ra... R. Zhang, L. Chen, T. Yi, Y. Guo, H. Zhang

97. Development of a Sensing Device for Detecting Defoliation in Soybean

Estimating defoliation by insects in an agricultural field, specifically soybean, is performed by manually removing multiple leaf samples, visually inspecting the leaves for feeding, and assigning a value representing a “best guess” at the level of leaf material missing. These estimates can require considerable time and are subjective. The goal of this study was to design a low-cost system containing light sensors and a microcontroller that could remotely record and report long-te... P. Astillo, J. Maja, J. Greene

98. Development of Land Leveling Equipment Based on GNSS

An attitude adjustable land leveling equipment was designed. The reference elevation of the land to be leveled was generated based on the topographic data which was acquired by the RTK-GNSS technology. The blade lifting mechanism was controlled by comparing the reference elevation and the real-time blade’s elevation and attitude data which was obtained by the dual antenna GNSS receiver and as a result the land leveling operation was implemented. A new algorithm using the electro-hydraul... W. Fu, G. Wu, H. Bao, X. Wei, Z. Meng

99. Development of Micro-tractor-based Measurement Device of Soil Organic Matter Using On-the-go Visual-near Infrared Spectroscopy in Paddy Fields of South China

Soil organic matter (SOM) is an essential soil property for assessing the fertility of paddy soils in South China. In this study, a set of micro-tractor-based on-the-go device was developed and integrated to measure in-situ soil visible and near infrared (VIS–NIR) spectroscopy and estimate SOM content. This micro-tractor-based on-the-go device is composed of a micro-tractor with toothed-caterpillar band, a USB2000+ VIS–NIR spectroscopy detector, a self-customized steel plow and a ... Z. Lianqing, S. Zhou, C. Songchao, Y. Yafei

100. Development of Sensor Reflection Indices To Predict Yield And Protein Content Based On In-Season N Status

Environmental and economic demands make it necessary for farmers to adopt   management systems that improve Nitrogen Use Efficiency. The premium paid to producers has made farmers striving for maximum grain protein levels because protein is a very important quality component of grains and an important attribute in the market place. The protein content of wheat grains approximately ranges from 8 to 20%. The optimization of nitrogen (N) fertilization is the object of intense research ... U. Yegul, B. Talebpour, U. TÜrker, B.M. EmİnoĞlu, G.T. Seyhan, A. Çolak

101. Diagnosis of Grapevine Nutrient Content Using Proximal Hyperspectral Imaging

Nutrient deficiencies on grapevines could affect the fruit yield and quality, which is a major concern in vineyards. Nutrient deficiencies may be recognizable by foliar symptoms that vary by mineral nutrient and stress severity, but it is too late to manage when visible deficiency symptoms become apparent. The nutrient analysis in the laboratory is the way to get an accurate result, but it is time and cost-intensive. The differences in leaf nutrient levels also alter spectral characteristics ... C. Kang, M. Karkee, Q. Zhang, N. Shcherbatyuk, P. Davadant, M. Keller

102. Digital Soil Sensing and Mapping for Crop Suitability

Soil, central to any land-based production system, determines the success of any crops. While soil for a farm or field is fixed, the crops can be selected to best fit the soil’s capability and production. Traditionally crops are selected based on farm history, knowledge, and years of trial and error to tailor the right crop to the right soil. Inherent challenges associated with this make the whole process unsustainable. Due to the consistent nature of the information collected, soil sen... D. Saurette, A. Biswas, T.B. Gobezie

103. Ear Deployed Accelerometer Behaviour Detection in Sheep

An animal’s behaviour can be a clear indicator of their physiological and physical state. Therefore as resting, eating, walking and ruminating are the predominant daily activities of ruminant animals, monitoring these behaviours could provide valuable information for management decisions and individual animal health status. Traditional animal monitoring methods have relied on human labor to visually observe animals. Accelerometer technology offers the possibility of remotely monitoring ... J.D. Barwick, M. Trotter, D.W. Lamb, R. Dobos, M. Welch

104. Early Detection of Nitrogen Deficiency in Corn Using High Resolution Remote Sensing and Computer Vision

The continuously growing need for increasing the production of food and reducing the degradation of water supplies, has led to the development of several precision agriculture systems over the past decade so as to meet the needs of modern societies. The present study describes a methodology for the detection and characterization of Nitrogen (N) deficiencies in corn fields. Current methods of field surveillance are either completed manually or with the assistance of satellite imaging, which of... D. Mulla, D. Zermas, D. Kaiser, M. Bazakos, N. Papanikolopoulos, P. Stanitsas, V. Morellas

105. EarthScout, GBC

EarthScout is a precision remote sensor technology that provides farmers and researchers with reliable data in real time, straight from your field to your desktop and mobile devices. In season data allows users to access current conditions for smarter decision making in irrigation and nitrogen management. EarthScout is a crop agnostic tool that is used in any soil type and climate. Our plug and play field sensors need no calibration and set up only takes about 5 minutes. There are no data sub... S. Wieland, A. Kelley

106. Ecological Refugia As a Precision Conservation Practice in Agricultural Systems

Current global agriculture fails to meet the basic food needs of 687.7 million people. At the same time, our food system is responsible for catastrophic losses of biodiversity. Precision conservation solutions offer the potential to benefit both production systems and natural systems. Transforming low-producing areas on farm fields into ecological refugia may provide small-scale habitat and ecosystem services in fragmented agricultural landscapes. We collaborated with three precision agricult... H. Duff, B. Maxwell

107. Economic Potential of IPMwise – a Generic Decision Support System for Integrated Weed Management in 4 Countries

Reducing use and dependency on pesticides in Denmark has been driven by political action plans since the 1980ies, and a series of nationally funded accompanying R&D programs were completed in the period 1989-2006. One result of these programs was a decision support system (DSS) for integrated weed management. The 4th generation (2016) of the agro-biological models and IT-tools in this DSS, named IPMwise. The concept of IPMwise is to systematically exploit that: ... P. Rydahl, O. Boejer, K. Torresen, J.M. Montull, A. Taberner, H. Bückmann, A. Verschwele

108. Economic Potential of RoboWeedMaps - Use of Deep Learning for Production of Weed Maps and Herbicide Application Maps

In Denmark, a new IPM ‘product chain’ has been constructed, which starts with systematic photographing of fields and ends up with field- or site-specific herbicide application. A special high-speed camera, mounted on an ATV took sufficiently good pictures of small weed plants, while driving up to 50 km/h. Pictures were uploaded to the RoboWeedMaps online platform, where appointed internal- and external persons with agro-botanical experience executed ‘virtual field ... P. Rydahl, O. Boejer, N. Jensen, B. Hartmann, R. Jorgensen, M. Soerensen, P. Andersen, L. Paz, M.B. Nielsen

109. Economics of Field Size for Autonomous Crop Machines

Field size constrains spatial and temporal management of agriculture with implications for farm profitability, field biodiversity and environmental performance. Large, conventional equipment struggles to farm small, irregularly shaped fields efficiently. The study hypothesized that autonomous crop machines would make it possible to farm small non-rectangular fields profitably, thereby preserving field biodiversity and other environmental benefits. Using the experience of the Hands Free Hectar... A. Al amin, J. Lowenberg‑deboer, K. Franklin, K. Behrendt

110. Effectiveness of Different Precision Soil Sampling Strategies for Site-Specific Nutrient Management in Row-Crops

Soil sampling is an important component of site-specific nutrient management in precision agriculture. While precision soil sampling strategies such as grid or zone have been around for a while, the adoption and utilization of these strategies varies considerably among the growers, especially in the southeastern United States. The selection of an appropriate grid size or management zone further differ among the users depending on several factors. In order to better understand how some of the ... M.W. Tucker, S. Virk, G. Harris, J. Lessl, M. Levi

111. Employment of the SSEB and CROPWAT Models to Estimate the Water Footprint of Potato Grown in Hyper-arid Regions of Saudi Arabia

Quantifying crops’ water footprint (WF) is essential for sustainable agriculture especially in arid regions, which suffers from harsh environmental conditions and severe shortage of freshwater resources such as Saudi Arabia. In this study, WF of irrigated potato crop was estimated for the implementation of precision agriculture techniques. The CROPWAT and the Simplified Surface Energy Balance (SSEB) approaches were adopted. Soil, plant, and yield samples were randomly collected from six... R. Madugundu, K. Al-gaadi, E. Tola

112. Enhancing NY State On-farm Experimentation with Digital Agronomy

Agriculture is putting pressure on the ecosystems and practices need to evolve towards a more sustainable way of producing food. Industrial agriculture has imposed a unique production model on the ecosystems while it is now understood that it is more sustainable to adapt the production model to the ecosystem. This involves adapting existing solutions to the local agricultural context and developing new solutions that are best suited to the local ecosystem. Farmers are doing this by conducting... L. Longchamps

113. Enhancing PA Adoption Through Value Connections

Despite an increase in breadth of precision agriculture over time, and the attendant elements of digital agriculture that either support PA or integrates the outputs of PA, the pace of adoption of digital agriculture in our farming systems remains slow. In assessing impediments to adoption of digital agriculture, much work to date has focused on the value proposition as considered by individual producers or value chain actors.  At this level, adoption remains constrained by perceptions o... D.W. Lamb, M.T. Schaefer

114. Enhancing Spatial Resolution of Maize Grain Yield Data

Grain yield data is frequently used for precision agriculture management purposes and as a parameter for evaluating agronomy experiments, but unexpected challenges sometimes interfere with harvest plans or cause total losses. The spatial detail of modern grain yield monitoring data is also limited by combine header width, which could be nearly 14 m in some crops.  Remote sensing data, such as multispectral imagery collected via satellite and unmanned aerial systems (UAS), could be used t... J. Siegfried, R. Khosla, D. Mandal, W. Yilma

115. Establishing the First Soil Water Characteristics Curve for the Soils of Prince Edward Island, Canada

Soil water characteristics curve (SWCC), for Prince Edward Island (PEI), is much more needed currently for the sustainable production of agriculture yields. It will not only fulfil the requirements of the province’s farmers for irrigation scheduling but also help the government to decide about permitting the use of groundwater for supplemental irrigation on the island.  A soil water characteristics curve in PEI does not exist to support precision agriculture practices. Precision ir... S.J. Cheema, A.A. Farooque, F. Abbas, T. Esau, K. Grewal

116. Establishment of a Canola Emergence Assessment Methodology Using Image-based Plant Count and Ground Cover Analysis

Manual assessment of emergence is a time-consuming practice that must occur within a short time-frame of the emergence stage in canola (Brassica napus). Unmanned aerial vehicles (UAV) may allow for a more thorough assessment of canola emergence by covering a wider scope of the field and in a more timely manner than in-person evaluations. This research aims to calibrate the relationship between emerging plant population count and the ground cover. The field trial took place at the Uni... K. Krys, S. Shirtliffe, H. Duddu, T. Ha, A. Attanayake, E. Johnson, E. Andvaag, I. Stavness

117. Estimating Environmental Systems Using Iterated Sigma Point Techniques: a Biomass Substrate Hypothetical System

This paper addresses the problem of biomass substrate hypothetical system estimation using sigma points kalman filter (SPKF) methods. Various conventional and state-of-theart state estimation methods are compared for the estimation performance, namely the unscented Kalman filter(UKF), the central difference Kalman filter (CDKF), the square-root unscented Kalman filter (SRUKF), the square-root central difference Kalman filter (SRCDKF), the iterated unscented Kalman filter (IUKF), the iterated ... I. Baklouti, M. Mansouri, M. Destain, A. Hamida

118. Estimating Soil Carbon Stocks with In-field Visible and Near-infrared Spectroscopy

Agricultural lands can be a sink for carbon and play an important role in offsetting carbon emissions. Current methods of measuring carbon sequestration—through repeated temporal soil samples—are costly and laborious. A promising alternative is using visible, near-infrared (VNIR) diffuse reflectance spectroscopy. However, VNIR data are complex, which requires several data processing steps and often yields inconsistent results, especially when using in situ VNIR measurements. Using... C.J. Ransom, C. Vong, K.S. Veum, K.A. Sudduth, N.R. Kitchen, J. Zhou

119. Estimation of Cotton Biomass Using Unmanned Aerial Systems and Satellite-based Remote Sensing

Satellite and unmanned aerial system (UAS) images are effective in monitoring crop growth at various spatial, temporal, and spectral scales. The objective of the study was to estimate cotton biomass at different growth stages using vegetation indices (VIs) derived from UAS and satellite images. This research was conducted in a cotton field in Hale County, Texas, in 2021. Data collected include 54 plant samples at different locations for three dates of the growing season. Multispectral images ... O.I. Adedeji, B.P. Ghimire, H. Gu, R. Karn, Z. Lin, W. Guo

120. Estimation of Soil Profile Properties Using a VIS-NIR-EC-force Probe

Combining data collected in-field from multiple soil sensors has the potential to improve the efficiency and accuracy of soil property estimates. Optical diffuse reflectance spectroscopy (DRS) has been used to estimate many important soil properties, such as soil carbon, water content, and texture. Other common soil sensors include penetrometers that measure soil strength and apparent electrical conductivity (ECa) sensors. Previous field research has related those sensor measuremen... Y. Cho, K.A. Sudduth

121. Evaluating a Satellite Remote Sensing and Calibration Strip-based Precision Nitrogen Management Strategy for Corn in Minnesota and Indiana

Precision nitrogen (N) management (PNM) aims to match N supply with crop N demand in both space and time and has the potential to improve N use efficiency (NUE), increase farmer profitability, and reduce N losses and negative environmental impacts. However, current PNM adoption rate is still quite low. A remote sensing and calibration strip-based PNM strategy (RS-CS-PNM) has been developed by the Precision Agriculture Center at the University of Minne... K. Mizuta, Y. Miao, A.C. Morales, L.N. Lacerda, D. Cammarano, R.L. Nielsen, R. Gunzenhauser, K. Kuehner, S. Wakahara, J.A. Coulter, D.J. Mulla, D. . Quinn, B. Mcartor

122. Evaluating APSIM Model for Site-Specific N Management in Nebraska

Many approaches have been developed to estimate the optimal N application rates and increase nitrogen use efficiency (NUE). In particular, in-season and variable-rate fertilizer applications have the potential to apply N during the time of rapid plant N uptake and at the rate needed, thereby reducing the potential for nitrogen fertilizer losses. However, there remains great challenges in determining the optimal N rate to apply in site-specific locations within a field in a given year.&nb... L. Thompson, L. Puntel, S. Archontoulis

123. Evaluating How Operator Experience Level Affects Efficiency Gains for Precision Agricultural Tools

Tractor guidance (TG) improve environmental gains relative to non-precision technologies; however, studies evaluating how tractor operator experience for non-guidance comparisons impact gains are nonexistent. This study explores spatial relationships of overlaps and gaps with operator experience level (0-1; 2-3; 6+ years) during fertilizer and herbicide applications based on terrain attributes.  Tractor paths recorded by global navigation satellite systems were used to create overlap pol... A. Ashworth, T. Kharel, P. Owens

124. Evaluating low-cost Lidar and Active Optical Sensors for pasture and forage biomass assessment

Accurate and reliable assessment of pasture or forage biomass remains one of the key challenges for grazing industries. Livestock managers require accurate estimates of the grassland biomass available over their farm to enable optimal stocking rate decisions. This paper reports on our investigations into the potential application of affordable Lidar (Light Detection and Ranging) systems and Active Optical (reflectance) Sensors (AOS) to estimate pasture biomass. We evaluated the calibration ac... M. Trotter, K. Andersson, M. Welch, M. Chau, L. Frizzel, D. Schneider

125. Evaluating the Potential of Improving In-season Nitrogen Status Diagnosis of Potato Using Leaf Fluorescence Sensors and Machine Learning

Precision nitrogen (N) management is particularly important for potato crops due to their high N fertilizer demand and high N leaching potential caused by their shallow root systems and preference for coarse-textured soils. Potato farmers have been using a standard lab analysis called petiole nitrate-N (PNN) test as a tool to diagnose potato N status and guide in-season N management. However, the PNN test suffers from many disadvantages including time constraints, labor, and cost of analysis.... S. Wakahara, Y. Miao, S. Gupta, C. Rosen, K. Mizuta, J. Zhang, D. Li

126. Evaluating the Potential of Integrated Precision Irrigation and Nitrogen Management for Corn in Minnesota

The environmental impact of irrigated agriculture on ground and surface water resources in Minnesota is of major concern. Previous studies have focused on either precision irrigation or precision nitrogen (N) management, with very limited studies on the integrated precision management of irrigation and N fertilizers, especially in Minnesota. The Dualex Scientific sensor is a leaf fluorescence sensor that has been used to diagnose crop&nbs... A. Elvir flores, Y. Miao, V. Sharma, L. Lacerda

127. Evaluation of a Seed-fertilizer Application System Using a Laser Scanner

The system evaluated is a design that combines planter and sprayer technologies to allow clients to plant crops while simultaneously spraying initial fertilizer on or in close proximity to the seed.  The system is an idea Capstan Ag Systems has been pursuing for around 15 years, and has recently been revived in a partnership with Great Plains Manufacturing Company.  Great Plains Manufacturing released the final product under the name AccushotTM at the 201... P. Weckler, N. Wang, C. Zhai, L. Zhang, B. Luo, J. Long, R. Taylor

128. Evaluation of a Sensor and Control Interface Module for Monitoring of Greenhouse Environment

Protected horticulture in greenhouses and plant factories has been increased in many countries due to the advantages of year-round production in controlled environment for improved productivity and quality. For protected horticulture, environmental conditions are monitored and controlled through wired and wireless devices. Various devices are used for monitoring and control of spatial and temporal variability in crop growth environmental conditions. Recently, various sensors and control devic... N. Sung, S. Chung, Y. Kim, K. Han, J. Choi, J. Kim, Y. Cho, S. Jang

129. Evaluation of Crop Model Based Tools for Corn Site-specific N Management in Nebraska

There is a critical need to reduce the nitrogen (N) footprint from corn-based cropping systems while maintaining or increasing yields and profits. Digital agriculture technologies for site-specific N management have been demonstrated to improve nitrogen use efficiency (NUE). However, adoption of these technologies remains low. Factors such as cost, complexity, unknown impact and large data inputs are associated with low adoption. Grower’s hands-on experience coupled with targeted resear... L. Puntel, L. Thompson , T. Mieno, S. Norquest

130. Evaluation of Image Acquisition Parameters and Data Extraction Methods on Plant Height Estimation with UAS Imagery

Aerial imagery from unmanned aircraft systems (UASs) has been increasingly used for field phenotyping and precision agriculture. Plant height is one important crop growth parameter that has been estimated from 3D point clouds and digital surface models (DSMs) derived from UAS-based aerial imagery. However, many factors can affect the accuracy of aerial plant height estimation. This study examined the effects of image overlap, pixel resolution, and data extraction methods on estimati... C. Yang, C. Suh, W. Guo, H. Zhao, J. Zhang, R. Eyster

131. Evaluation of Indwelling Rumen Temperature Monitoring System for Dairy Calf Illness Detection and Management

Precision Dairy Farming technology has mostly focused on tools to improve cow care, but new tools are available to improve the care of pre-wean calves and heifers. These technologies apply real-time monitoring to measure individual animal data and detect a deviation from normal. On-farm validation of new technologies remains important for successful deployment of new technologies within commercial farms to understand how the technology can improve dairy calf welfare, performance, and health. ... J.M. Hartschuh, J.P. Fulton, S.A. Shearer, B.D. Enger, G.M. Schuenemann

132. Evaluation of Nitrogen Recommendation Tools for Winter Wheat in Nebraska

Attaining both high yield and high nitrogen (N) use efficiency (NUE) simultaneously remains a current research challenge in crop production. Digital ag technologies for site-specific N management have been demonstrated to improve NUE. This is due to the ability of digital technologies to account for the spatial and temporal distribution of crop N demand and available soil N in the field which varies greatly according t... J. Cesario pereira pinto, L. Thompson, N. Mueller, T. Mieno, G. Balboa, L. Puntel

133. Evaluation of Unmanned Aerial Vehicle Images in Estimating Cotton Nitrogen Content

Estimating crop nitrogen content is a critical step for optimizing nitrogen fertilizer application. The objective of this study was to evaluate the application of UAV images in estimating cotton (Gossypium hirsutum L.) N content. This study was conducted in a dryland cotton field in Garza County, Texas, in 2020. The experiment was implemented as a randomized complete block design with three N rates of 0, 34, and 67 kg N ha-1. A RedEdge multispectral sensor was used to acqu... R. Karn, H. Gu, O. Adedeji, W. Guo

134. EZZone - An Online Tool for Delineating Management Zones

Management zones are a pillar of Precision Agriculture research.  Spatial variability is apparent in all fields, and assessing this variability through measurement devices can lead to better management decisions.  The use of Geographic Information Systems for agricultural management is common, especially with management zones.  Although many algorithms have been produced in research settings, no online software for management zone delineation exists.  This research used a ... G. Vellidis, C. Lowrance, S. Fountas, V. Liakos

135. Farmer Charlie - Low Cost Data Analytics for Farmers Accessible in the Field

Farmer Charlie, a spin-off of AB5 Consulting Ltd, is based on an affordable business model including five elements: a data analytics platform, an agribusiness ecosystem app, capable of connecting with local third-party apps; weather and in field sensors; wi-fi Internet connectivity; and power to the field and farms via solar panels, where necessary. Farmer Charlie brings information to farmers in their own fields, in an easy plug and play solution, affordable to the farmers and addressing the... B. Bonnardel

136. Farmer Charlie - Low Cost Smart Local Data Available to Remote Farmers

Farmer Charlie brings connectivity and information to farmers, who receive tailored agronomic data to improve their agricultural practice. Farmer Charlie is based on on-site sensors through which soil data can be detected, gathered, and processed by a dedicated server. Broadband communication allows farmers to receive real-time, localised information on tablet or mobile phone. Farmer Charlie is a low-cost solution, it can be adapted to various crops and to detect soil humidity, pH, temperatur... B. Bonnardel

137. Farmers’ and Experts’ Perceptions of Precision Farming Impacts on Economic Efficiency, Food Security, Climate and Environmental Sustainability

“Global food security could be in jeopardy, due to mounting pressures on natural resources and to climate change, both of which threaten the sustainability of food systems at large. Excessive fertilizer use can contribute to problems of eutrophication, acidification, climate change and the toxic contamination of soil, water and air. Lack of fertilizer application may cause the degradation of soil fertility. Agricultural production systems need to focus more on the effective co... C.I. Anaba

138. Field Phenotyping Infrastructure in a Future World - Quantifying Information on Plant Structure and Function for Precision Agriculture and Climate Change

Phenotyping in the field is an essential step in the phenotyping chain. Phenotyping begins in the well-defined, controlled conditions in laboratories and greenhouses and extends to heterogeneous, fluctuating environments in the field. Field measurements represent a significant reference point for the relevance of the laboratory and greenhouse approaches and an important source of information on potential mechanisms and constraints for plant performance tested at controlled conditions. In this... O. Muller, M.P. Cendrero mateo, H. Albrecht, F. Pinto, M. Mueller-linow, R. Pieruschka, U. Schurr, U. Rascher, A. Schickling, B. Keller

139. Field Potential Soil Variability Index to Identify Precision Agriculture Opportunity

Precision agriculture (PA) technologies used for identifying and managing within-field variability are not widely used despite decades of advancement. Technological innovations in agronomic tools, such as canopy reflectance or electrical conductivity sensors, have created opportunities to achieve a greater understanding of within-field variability. However, many are hesitant to adopt PA because uncertainty exists about field-specific performance or the potential return on investment. These co... C.W. Bobryk, M. Yost, N. Kitchen

140. Field Sampling and Electrochemical Detection of Nitrate in Agricultural Soils

Nitrate is an essential plant nutrient and is added to farm fields to increase crop yields. While the addition of nitrate is important for production, over-fertilization with nitrate can lead to leaching and contamination of water bodies. Increased nitrate loading in water sources then leads to eutrophication and hypoxia in downstream regions. Many efforts are being made to accurately control nitrate fertilizer additions to fields. Here, we present a soil sampling device that directly samples... J. Brockgreitens, M. Bui, A. Abbas, D. Mulla

141. Field Tests and Improvement of Sensor and Control Interface Modules with Improved Compatibility for Greenhouses

Number of greenhouses has been increased in many countries to control the cultivation conditions and improve crop yield and quality. Recently, various sensors and control devices, and also wireless communication tools have been adopted for efficient monitoring and control of the greenhouse environments. However, there have been farmers’ demands for improved compatibility among the sensors and control devices. In the study, sensor and control interface modules with improved compatibility... K. Han, S. Chung

142. Field-scale Nitrogen Recommendation Tools for Improving a Canopy Reflectance Sensor Algorithm

Nitrogen (N) rate recommendation tools are utilized to help producers maximize grain yield production. Many of these tools provide recommendations at field scales but often fail when corn N requirements are variable across the field. This may result in excess N being lost to the environment or producers receiving decreased economic returns on yield. Canopy reflectance sensors are capable of capturing within-field variability, although the sensor algorithm recommendations may not always be as ... C.J. Ransom, M. Bean, N. Kitchen, J. Camberato, P. Carter, R. Ferguson, F. Fernandez, D. Franzen, C. Laboski, E. Nafziger, J. Sawyer, J. Shanahan

143. First Experiences with the European Remote Sensing Satellites Sentinel-1A/ -2A for Agricultural Research

The Copernicus program headed by the European Commission (EC) in partnership with the European Space Agency (ESA) will launch up to twelve satellites, the so called “Sentinels” for earth and environmental observations until 2020. Within this satellite fleet, the Sentinel-1 (microwave) and Sentinal-2 (optical) satellites deliver valuable information on agricultural crops. Due to their high temporal (5 to 6 days repeating time) and spatial (10 to 20 m) resolutions a continuous monit... H. Lilienthal, H. Gerighausen, E. Schnug

144. FOODIE Data Model for Precision Agriculture

The agriculture sector is a unique sector due to its strategic importance for both citizens (consumers) and economy (regional and global), which ideally should make the whole sector a network of interacting organizations. The FOODIE project aims at building an open and interoperable agricultural specialized platform hub on the cloud for the management of spatial and non-spatial data relevant for farming production. The FOODIE service platform deals with including their thematic, spatial, and ... K. Charvat, T. Reznik, K. Charvat jr., V. Lukas, S. Horakova, M. Kepka

145. From Fragmented Data to Unified Insights: Leveraging Data Standardization Tools for Better Collaboration and Agronomic Big Data Analysis

The quantity and scope of agronomic data available for researchers in both industry and academia is increasing rapidly. Data sources include a myriad of different streams, such as field experiments, sensors, climatic data, socioeconomic data or remote sensing. The lack of standards and workflows frequently leads agronomic data to be fragmented and siloed, hampering collaboration efforts within research labs, university departments, or research institutes. Researchers and businesses therefore ... S. Sela

146. Fruit Fly Electronic Monitoring System

Insects are a constant threat to agriculture, especially the cultivation of various types of fruits such as apples, pears, guava, etc. In this sense, it is worth mentioning the Anastrepha genus flies (known as fruit fly), responsible for billionaire losses in the fruit growing sector around the world, due to the severity of their attack on orchards. In Brazil, this type of pests has been controlled in most product areas by spraying insecticides, which due to the need for prior knowledge regar... C.L. Bazzi, F.V. Silva, L. Gebler, E.G. Souza, K. Schenatto, R. Sobjak, R.S. Dos santos, A.M. Hachisuca, F. Franz

147. Functional Soil Property Mapping with Electrical Conductivity, Spectral and Satellite Remote Sensors

Proximal electrical conductivity (EC) and spectral sensing has been widely used as a cost-effective tool for soil mapping at field scale. The traditional method of calibrating proximal sensors for functional soil property prediction (e.g., soil organic matter, sand, silt, and clay contents) requires the local soil sample data, which results in a field-specific calibration. In this large-scale study consisting of 126 fields, we found that the traditional local calibration method had suffered w... X. Xiong, D. Myers, J. Debruin, B. Gunzenhauser, N. Sampath, D. Ye, H. Underwood, R. Hensley

148. Gamma-ray Spectrometry to Determine Soil Properties for Soil Mapping in Precision Agriculture

Soil maps are critical for various land use applications and form the basis for the successful implementation of precision agriculture in crop production. Soil maps provide the spatial distribution of important soil physical and chemical properties to a farmer. The farmer uses this information to make critical management decisions for profitable and sustainable food production. South Africa is a water scarce country where rainfall is mainly seasonal and unreliable. Under these circumstances, ... J.G. Dreyer, L. Ameglio

149. Generation of Site-specific Nitrogen Response Curves for Winter Wheat Using Deep Learning

Nitrogen response (N-response) curves are tools used to support farm management decisions. Conventionally, the N-response curve is modeled as an exponential function that aims to identify an important threshold for a given field: the economic optimum point. This is useful to determine the nitrogen rate beyond which there is no actual profit for the farmers. In this work, we show that N-response curves are not only field-specific but also site-specific and, as such, economic optimum points sho... G. Morales, J.W. Sheppard, A. Peerlinck, P. Hegedus, B. Maxwell

150. Grassland System Impacts on Spatial Variability of Soil Phosphorus in Eastern Canada

Phosphorus (P) is an essential nutrient for plants, including grasslands. However, continuous applications of P fertilizer result in P accumulations in the soil, increasing the risk of P losses through runoff and erosion. Since 2008, more than 31 million tonnes of organic fertilizers, representing more than 95,000 tonnes of P2O5, were applied to agricultural fields in Eastern Canada. Thus, grassland systems were fertilized intensively using organic fertilizers with high ... J.D. Nze memiaghe, A. Cambouris

151. Greenhouse Study to Identify Glyphosate-resistant Weeds Based on Canopy Temperature

Development of herbicide-resistant crops has resulted in significant positive changes to agronomic practices, while repeated and intensive use of herbicides with the same mechanisms of action has caused the development of herbicide-resistant weeds. As of 2015, 35 weed species are reported to be resistant to glyphosate worldwide. A greenhouse study was conducted to identify characteristics which can be helpful in field mapping of glyphosate resistant weeds by using UAV imagery. The experiment ... A. Shirzadi, M. Maharlooei, O. Hassanijalilian, S. Bajwa, K. Howatt, S. Sivarajan, J. Nowatzki

152. Hay Yield Estimation Using UAV-based Imagery and a Convolutional Neural Network

Yield monitoring systems are widely used commercially in grain crops to map yields at a scale of a few meters. However, such high-resolution yield monitoring and mapping for hay and forage crops has not been commercialized. Most commercial hay yield monitoring systems only obtain the weight of individual bales, making it difficult to map and understand the spatial variability in hay yield. This study investigated the feasibility of an unmanned aerial vehicle (UAV)-based remote sensing system ... K. Lee, K.A. Sudduth, J. Zhou

153. Helvis - a Small-scale Agricultural Mobile Robot Prototype for Precision Agriculture

The use of agricultural robots is emerging in a complex scenario where it is necessary to produce more food to feed a crescent population, decrease production costs, fight plagues and diseases, and preserve nature. Around the world, there are many research institutes and companies trying to apply mobile robotics techniques in agricultural fields. Mostly, large prototypes are being used and their shapes and dimensions are very similar to tractors and trucks. In the present study, a small-scale... M. Becker, A.E. Velasquez, H.B. Guerrero, V.A. Higuti, D.M. Milori, D.V. Magalhães

154. High Resolution 3D Hyperspectral Digital Surface Models from Lightweight UAV Snapshot Cameras – Potentials for Precision Agriculture Applications

Precision agriculture applications need timely information about the plant status to apply the right management at the right place and the right time. Additionally, high-resolution field phenotyping can support crop breeding by providing reliable information for crop rating. Flexible remote sensing systems like unmanned aerial vehicles (UAVs) can gather high-resolution information when and where needed. When combined with specialized sensors they become powerful sensing systems. Hyp... H. Aasen

155. High Resolution Hyperspectral Imagery to Assess Wheat Grain Protein in a Farmer's Field

The agricultural research sector is working to develop new technologies and management knowledge to sustainably increase food productivity, to ensure global food security and decrease poverty. Wheat is one of the most important crops into this scenario, being among the three most important cereal commodities produced worldwide. Precision Agriculture (PA) and specially Remote Sensing (RS) technologies have become in the recent years more affordable which has improved the availability and flexi... F.A. Rodrigues jr., I. Ortiz-monasterio, P.J. Zarco-tejada, F.H. Toledo, U. Schulthess, B. Gérard

156. High Resolution Vegetation Mapping with a Novel Compact Hyperspectral Camera System

The COSI-system is a novel compact hyperspectral imaging solution designed for small remotely piloted aircraft systems (RPAS). It is designed to supply accurate action and information maps related to the crop status and health for precision agricultural applications. The COSI-Cam makes use of a thin film hyperspectral filter technology which is deposited onto an image sensor chip resulting in a compact and lightweight instrument design. This paper reports on the agricultural monitor... B. Delauré, P. Baeck, J. Blommaert, S. Delalieux, S. Livens, A. Sima, M. Boonen, J. Goffart, G. Jacquemin, D. Nuyttens

157. High-resolution Mapping with On-the-go Soil Sensor and Its Relation with Corn Yield and Soil Acidity in a Dystrophic Red Oxisol

Spatial representations of soil attributes with low resolution can lead to gross errors of recommendation and compromise the efficiency of soil corrections and consequently the grain yield. However, obtaining the spatial variability of soil attributes with high resolution by soil sampling is not recommended because of its large time spent and high cost of laboratory analysis what makes difficult their large-scale application. This way, the on-the-go soil sensing has been used in precision agr... G.M. Corassa, T.J. Amado, R.A. Schwalbert, G.B. reimche, D. Dalla nora, T. . horbe, F.M. tabaldi

158. How Digital is Agriculture in South America? Adoption and Limitations

A rapidly growing population in a context of land and water scarcity, and climate change has driven an increase in healthy, nutritious, and affordable food demand while maintaining the current cropping area. Digital agriculture (DA) can contribute solutions to meet the demands in an efficient and sustainable way. South America (SA) is one of the main grain and protein producers in the world but the status of DA in the region is unknown. This article presents the results from a systematic revi... G. Balboa, L. Puntel, R. Melchiori, R. Ortega, G. Tiscornia, E. Bolfe, A. Roel, F. Scaramuzza, S. Best, A. Berger, D. Hansel, D. Palacios

159. Hyperspectral Imaging to Measure Pasture Nutrient Concentration and Other Quality Parameters

Managing pasture nutrient requirements on large hill country sheep and beef properties based on information from soil sampling is expensive because of the time and labor involved. High levels of error are also expected as these properties are often greatly variable and it is therefore extremely difficult to sample intensively enough to capture this variation. Extensive sampling was also not considered viable as there was no effective means of spreading fertilizer with a variable rate capabili... I.J. Yule, R.R. Pullanagari, G. Kereszturi, M.E. Irwin, P.J. Mcveagh, T. Cushnahan, M. White

160. Identifying Key Factors Influencing Yield Spatial Pattern and Temporal Stability for Management Zone Delineation

Management zone delineation is a practical strategy for site-specific management. Numerous approaches have been used to identify these homogenous areas in the field, including approaches using multiple years of historical yield maps. However, there are still knowledge gaps in identifying variables influencing spatial and temporal variability of crop yield that should be used for management zone delineation. The objective of this study is to identify key soil and landscape properties affecting... L.N. Lacerda, Y. Miao, K. Mizuta, K. Stueve

161. Impact of Cover Crop and Soil Apparent Electrical Conductivity on Cotton Development and Yield

Cotton is one of the major crops in the New Madrid Seismic Zone (NMSZ) of the U.S. Lower Mississippi River Valley region. Because cotton production doesn’t leave a lot of crop residue in the field, low soil organic matter levels are common. While the benefits of crop rotation are well known, cotton is often grown year after year in the same fields for economic reasons. Soils in the region are generally quite variable, with areas of very high sand content. Winter cover crops and reduced ... E. Vories, K. Veum, K. Sudduth

162. Impacts of Interpolating Methods on Soil Agri-environmental Phosphorus Maps Under Corn Production

Phosphorus (P) is an essential nutrient for crops production including corn. However, the excessive P application, tends to P accumulation at the soil surface under crops systems. This may contribute to increase water and groundwater pollution by surface runoff. To prevent this, an agri-environmental P index, (P/Al)M3, was developed in Eastern Canada and USA. This index aims to estimate soil P saturation for accurate P fertilizer recommendations, while integrating agronomical aspec... J. Nze memiaghe, A.N. Cambouris, N. Ziadi, M. Duchemin, A. Karam

163. In Season Estimation of Barley Biomass with Plant Height Derived by Terrestrial Laser Scanning

The monitoring of plant development during the growing season is a fundamental base for site-specific crop management. In this regard, the amount of plant biomass at a specific phenological stage is an important parameter to evaluate the actual crop status. Since biomass is directly only determinable with destructive sampling, methods of recording other plant parameters, such as crop height or density, which are suitable for reliable estimations are increasingly researched. Over the past two ... N. Tilly

164. In-field Plant Phenotyping Using Multi-view Reconstruction: an Investigation in Eggplant

Rapid methods for plant phenotyping are a growing need in agricultural research to help accelerate improvements in crop performance in order to facilitate more efficient utilization of plant genome sequences and the corresponding advancements in associated methods of genetic improvement. Manual plant phenotyping is time-consuming, laborious, frequently subjective, and often destructive. There is a need for building field-deployable systems with advanced sensors that have both high-speed and h... T. Nguyen, D. Slaughter, B. Townsley, L. Carriedo, J. Maloof, N. Sinha

165. In-field Variability of Terrain and Soils in Southeast Kansas: Challenges for Effective Conservation

A particular challenge for crop production in southeast Kansas is the shallow topsoil, underlain with a dense, unproductive clay layer. Concerns for topsoil loss have shifted production systems to reduced tillage or conservation management practices. However, historical erosion events and continued nutrient and sediment loss still limit the productive capacity of fields. To improve crop production and further adoption of conservation practices, identification of vulnerable areas of fields was... G.F. Sassenrath, T. Mueller, V.J. Alarcon, S.E. Kulesza, D. Shoup

166. In-season Diagnosis of Rice Nitrogen Status Using Crop Circle Active Canopy Sensor and UAV Remote Sensing

Active crop canopy sensors have been used to non-destructively estimate nitrogen (N) nutrition index (NNI) for in-season site-specific N management. However, it is time-consuming and challenging to carry the hand-held active crop sensors and walk across large paddy fields. Unmanned aerial vehicle (UAV)-based remote sensing is a promising approach to overcoming the limitations of proximal sensing. The objective of this study was to combine unmanned aerial vehicle (UAV)-based remote sensing sys... J. Lu, Y. Miao, Y. Huang, W. Shi

167. In-season Diagnosis of Winter Wheat Nitrogen Status Based on Rapidscan Sensor Using Machine Learning Coupled with Weather Data

Nitrogen nutrient index (NNI) is widely used as a good indicator to evaluate the N status of crops in precision farming. However, interannual variation in weather may affect vegetation indices from sensors used to estimate NNI and reduce the accuracy of N diagnostic models. Machine learning has been applied to precision N management with unique advantages in various variables analysis and processing. The objective of this study is to improve the N status diagnostic model for winter wheat by c... J. Lu, Z. Chen, Y. Miao, Y. Li, Y. Zhang, X. Zhao, M. Jia

168. In-season Nitrogen Management of Maize Based on Nitrogen Status and Lodging Risk Prediction

Development of effective precision nitrogen (N) management strategies is crucially important for food security and sustainable development. Lodging is one of the major constraints to increasing maize yield that can be induced by strong winds, and is also influenced by management practices, like N rate. When making in-season N application decisions, lodging risk should be considered to avoid yield loss. Little has been reported on in-season N management strategies that also incorporate lodging... R. Dong, Y. Miao, X. Wang

169. Increasing Precision Irrigation Efficacy for Row Crop Agriculture Through the Use of Artificial Intelligence

The agricultural sector is the largest consumer of the world’s available fresh water resources. With fresh water scarcity increasing worldwide, more efficient use for irrigation water is necessary. Precision irrigation is described as the application of water to meet crop needs of a specific area, at the right amount and at the time that is optimum for crop health and management objectives. Irrigation becomes increasingly efficient through the use of precision irrigation tools. Howe... E. Bedwell

170. Increasing the Accuracy of UAV-Based Remote Sensing Data for Strawberry Nitrogen and Water Stress Detection

This paper presents the methods to increase the accuracy of unmanned aerial vehicles (UAV)-based remote sensing data for the determination of plant nitrogen and water stresses with increased accuracy. As the demand for agricultural products is significantly increasing to keep up with the growing population, it is important to investigate methods to reduce the use of water and chemicals for water conservation, reduction in the production cost, and reduction in environmental impact. UAV-based r... S. Bhandari, A. Raheja

171. Integrated Analysis of Multilayer Proximal Soil Sensing Data

Data revealing spatial soil heterogeneity can be obtained in an economically feasible manner using on-the-go proximal soil sensing (PSS) platforms. Gathered georeferenced measurements demonstrate changes related to physical and chemical soil attributes across an agricultural field. However, since many PSS measurements are affected by multiple soil properties to different degrees, it is important to assess soil heterogeneity using a multilayer approach. Thus, analysis of multiple layers of geo... V.I. Adamchuk, N. Dhawale, A. Biswas, S. Lauzon‎, P. Dutilleul

172. Integrated Approach to Site-specific Soil Fertility Management

In precision agriculture the lack of affordable methods for mapping relevant soil attributes is a funda­mental problem. It restricts the development and application of advanced models and algorithms for decision making. The project “I4S - Integrated System for Site-Specific Soil Fertility Management” combines new sensing technologies with dynamic soil-crop models and decision support systems. Using sensors with different measurement principles improves the estimation of soil f... R. Gebbers, V. Dworak, B. Mahns, C. Weltzien, D. Büchele, I. Gornushkin, M. Mailwald, M. Ostermann, M. Rühlmann, T. Schmid, M. Maiwald, B. Sumpf, J. Rühlmann, M. Bourouah, H. Scheithauer, K. Heil, T. Heggemann, M. Leenen, S. Pätzold, G. Welp, T. Chudy, A. Mizgirev, P. Wagner, T. Beitz, M. Kumke, D. Riebe, C. Kersebaum, E. Wallor

173. Integration of Unmanned Aerial Systems Images and Yield Monitor in Improving Cotton Yield Estimation

The yield monitor is one of the most adopted precision agriculture technologies because it generates dense yield data to quantify the spatial variability of crop yield as a basis for site-specific management. However, yield monitor data has various errors that prevent proper interpretation and precise field management. The objective of this study was to evaluate the application of unmanned aerial systems (UAS) images in improving cotton yield monitor data. The study was conducted in a dryland... H. Gu, W. Guo

174. Intuitive Image Analysing on Plant Data - High Throughput Plant Analysis with Lemnatec Image Processing

For digital plant phenotyping huge amounts of 2D images are acquired. This is known as one part of the phenotyping bottleneck. This bottleneck can be addressed by well-educated plant analysts, huge experience and an adapted analysis software. Automated tools that only cover specific parts of this analysis pipeline are provided. During the last years this could be changed by the image processing toolbox of LemnaTec GmbH. An automated and intuitive tool for the automated analysis of huge amount... S. Paulus, T. Dornbusch, M. Jansen

175. Investigating Spatial Relationship of Apparent Electrical Conductivity with Turfgrass and Soil Characteristics in Sand-capped Golf Course Fairways

Turfgrass quality decreases when grown on fine textured soils that are irrigated with poor quality water. As a result, sand-capping (i.e., a sand layer above existing native soil) is now considered during golf course fairway renovation and construction. Mapping spatial variability of soil apparent electrical conductivity (ECa) has recently been suggested to have applications for precision turfgrass management (PTM) in native soil fairways, but sand-capped fairways have received les... C. Straw, B. Wyatt, A.P. Smith, K. Watkins, S. Hong, W. Floyd, D. Williams, C. Garza, T. Jansky

176. Investigating the Potential of Visible and Near-infrared Spectroscopy (VNIR) for Detecting Phosphorus Status of Winter Wheat Leaves Grown in Long-term Trial

The determination of plant nutrient content is crucial for evaluating crop nutrient removal, enhancing nutrient use efficiency, and optimizing yields. Nutrient conventional monitoring involves colorimetric analyses in the laboratory; however, this approach is labor-intensive, costly, and time-consuming. The visible and near-infrared spectroscopy (VNIR) or hyperspectral non-imaging sensors have been an emerging technology that has been proved its potential for rapid detection of plant nutrient... Y. El-mejjaouy, B. Dumont, A. Oukarroum, B. Mercatoris , P. Vermeulen

177. Investigation of Automated Analysis of Snowmelt from Time-series Sentinel 2 Imagery to Inform Spatial Patterns of Spring Soil Moisture in the American Mountain West

Variable rate irrigation of crops is a promising approach for saving water whilst maintaining crop yields in the semi-arid American Mountain West – much of which is currently experiencing a mega drought. The first step in determining irrigation zones involves characterizing the patterns of spatial variation in soil moisture and determining if these are relatively stable temporally in relation to topographic features and soil texture. Characterizing variable rate irrigation zones is usua... I. Turner, R. Kerry, R. Jensen, E. Woolley, N. Hansen, B. Hopkins

178. Is Row-unit Vibration Affected by Planter Speeds and Downforce?

Row-unit vibration is an issue created mainly by planter`s opening disks and gauge-wheels contact with the ground. Variability on row-unit vibration could interfere on seed metering and delivery process, affecting crop emergence and final stand. With the amount of embedded technology present on planters, producers are being encouraged to increase planting speeds, which is also one of the main factors for row-unit vibration increasement. In this way, knowing the proper speeds, and using other ... L.P. Oliveira, B.V. Ortiz, G.T. Morata, T. Squires, J. Jones

179. Key Data Ownership, Privacy and Protection Issues and Strategies for the International Precision Agriculture Industry

Precision agriculture companies seek to leverage technology to process greater volumes of data, greater varieties of data, and at a velocity unfathomable to most. The promises of boundless benefits are coupled with risks associated with data ownership, stewardship and privacy. This paper presents some risks related to the management of farm data, in general, as well as those unique to operating in the international arena.  Examples of U.S. and international laws related to data protectio... J.K. Archer, C.A. Delgadillo, F. Shen

180. Knowledge, Skills and Abilities Needed in the Precision Ag Workforce: an Industry Survey

Precision agriculture encompasses a set of related technologies aimed at better utilization of crop inputs, increasing yield and quality, reducing risks, and enabling information flow throughout the crop supply and end-use chains.  The most widely adopted precision practices have been automated systems related to equipment steering and precise input application, such as autoguidance and section controllers.  Once installed, these systems are relatively easy for farmers and their sup... B. Erickson, D.E. Clay, S.A. Clay, S. Fausti

181. Knowledge-based Approach for Weed Detection Using RGB Imagery

A workflow was developed to explore the potential use of Phase One RGB for weed mapping in a herbicide efficacy trial in wheat. Images with spatial resolution of 0.8 mm were collected in July 2020 over an area of nearly 2000 square meters (66 plots). The study site was on a research farm at the University of Saskatchewan, Canada. Wheat was seeded on June 29, 2020, at a rate of 75 seeds per square meter with a row spacing of 30.5 cm. The weed species seeded in the trial were kochia, wild oat, ... T. Ha, K. Aldridge, E. Johnson, S.J. Shirtliffe, S. Ryu

182. Laboratory Evaluation of Two VNIR Optical Sensor Designs for Vertical Soil Sensing

Visible and near infrared reflectance spectroscopy (VNIR) is becoming an extensively researched technology to predict soil properties such as soil organic carbon, inorganic carbon, total nitrogen, moisture  for precision agriculture. Due to its rapid, non-destructive nature and ability to infer multiple soil properties simultaneously, engineers have been trying to develop proximal sensors based on the VNIR technology to enable horizontal soil sensing and mapping. Since the vertical varia... N. Wijewardane, Y. Ge

183. Large-scale UAS Data Collection, Processing and Management for Field Crop Management

North Dakota State University research and Extension personnel are collaborating with Elbit Systems of America to compare the usefulness and economics of imagery collected from a large unmanned aircraft systems (UAS), small UAS and satellite imagery. Project personnel are using a large UAS powered with an internal combustion engine to collect high-resolution imagery over 100,000 acres twice each month during the crop growing season. Four-band multispectral Imagery is also being collected twic... J. Nowatzki, S. Bajwa, D. Roberts, M. Ossowski, A. Scheve, A. Johnson, Y. Chaplin

184. Limitations of Yield Monitor Data to Support Field-scale Research

Precision agriculture adoption on farms continues to grow globally on farms.  Today, yield monitors have become standard technologies on grain, cotton and sugarcane harvesters.  In recent years, we have seen industry and even academics leveraging the adoption of precision agriculture technologies to conduct field-scale, on-farm research.  Industry has been a primary driver of the increase in on-farm research globally through the development of software to support on-farm resear... J.P. Fulton, S.A. Shearer, A. Gauci, A. Lindsey, D. Barker, E. Hawkins

185. Liquid Flow Control Requirements for Crop Canopy Sensor-Based N Management in Corn: A Project SENSE Case Study

While on-farm adoption of crop canopy sensors for directing in-season nitrogen (N) application has been slow, research focused on these systems has been significant for decades. Much emphasis has been placed on developing and testing algorithms based on sensor output to predict N needs, but little information has been published regarding liquid flow control requirements on equipment used in conjunction with these sensing systems. Addition of a sensor-based system to a standard spray rate cont... J. Luck, J. Parrish, L. Thompson, B. Krienke, K. Glewen, R.B. Ferguson

186. Low Cost Smartphone Camera Accessory to Digitally Measure Leaf Color for Crop Nitrogen Status Assessment

Crop nitrogen (N) status is a desirable information for crop nutrition management. In addition to the traditional leaf sampling with subsequent laboratory analysis, the use of chlorophyll meters is a well-studied and accepted practice to indirectly measure crop N status. Nevertheless, chlorophyll meters are dedicated devices that still cost at least a few hundred dollars, thus being unsuitable to large scale use among low budget smallholders. Aiming to address this issue, a new low cost smart... G. Portz, S. Reusch, J. Jasper

187. Machine Learning Techniques for Early Identification of Nitrogen Variability in Maize

Characterizing and managing nutrient variability has been the focus of precision agriculture research for decades. Previous research has indicated that in-situ fluorescence sensor measurements can be used as a proxy for nitrogen (N) status in plants in greenhouse conditions employing static sensor measurements. Indeed, practitioners of precision N management require determination of in-season plant N status in real-time at field scale to enable the most efficient N fertiliz... D. Mandal, R.D. Siqueira, L. Longchamps, R. Khosla

188. Maize Seeding Rate Optimization in Iowa Using Soil and Topographic Characteristics.

The ability to collect soil, topography, and productivity information at spatial scales has become more feasible and more reliable with many advancement in precision technologies. This ability, combined with precision services and the accessibility farmers have to equipment capable implementing precision practices, has led to continued interest in making site-specific crop management decisions. The objective of this research was to utilize soil and topographic parameters to optimize seeding r... M.A. Licht, A. Lenssen, R. Elmore

189. Making Irrigator Pro an Adaptive Irrigation Decision Support System

Irrigator Pro is a public domain irrigation scheduling model developed by the USDA-ARS National Peanut Research Laboratory. The latest version of the model uses either matric potential sensors to estimate the plant’s available soil water or manual data input. In this project, a new algorithm is developed, which will provide growers and consultants with much more flexibility in how they can feed data to the model. The new version will also run with Volumetric Water Content sensors, givin... I. Gallios, G. Vellidis, C. Butts

190. Management Zone-specific N Mineralization Rate Estimation in Unamended Soil

Since nitrogen (N) mineralization from soil organic matter is governed by basic soil properties (soil organic matter content, pH, soil texture, …) that are known to exhibit strong in-field spatial variability, N mineralization is also expected to exhibit significant spatial variability at field scale. An ideal and efficient N recommendation for precision fertilization should therefore account for potential soil mineralizable N considering this spatial variability. Therefore, this study... F.Y. Ruma, M.A. Munnaf, S. De neve, A.M. Mouazen

191. Map Whiteboard As Collaboration Tool for Smart Farming Advisory Services

Precision agriculture, a branch of smart farming, holds great promise for modernization of European agriculture both in terms of environmental sustainability and economic outlook.  The vast data archives made available through Copernicus and related infrastructures, combined with a low entry threshold into the domain of AI-technologies has made it possible, if not outright easy, to make meaningful predictions that divides  individual agricultural fields into zones where variable rat... K. Charvat, R. Berzins, R. Bergheim, F. Zadrazil, J. Macura, D. Langovskis, H. Snevajs, H. Kubickova, S. Horakova, K. Charvat jr.

192. Mapping Soil Health and Grain Quality Variations Across a Corn Field in Texas

Soil health is a key property of soils influencing grain yield and quality. Within-field mapping of soil health index and grain quality can help farmers and managers to adjust site-specific farm management decisions for economic benefits. A study was conducted to map within-field soil health and grain protein and oil content variations using apparent electrical conductivity (ECa) and terrain attributes as their predictors. Two hundred and two topsoil samples were analyzed to determine soil he... K. Adhikari, D.R. Smith, C. Hajda, P.R. Owens

193. Mapping Spatial Production Stability in Integrated Crop and Pasture Systems: Towards Zonal Management That Accounts for Both Yield and Livestock-landscape Interactions.

Precision farming technologies are now widely applied within Australian cropping systems. However, the use of spatial monitoring technologies to investigate livestock and pasture interactions in mixed farming systems remains largely unexplored. Spatio-temporal patterns of grain yield and pasture biomass production were monitored over a four-year period on two Australian mixed farms, one in the south-west of Western Australia and the other in south-east Australia. A production stability index ... P. Mcentee, S. Bennett, M. Trotter, R. Belford, J. Harper

194. MDPI - Agriculture and Agronomy Journals

... N. Nišavić

195. Measurement of In-field Variability for Active Seeding Depth Applications in Southeastern US

Proper seeding depth control is essential to optimize row-crop planter performance, and adjustment of planter settings to within field spatial variability is required to maximize crop yield potential. The objectives of this study were to characterize planting depth response to varying soil conditions within fields, and to discuss implementation of active seeding depth technologies in Southeastern US. This study was conducted in 2014 and 2015 in central Alabama for non-irrigated maize (Zea may... A.M. Poncet, J.P. Fulton, T.P. Mcdonald, T. Knappenberger, R.W. Bridges, J. Shaw, K. Balkcom

196. Measuring Height of Sugarcane Plants Through LiDAR Technology

Sugarcane (Saccharum spp.) has an important economic role in Brazilian agriculture, especially in São Paulo State. Variation in the volume of plants can be an indicative of biomass which, for sugarcane, strongly relates to the yield. Laser sensors, like LiDAR (Light Detection and Ranging), has been employed to estimate yield for corn, wheat and monitoring forests. The main advantage of using this type of sensor is the capability of real-time data acquisition in a non-destructive way, p... T.F. Canata, J.P. Molin, A.F. Colaço, R.G. Trevisan, P.R. Fiorio, M. Martello

197. Measuring Pasture Mass and Quality Indices Over Time Using Proximal and Remote Sensors

Traditionally pasture has been measured or evaluated in terms of a dry matter yield estimate, which has no reference to other important quality factors. The work in this paper measures pasture growth rates on different slopes and aspects and pasture quality through nitrogen N% and metabolizable energy and ME concentration. It is known that permanent pasture species vary greatly in terms of quality and nutritional value through different stages of maturity. Pasture quality decreases as grass t... I.J. Yule, M.C. Grafton, L.A. Willis, P.J. Mcveagh

198. Measuring Soil Carbon with Intensive Soil Sampling and Proximal Profile Sensing

Soils have a large carbon storage capacity and sequestering additional carbon in agricultural fields can reduce CO2 levels in the atmosphere, helping to mitigate climate change. Efforts are underway to incentivize agricultural producers to increase soil organic carbon (SOC) stocks in their fields using various conservation practices.  These practices and the increased SOC provide important additional benefits including improved soil health, water quality and – in some cases –... E. Lund, T. Lund, C. Maxton

199. Measuring Soil Carbon with Intensive Soil Sampling and Proximal Profile Sensing

Measuring soil carbon is currently a subject of significant interest due to soil’s ability to sequester carbon and reduce atmospheric CO2. The cost of conventional soil sampling and analysis along with the number of samples required make proximal sensing an appealing option.  To properly evaluate the performance of proximal sensing of soil carbon, a detailed lab-analyzed carbon inventory is needed to serve as the ‘gold standard’ in evaluating sensor estimations.  F... E. Lund

200. Melon Classification and Segementation Using Low Cost Remote Sensing Data Drones

Object recognition represents currently one of the most developing and challenging areas of the Computer Vision. This work presents a systematic study of various relevant parameters and approaches allowing semi-automatic or automatic object detection, applied onto a study case of melons on the field to be counted. In addition it is of a cardinal interest to obtain the quantitative information about performance of the algorithm in terms of metrics the suitability whereof is determined by the f... T. Zhao, Y. Chen, J. Franzen, J. Gonzalez, Q. Yang

201. Memory Based Learning: A New Data Mining Approach to Model and Interpret Soil Texture Diffuse Reflectance Spectra

Successful estimation of spectrally active soil texture with Visible and Near-Infrared (VNIR, 400-1200 nm) and Short-Wave-Infrared (SWIR, 1200-2500 nm) spectroscopy depends mostly on the selection of an appropriate data mining algorithm. The aims of this paper were: to compare different data mining algorithms including Partial Least Squares Regression (PLSR), which is the most common technique in soil spectroscopy, Support Vector Machine Regression (SVMR), Boosted Regression Trees (BRT), and ... A. Gholizadeh, M. Saberioon, L. Borůvka

202. Meta Deep Learning Using Minimal Training Images for Weed Classification in Wild Blueberry

Deep learning convolutional neural networks (CNNs) have gained popularity in recent years for their ability to classify images with high levels of accuracy. In agriculture, they have been applied for disease identification, crop growth monitoring, animal behaviour tracking, and weed classification. Datasets traditionally consisting of thousands of images of each desired target are required to train CNNs. A recent survey of Nova Scotia wild blueberry (Vaccinium angustifolium Ait.) fie... P.J. Hennessy, T.J. Esau, A.W. Schumann, A.A. Farooque, Q.U. Zaman, S.N. White

203. Micro-climate Prediction System Using IoT Data and AutoML

Microclimate variables like temperature, humidity are sensitive to land surface properties and land-atmosphere connections. They can vary over short distances and even between sections of the farm. Getting the accurate microclimate around the crop canopy allows farmers to effectively manage crop growth. However, most of the weather forecast services available to farmers globally, either by the meteorological department or universities or some weather app,  provide weather forecasts for l... A. Sharma, R.S. Jalem, M. Dash

204. Minnesota Corn Growers Association

With more than 6,500 members, the Minnesota Corn Growers Association is one of the largest grassroots farm organizations in the United States. Working in close partnership with the Minnesota Corn Research & Promotion Council, MCGA identifies and promotes opportunities for Minnesota’s 24,000 corn farmers while building connections with the non-farming public. We accomplish this by investing in third-party research that focuses on water quality and soil health, targeted consumer outre... M. Kazula

205. Misalignment Between Sugar Cane Transshipment Trailers and Tractor

Sugarcane production system is dependent on a continuous cutting and regrowth of cane plants from their roots, on which traffic should be avoided to ensure the physiological integrity of regrowth and productivity.  This need for accuracy in sugarcane machine traffic boosted the adoption of automated steering systems, especially on harvesters. Tractors with the transshipment trailers, which continually accompany the harvesters in the field, yet do not adopt it or use technology with lower... B.P. Passalaqua, J. Molin, J. Salvi, A.P. Aguilera

206. Modeling Spatial and Temporal Variability of Cotton Yield Using DSSAT for Decision Support in Precision Agriculture

The quantification of spatial and temporal variability of cotton yield provides critical information for optimizing resources, especially water. The Southern High Plains (SHP) of Texas is a major cotton (Gossypium hirsutum L.) production region with diminishing water supply. The objective of this study was to predict cotton yield variability using soil properties and topographic attributes. The DSSAT CROPGRO-Cotton model was used to simulate cotton growth, development and yield ... B.P. Ghimire, O. Adedeji, Z. Lin, W. Guo

207. Modifying the University of Missouri Corn Canopy Sensor Algorithm Using Soil and Weather Information

Corn production across the U.S. Corn belt can be often limited by the loss of nitrogen (N) due to leaching, volatilization and denitrification. The use of canopy sensors for making in-season N fertilizer applications has been proven effective in matching plant N requirements with periods of rapid N uptake (V7-V11), reducing the amount of N lost to these processes. However, N recommendation algorithms used in conjunction with canopy sensor measurements have not proven accurate in making N reco... G. Bean, N.R. Kitchen, D.W. Franzen, R.J. Miles, C. Ransom, P. Scharf, J. Camberato, P. Carter, R.B. Ferguson, F. Fernandez, C. Laboski, E. Nafziger, J. Sawyer, J. Shanahan

208. Modulated On-farm Response Surface Experiments with Image-based High Throughput Techniques for Evidence-based Precision Agronomy

Agronomic research is vital to determining optimum inputs for crops to perform profitably at a local scale. However, the small-plot experiment validity is often uncertain due to on-farm variations. Furthermore, the likelihood of conducting a fully randomized trial at a local farm is low given various practical and technical challenges. We propose a new methodology with many inputs to allow for a response surface that fits the yield response to the input levels with higher accuracy to make on-... A.U. Attanayake, E.U. Johnson, H.U. Duddu, S.U. Shirtliffe

209. Modus: a Standard for Big Data

Modus Standard is a system of defined terminology, agreed metadata and file transfer format that has grown from a need to exchange, merge and trend agricultural testing data. The three presenters will discuss steps taken to develop the system, benefits to data exchange, current user base and additions being made to the standard. ... D. Nerpel, J.W. Ellsworth, A. Hunt

210. Multi-sensor Imagery Fusion for Pixel-by-pixel Water Stress Mapping

Evaluating water stress in agricultural fields is fundamental in irrigation decision-making, especially mapping the in-field water stress variability as it allows real-time detection of system failures or avoiding yield loss in cases of unplanned water stress. Water stress mapping by remote sensing imagery is commonly associated with the thermal or the short-wave-infra-red (SWIR) bands. However, integration of multi-sensors imagery such as radar imagery or sensors with only visible and near-i... O. Beeri, R. Pelta, Z. Sade, T. Shilo

211. Multispectral Assessment of Chickpea in the Northern Great Plains

Chickpea is an increasingly important crop in the Montana agricultural system. From 2017 to 2021 the U.S. has planted an average of about 492,000 acres per year with Montana chickpea production accounting for around 44% of the U.S. total (USDA/NASS QuickStats accessed on 2/11/2021). This has led to an increase in breeding efforts for elite varieties adapted to the unique conditions in the Northern Great Plains. Breeding of chickpea often relies on traditional phenotyping techniques that are l... J.M. Vetch

212. Multispectral Imaging and Elevation Mapping from an Unmanned Aerial System for Precision Agriculture Applications

As the world population continues to grow, the need for efficient agricultural production becomes more pressing.  The majority of farmers still use manual techniques (e.g. visual inspection) to assess the status of their crops, which is tedious and subjective.  This paper examines an operational and analytical workflow to incorporate unmanned aerial systems (UAS) into the process of surveying and assessing crop health.  The proposed system has the potential to significantly red... C. Lum, M. Dunbabin, C. Shaw-feather, M. Mackenzie, E. Luker

213. N-management Using Structural Data: UAV-derived Crop Height As an Estimator for Biomass, N Concentration, and N Uptake in Winter Wheat

In the last 15 years, sensors mounted on Unmanned Aerial Vehicles (UAVs) have been intensively investigated for crop monitoring. Besides known remote sensing approaches based on multispectral and hyperspectral sensors, photogrammetric methods became very important. Structure for Motion (SfM) and Multiview Stereopsis (MVS) analysis approaches enable the quantitative determination of absolute crop height and crop growth. Since the first paper on UAV-derived crop height was published by Bendig e... G. Bareth, A. Jenal, H. Hüging

214. Net Returns and Production Use Efficiency for Optical Sensing and Variable Rate Nitrogen Technologies in Cotton Production

This research evaluated the profitability and N use efficiency of real time on-the-go optical sensing measurements (OPM) and variable-rate technologies (VRT) to manage spatial variability in cotton production in the Mississippi River Basin states of Louisiana, Mississippi, Missouri, and Tennessee. Two forms of OPM and VRT and the existing farmer practice (FP) were used to determine N fertilizer rates applied to cotton on farm fields in the four states. Changes in yields and N rates due to OPM... J.A. Larson, M. Stefanini, D.M. Lambert, X. Yin, C.N. Boyer, J.J. Varco, P.C. Scharf , B.S. Tubaña, D. Dunn, H.J. Savoy, M.J. Buschermohle, D.D. Tyler

215. New Technologies in Biological Plant Protection and Its Localization

The sharp increase in the use of pesticides in agrobiocenosis in the background of no-till and minimum tillage called: the growth of costs, the decline of soil fertility, the occurrence of resistance in harmful organisms and change in species composition, a number of other pressing environmental problems. In this regard, the most preferred and safe bipolarization of plant protection. The use of microorganisms in plant protection can reduce the number of harmful organisms in anthropogenic ecos... N. Sedinina, D. Kotlyarov , V. kotlyarov

216. Next in Precision Agriculture: Detecting and Correcting Pixels with Machinery Track Line Within Farms

With more satellites orbiting the earth, monitoring of fields using satellite data has become easier and ubiquitous. Frequent observations of a field can provide vital cues about field health and management practices. However, farm analytical statistics derived from such datasets often need modification to create practical applications. This paper focuses on the detection and removal of field machinery track line pixels to reduce their effect on satellite-based agronomic recommendation and pr... G. Rathee, M. Sielenkemper

217. NIR Spectroscopy to Map Quality Parameters of Sugarcane

Precision Agriculture aims to explore the potential of each crop considering the differences within the field. One information that is considered the most important is the yield or the obtained income in the field. However, in the case of sugarcane, quality will also directly influence farmer’s income. Several studies suggest harvester automation aiming to monitor yield, but few consider the quality analysis in the process. Among the existing methods for measuring sugar content the one ... M.N. Ferraz, J.P. Molin

218. Nitrogen Fertilization of Potato Using Management Zone in Prince Edward Island, Canada

Potato is sensible to nitrogen (N) and optimal N fertilization improve the tuber yield and its quality. Potato crop N response varies widely within fields. It is also well recognized that significant spatial and temporal variation in soil N availability occurs within crop fields. However, uniform application of N fertilizer is still the most common practice under potato production. Management zone (MZ) approach can help growers to achieve a part of this. The goal of the project is to compare ... A. Cambouris, M. Duchemin, N. Ziadi

219. Nitrogen Placement Considerations for Maize Production in the Eastern US Cornbelt

Proper fertilizer placement is essential to optimize crop performance and amount of applied nitrogen (N) along with crop yield potential. There exists several practices currently used in both research within farming operations on how and when to apply N to maize (Zea mays L). Split applications of N in Ohio is popular with farmers and provides an economic benefit but more recently some farmers have been using mid- and late-season N fertilizer applications for their maize production.&... J.P. Fulton, E. Hawkins, S. Shearer, A. Klopfenstein, J. Hartschuh, S. Custer

220. Nitrogen Status Prediction on Pasture Fields Can Be Reached Using Visible Light UAV Data Combined with Sentinel-2 Imagery

Pasture fields under integrated crop-livestock system usually receive low or no nitrogen fertilization rates, since the expectation is that nitrogen demand will be provided by the soybean remaining straw cropped previously. However, keeping nitrogen at suitable levels in the entire field is the key to achieving sustainability in agricultural production systems. In this sense, remote sensing technologies play an essential role in nitrogen monitoring in pastures and crops. With the launch of th... F.R. Pereira, J.P. Lima, R.G. Freitas, A.A. Dos reis, L.R. Amaral, G.K. Figueiredo, R.A. Lamparelli, J.C. Pereira, P.S. Magalhães

221. Non-destructive Plant Phenotyping Using a Mobile Hyperspectral System to Assist Breeding Research: First Results

Hybrid plants feature a stronger vigor, an increased yield and a better environmental adaptability than their parents, also known as heterosis effect. Heterosis of winter oilseed rape is not yet fully understood and conclusions on hybrid performance can only be drawn from laborious test crossings. Large scale field phenotyping may alleviate this process in plant breeding. The aim of this study was to test a low-cost mobile ground-based hyperspectral system for breeding research to e... H. Gerighausen, H. Lilienthal, E. Schnug

222. North American Soil Test Summary

With the assistance and cooperation of numerous private and public soil testing laboratories, the International Plant Nutrition Institute (IPNI) periodically summarizes soil test levels in North America (NA). Soil tests indicate the relative capacity of soil to provide nutrients to plants. Therefore, this summary can be viewed as an indicator of the nutrient supplying capacity or fertility of soils in NA. This is the eleventh summary completed by IPNI or its predecessor, the Potash ... Q. Rund, S. Murrell, A. Erbe, R. Williams, E. Williams

223. On Farm Studies to Determine Seeding Rate in Corn

Seeding rate (SDR) is one of the most critical production practices impacting productivity and economic return for corn (Zea mays L.) By changing SDRs in different zones within a field, herein termed as site-specific management, better economic results can be produced as the outcome of reducing SDRs in low productivity areas and increasing SDRs under high-yielding environments, relative to the uniform SDR management performed by the producer. The aim of this study was to analyze yield respons... G. Balboa, S. Varela, I. Ciampitti, S. Duncan, T. Maxwell, D. Shoups, A. Sharda

224. On-Farm Evaluation of an Active Optical Sensor Performance for Variable Nitrogen Application in Winter Wheat

Winter wheat (Triticum aestivum L.) represents almost 50% of total cereal production in the European Union, accounting for approximately 25% of total mineral nitrogen (N) fertilizer applied to all crops. Currently, several active optical sensor (AOS) based systems for optimizing variable N fertilization are commercially available for a variety of crops, including wheat. To ensure successful adoption of these systems, definitive measurable benefits must be demonstrated. Nitrogen management str... O.S. Walsh, S.M. Samborski, D. Gozdowski, M. Stępień, E. Leszczyńska

225. On-the-go Gamma Spectrometry and Its Evaluation Via Support Vector Machines: Really a Valuable Tool for Site-independent Soil Texture Prediction?

With progressive implementation of precision agriculture (PA) techniques in current agricultural/ viticultural practice, the need for high-resolution information on soil properties at low effort and cost is increasing. Moreover, climate change and extended drought periods do even increase this demand. Evaluating soil fertility and carbon storage potential of arable fields and vineyards, e.g. for future economic assessment of ecosystem services, requires spatially resolved soil data. Soil text... S. PÄtzold, T.W. Heggemann, R. Wehrle

226. On-the-go Measurements of pH in Tropical Soil

The objective of this study was to assess the performance of a mobile sensor platform with ion-selective antimony electrodes (ISE) to determine pH on-the-go in a Brazilian tropical soil. The field experiments were carried out in a Cambisol in Piracicaba-SP, Brazil. To create pH variability, increasing doses (0, 1, 3, 5, 7 and 9 Mg ha-1) of lime were added on the experimental plots (25 x 10 m) one year before the data acquisitions. To estimate soil pH levels we used a Mobile Sensor ... M.T. Eitelwein, R.G. Trevisan, A.F. Colaço, M.R. Vargas, J.P. Molin

227. Open Data for Food Quality and Food Security Control: a Case Study of the Czech Republic

Food quality and food security is of a high public interest in the European Union. In the Czech Republic, food quality and food security is under control of three different public authorities: the Czech Trade Inspection Authority (CTIA) that is affiliated with the Ministry of Industry and Trade of the Czech Republic, the Czech Agriculture and Food Inspection Authority (CAFIA) that is affiliated with the Ministry of Agriculture of the Czech Republic and the regional network of hygienic station... M. Ulman, M. Stoces, J. Jarolimek, P. Simek

228. Optimization of Batch Processing of High-density Anisotropic Distributed Proximal Soil Sensing Data for Precision Agriculture Purposes

The amount of spatial data collected in agricultural fields has been increasing over the last decade. Advances in computer processing capacity have resulted in data analytics and artificial intelligence becoming hot topics in agriculture. Nevertheless, the proper processing of spatial data is often neglected, and the evaluation of methods that efficiently process agricultural spatial data remains limited. Yield monitor data is a good example of a well-established methodology for data processi... F. Hoffmann silva karp, V. Adamchuk, A. Melnitchouck, P. Dutilleul

229. Optimizing Nitrogen Application to Maximize Yield and Reduce Environmental Impact in Winter Wheat Production

Field-specific fertilizer rate optimization is known to be beneficial for improving farming profit, and profits can be further improved by dividing the field into smaller plots and applying site-specific rates across the field. Finding optimal rates for these plots is often based on data gathered from said plots, which is used to determine a yield response curve, telling us how much fertilizer needs to be applied to maximize yield. In related work, we use a Convolutional Neural Network, known... A. Peerlinck, J. Sheppard, G.L. Morales luna, P. Hegedus, B. Maxwell

230. Organ Scale Nitrogen Map: a Novel Approach for Leaf Nitrogen Concentration Estimation

Crop nitrogen trait estimations have been used for decades in the frame of precision agriculture and phenotyping researches. They are crucial information towards a sustainable agriculture and efficient use of resources. Remote sensing approaches are currently accurate tools for nitrogen trait estimations. They are usually quantified through a parametric regression between remote sensing data and the ground truth. For instance, chlorophyll or nitrogen concentration are accurately estimated usi... A. Carlier, S. dandrifosse, B. Dumont, B. Mercatoris

231. Overcoming Educational Barriers for Precision Agriculture Adoption: a University Diploma in Precision Agriculture in Argentina

The lack of educational programs in Precision Agriculture (PA) has been reported as one of the barriers for adoption. Our goal was to improve professional competence in PA through education in crop variability, management, and effective practices of PA in real cases. In the last 20 years different efforts has been made in Argentina to increase adoption of PA. The Universidad Nacional de Rio Cuarto (UNRC) launched in 2021 the first University Diploma in PA, a 9-month program to train agronomis... G. Balboa, A. Degioanni, R. Bongiovanni, R. Melchiori, C. Cerliani, F. Scaramuzza, M. Bongiovanni, J. Gonzalez, M. Balzarini, H. Videla, S. Amin, G. Esposito

232. Ownership and Protections of Farm Data

Farm data has been a contentious point of debate with respect to ownership rights and impacts when access rights are misappropriated. One of the leading questions farmers ask deals with the protections provided to farm data. Although no specific laws or precedence exists, the possibility of trade secret is examined and ramifications for damages discussed. Farm management examples are provided to emphasize the potential outcomes of each possible recourse for misappropriating farm data. ... A. Ellixson, P. Goeringer, T. Griffin

233. Pessl Instruments

For more than 37 years, Pessl Instruments has been offering tools for informed decision-making. A complete range of wireless, solar powered monitoring systems which support almost all communication standards roofed under the METOS® brand is available to our clients worldwide.    The systems, along with online platform and mobile application Fieldclimate, are applicable in all climate zones and can be used in various industries and for various purposes – from ... D. Brazda

234. Planet Labs' Monitoring Solution in Support of Precision Agriculture Practices

Satellite imagery is particularly useful for efficiently monitoring very large areas and providing regular feedback on the status and productivity of agricultural fields. These data are now widely used in precision farming; however, many challenges to making optimal use of this technology remain, such as easy access to data, management and exploitation of large datasets with deep time series, and sharing of the data and derived analytics with users. Providing satellite imagery through a cloud... K.J. Frotscher, R. Schacht, L. Smith, E. Zillmann

235. Plant Stand Count and Corn Crop Density Assessment Using Texture Analysis on Visible Imagery Collected Using Unmanned Aerial Vehicles

Ensuring successful corn farming requires an effective monitoring program to collect information about stand counts at an early stage of growth and plant damages due to natural calamities, farming equipment, hogs, deer and other animals. These monitoring programs not only provide a yield estimate but also help farmers and insurance companies in assessing the causes of damages. Current field-based assessment methods are labor intensive, costly, and provide very limited information. Manual asse... S. Samiappan, B. Henry, R.J. Moorhead, M.W. Hock

236. Positioning Strategy of Maize Hybrids Adjusting Plant Population by Management Zones

Choice of hybrid and accurate amount of plants per area determines grain yield and consequently net incomes. Local field adjustment in plant population is a strategy to manage spatial variability and optimize environmental resources that are not under farmer control (like soil type and water availability). This study aims to evaluate the response of hybrids by levels of plant population across management zones (MZ). Six different hybrids and five rates of plant populations were analyzed start... A.A. Anselmi, J.P. Molin, M.T. Eitelwein, R. Trevisan, A. Colaço

237. Possibilities for Improved Decision Making and Operating Efficiency Derived from the Predictability of Autonomous Farming Operations

For the last 6 years, small autonomous agricultural vehicles have been operating on Harper Adams University’s fields in Shropshire.  Starting with a single tractor on a single rectangular hectare (2.5 acres) and moving on to three tractors on 5 irregularly shaped fields covering over 30 hectares (75 acres).  Multiple crops have been grown; planting, tending, and harvesting with autonomous tractors and harvesters.  The fields are worked using a Controlled Traffic Farming s... M. Gutteridge

238. Post Processing Software for Grain Yield Monitoring System Suitable to Korean Full-feed Combines

Precision agriculture (PA) has been adopted in many countries and crop and country specific technologies have been implemented for different crops and agricultural practices. Although PA technologies have been developed mainly in countries such as USA, Europe, Australia, where field sizes are large, need of PA technologies has been also drawn in countries such as Japan and Korea, where field sizes are relatively small (about 1 ha). Although principles are similar, design concept and practical... K. Lee, S. Chung, J. Lee, S. Kim, Y. Kim, M. Choi

239. Potential Improvement in Rice Nitrogen Status Monitoring Using Rapideye and Worldview-2 Satellite Remote Sensing

For in-season site-specific nitrogen (N) management of rice to be successful, it is crucially important to diagnose rice N status efficiently across large area in a timely fashion. Satellite remote sensing provides a promising technology for crop growth monitoring and precision management over large areas. The FORMOSAT-2 satellite remote sensing imageries with 4 wavebands have been used to estimate rice N status. The objective of this study was to evaluate the potential of using high spatial ... S. Huang, Y. Miao, F. Yuan, M.L. Gnyp, Y. Yao, Q. Cao, V. Lenz-wiedemann, G. Bareth

240. Potential of UAS Multispectral Imagery for Predicting Yield Determining Physiological Parameters of Cotton

The use of unmanned aerial systems (UAS) in precision agriculture has increased rapidly due to the availability of reliable, low-cost, and high-resolution sensors as well as advanced image processing software. Lint yield in cotton is the product of three physiological parameters: photosynthetically active radiation intercepted by canopy (IPAR), the efficiency of converting intercepted active radiation to biomass (RUE), and the ratio of economic yield to total dry matter (HI). The relationship... A. Pokhrel, S. Virk, J.L. Snider, G. Vellidis, V. Parkash

241. Precision Agriculture Education in Africa: Perceptions, Opportunities and Challenges, and the Way Forward

Precision Agriculture is critical for accelerated transformation of the agrifood systems in Africa for shared prosperity and enhanced livelihoods. The paper presents an overview of the perceptions of faculty, undergraduate and postgraduate students from Ghanaian universities about PA education, and its opportunities and challenges. The study involves a case study of two public universities, the University of Cape Coast and the Technical University of Cape Coast, respectively a and a desk revi... K.A. Frimpong

242. Precision Agriculture Techniques for Crop Management in Trinidad and Tobago: Methodology & Field Layout

Agriculture in Trinidad and Tobago has not advanced at the same rate at which new agricultural technology has been released. This has led to large-scale abandonment of crop lands as challenges posed by labor availability and their agronomic capability could not meet the technological demands for agricultural production, competitiveness and sustainability. There is an urgent need to develop technology-based agriculture models to meet the demands of a modern agricultural sector and to maintain ... G. Seepersad, T. Sampson, S. Seepersad, D. Goorahoo

243. Precision Application of Seeding Rates for Weed and Nitrogen Management in Organic Grain Systems

In a time of increasing ecological awareness, organic agriculture offers sustainable solutions to many of the polluting aspects of conventional agriculture. However, without synthetic inputs, organic agriculture faces unique challenges such as weed control and fertility management. Precision Agriculture (PA) has been used to successfully increase input use efficiency in conventional systems and now offers itself as a potential tool for organic farmers as well. PA enables on farm experimentati... S. Loewen, B.D. Maxwell

244. Precision Farming Basics Manual - a Comprehensive Updated Textbook for Teaching and Extension Efforts

Today precision agricultural technologies are limited by the lack of a workforce that is technology literate, creative, innovative, fully trained in their discipline, able to utilize and interpret information gained from information-age technologies to make smart management decisions, and have the capacity to convert locally collected information into practical solutions. As part of a grant entitled Precision Farming Workforce Development:  Standards, Working Groups, and Experimental Lea... K. Shannon

245. Precision Nitrogen and Water Management for Optimized Sugar Beet Yield and Sugar Content

Sugar beet (SB) production profitability is based on maximizing three parameters: beet yield, sucrose content, and sucrose recovery efficiency. Efficient nitrogen (N) and water management are key for successful SB production. Nitrogen deficits in the soil can reduce root and sugar yield. Overapplication of N can reduce sucrose content and increase nitrate impurities which lowers sucrose recovery. Application of N in excess of SB crop need leads to vigorous canopy growth, while compromising ro... O.S. Walsh, S. Shafian

246. Precision Nutrient Management System Based on Ion and Crop Growth Sensing

Automated sensing and variable-rate supply of nutrients in hydroponic solutions according to the status of crop growth would allow more efficient nutrient management for crop growth in closed systems. The Structure from Motion (SfM) method has risen as a new image sensing method to obtain 3D images of plants that can be used to estimate their growth, such as leaf cover area (LCA), plant height, and fresh weight. In this sense, sensor fusion technology combining ion-selective electrodes (ISEs)... W. Cho, D. Kim, C. Kang, H. Kim, J. Son, S. Chung, J. Jiang, H. Yun

247. Precision Nutrient Management Through Drip Irrigation in Aerobic Rice

A field experiment was conducted during kharif 2015 to asses the spatial variability and precision nutrient management through drip irrigation in aerobic rice at ZARS, GKVK, Bangalore. The experimental field has been delineated into 48 grids of 4.5 m x 4.5 m using geospatial technology. Soil samples from 0-15 cm depth were collected and analysed. There was spatial variability for available nitrogen (154 to 277 kg ha-1), phosphorous (45 to 152 kg ha-1) and potass... N. Dr., S. T, M. Giriyappa, H. D.c, B. Patil, D. Prabhudeva, G. Kombali, S. Noorasma, M. Thimmegowda

248. Predicting Below and Above Ground Peanut Biomass and Maturity Using Multi-target Regression

Peanut growth and maturity prediction can help farmers and breeding programs improving crop management. Remote sensing images collected by satellites and drones make possible and accurate crop monitoring. Today, empirical relations between crop biomass and spectral reflectance could be used for prediction of single variables such as aboveground crop biomass, pod weight (PW), or peanut maturity. Robust algorithms such as multioutput regression (MTR) implemented through multioutput random fores... M.F. Oliveira, F.M. Carneiro, M. Thurmond, M.D. Del val, L.P. Oliveira, B. Ortiz, A. Sanz-saez, D. Tedesco

249. Predicting Corn Emergence Uniformity with On-the-go Furrow Sensing Technology

Integration of proximal soil sensors into commercial row-crop planter components have allowed for a dense quantification of within-field soil spatial variability. These technologies have potential to guide real-time management decisions, such as on-the-go variable seeding rate or depth. However, little is known about the performance of these systems. Therefore, research was conducted in central Missouri, USA to determine the relationship between planter sensor metrics, and corn (Zea mays ... L.S. Conway, C. Vong, N.R. Kitchen, K.A. Sudduth, S.H. Anderson

250. Predicting Secondary Soil Fertility Attributes Using XRF Sensor with Reduced Scanning Time in Samples with Different Moisture Content

To support future in situ/on-the-go applications using X-ray fluorescence (XRF) sensors for soil mapping, this study aimed at evaluating the XRF performance for predicting organic matter (OM), base saturation (V), and exchangeable (ex-) Mg, using a reduced analysis time (e.g., 4 s) in soil samples with different moisture contents. These attributes are considered secondary for XRF prediction because they do not present emission lines in the XRF spectrum. Ninety-nine soil samp... T.R. Tavares, J.P. Molin, T.R. Da silva , H.W. De carvalho

251. Prediction of Sugarcane Yields in Commercial Fields by Early Measurements with an Optical Crop Canopy Sensor

As a grass (Poaceae), sugarcane needs supplemental mineral nitrogen (N) to achieve high yields on commercial production areas. In Brazil, N recommendations for sugarcane ratoons are based on expected yield and the results of N response trials, as soil N analyses are not a suitable basis for decisions on optimum N fertilizer rates under tropical conditions. Since the vegetative parts in sugarcane are harvested, yield components such as the number of stalks and stalk height are directly correla... G. Portz, J. Jasper, J.P. Molin

252. Printed Nitrate Sensors for In-soil Measurements

Managing nitrate is a central concert for precision agriculture, from delineating management zones, to optimizing nitrogen use efficiency through in-season applications, to minimizing leaching and greenhouse gas emissions. However, measurement methods for in-soil nitrate are limiting. State-of-the-art soil nitrate analysis requires taking soil or liquid samples to laboratories for chemical or spectrographic analysis. These methods are accurate, but costly, labor intensive, and cover limited g... C. Baumbauer, P. Goodrich, A. Arias

253. Privacy Issues and the Use of UASs/Drones in Maryland

 According to the Federal Aviation Administration (FAA), the lawful use of Unmanned Aerial Vehicles (UAV), also known as Unmanned Aircraft Systems (UAS), or more commonly as drones, are currently limited to military, research, and recreational applications. Under the FAA’s view, commercial uses of drones are illegal unless approved by the Federal government.  This will change in the future.  Congress authorized the FAA to develop regulations for the use of drones by priva... P. Goeringer, A. Ellixson, J. Moyle

254. Processing Yield Data from Two or More Combines

Erroneous data affect the quality of yield map. Data from combines working close to each other may differ widely if one of the monitors is not properly calibrated and this difference has to be adjusted before generating the map. The objective of this work was to develop a method to correct the yield data when running two or more combines in which at least one has the monitor not properly calibrated. The passes of each combine were initially identified and three methods to correct yield data w... L. Maldaner, J.P. Molin, T.F. Canata

255. Proximal Hyperspectral Sensing in Plant Breeding

The use of remote sensing in plant breeding is challenging due to the large number of small parcels which at least actually cannot be measured with conventional techniques like air- or spaceborne sensors. On the one hand crop monitoring needs to be performed frequently, which demands reliable data availability. On the other hand hyperspectral remote sensing offers new methods for the detection of vegetation parameters in crop production, especially since methods for safe and efficient detecti... H. Lilienthal, P. Wilde, E. Schnug

256. Proximal Sensing of Leaf Temperature and Microclimatic Variables to Implement Precision Irrigation in Almond and Grape Crops

Irrigation decisions based on traditional soil moisture sensing often leads to uncertainty regarding the true amount of water available to the plant. Plant based sensing of water stress decreases this uncertainty. In specialty crops grown in California’s Central Valley, precision deficit irrigation based on plant water stress could be used to decrease water use and increase water use efficiency by supplying the necessary quantity of water only when it is needed by the plant. However, th... E. Kizer, S.K. Upadhyaya, F. Rojo, S. Ozmen, C. Ko-madden, Q. Zhang

257. Proximal Sensing of Penetration Resistance at a Permanent Grassland Site in Southern Finland

Proximal soil sensing allows for assessing soil spatial heterogeneity at a high spatial resolution. These data can be used for decision support on soil and crop agronomic management. Recent sensor systems are capable of simultaneously mapping several variables, such as soil electrical conductivity (EC), spectral reflectance, temperature, and water content, in real-time. In autumn 2021, we used a commercial soil scanner (Veris iScan+) to derive information on soil spatial variability for a per... H.E. Ahrends, A. Lajunen

258. Quo Vadis Precision Farming

The agriculture sector is a unique sector due to its strategic importance for both citizens and economy which, ideally, should make the whole sector a network of interacting organizations. There is an increasing tension, the like of which is not experienced in any other sector, between the requirements to assure full safety and keep costs under control, but also assure the long-term strategic interests of Europe and worldwide. In that sense, agricultural production influences, and is influenc... K. Charvat, T. Reznik, V. Lukas, K. Charvat jr., S. Horakova, M. Splichal, M. Kepka

259. Rationale for and Benefits of a Community for On-Farm Data Sharing

Most data sets for evaluating crop production practices have too few locations and years to create reliable probabilities from predictive analytical analyses for the success of the practices. Yield monitors on combines have the potential to enable networks of farmers in collaboration with scientists and farm advisors to collect sufficient data for calculation of more reliable guidelines for crop production showing the probabilities that new or existing practices will improve the efficiency of... T. Morris, N. Tremblay, P.M. Kyveryga, D.E. Clay, S. Murrell, I. Ciampitti, L. Thompson, D. Mueller, J. Seger

260. Real-time Detection of Picking Region of Ridge Planted Strawberries Based on YOLOv5s with a Modified Neck

Robotic strawberry harvesting requires machine vision system to have the ability to detect the presence, maturity, and location of strawberries. Strawberries, however, can easily be bruised, injured, and even damaged during robotic harvest if not picked properly because of their soft surfaces. Therefore, it is important to cut or pick the strawberry stems instead of picking the fruit directly. Additionally, real-time detection is critical for robotic strawberry harvesting to adapt to the chan... Z. He, K. Manoj, Q. Zhang, S. Kshetri

261. Real-time Gauge Wheel Load Variability on Planter with Downforce Control During Field Operation

Downforce control allows planters to maintain gauge wheel load across a range of soil resistance within a field. Downforce control is typically set for a target seed depth and either set to manually or automatically control the gauge wheel load. This technology uses load cells to actively regulate downforce on individual row units by monitoring target load on the gauge wheels. However, no studies have been conducted to evaluate the variability in gauge wheel load observed during planter opera... A. Sharda, S. Badua, D. Flippo, I. Ciampitti, T.W. Griffin

262. Realising the Potential of Agricultural Robotics and AI: The Ethical Challenges

Recent advances in AI and robotics may dramatically transform agriculture by greatly expanding the number of contexts in which the techniques of precision agriculture may be applied. Inevitably, this next agricultural revolution will generate profound ethical issues: opportunities as well as risks. Clever applications of AI and robotics may allow agriculture to be more sustainable by facilitating more precise applications of water, fertilisers, and herbicides. Robots may take some of the drud... R. Sparrow

263. Rectification of Management Zones Considering Moda and Median As a Criterion for Reclassification of Pixels

Management zones (MZ) make economically viable the application of precision agriculture techniques by dividing the production areas according to the homogeneity of its productive characteristics. The divisions are conducted through empirical techniques or cluster analysis, and, in some cases, the MZ are difficult to be delimited due to isolated cells or patches within sub-regions. The objective of this study was to apply computational techniques that provide smoothing of MZ, so as to become v... N.M. Betzek, E.G. Souza, C.L. Bazzi, K. Schenatto, A. Gavioli, M.F. Maggi

264. Response of Soybean Cultivars According to Management Zones in Southern Brazil

The positioning of soybean cultivars on fields according your environmental response is new strategy to obtain high soybean yields. The aim of this study was to investigate the agronomic response of six soybean cultivars according management zones in Southern Brazil. The study was conducted in 2013/2014 and in two fields located in Boa Vista das Missões, Rio Grande do Sul, Brazil. The experimental design was a randomized complete block in a factorial arrangement (3x6), with three manag... T.J. Amado, A.L. Santi, G.M. Corassa, M.B. Bisognin, R. Gaviraghi, J.L. Pires

265. Retrieving Crops' Quantitative Biophysical Parameters Through a Newly Developed Multispectral Sensor for UAV Platforms

Today’s intensive agricultural production needs to increase its efficiency in order to keep its profitability in the current market of decreasing prices on one hand, and to reduce the environmental impact on the other. Crop growers are starting to adopt side dressing nitrogen fertilization as part of their fertilization programs, for which they need accurate information about biomass development and nitrogen condition in the crop. This information is usually acquired through ground samp... A. Pimstein, Y. Zur, M. Le roux

266. Robot Safety Issues in Field Crops - EU Regulatory Issues and Technical Aspects

The use of robots in Precision Agriculture is becoming of great interest, but they introduce a new kind of risk in the field due to their self-acting and self-driving capability. Safety issues appear with respect to people working in the same field in human-robot collaboration (HRC) framework or to the accidental presence of humans or animals. A robot out of control may also invade other areas causing unpredictable harm and damage. Currently, the safety of highly automated agricultu... M. Canavari, P. Lattanzi, G. Vitali, L. Emmi

267. Robustness of Pigment Analysis in Tree Fruit

The non-destructive application of spectrophotometry for analyzing fruit pigments has become a promising tool in precise fruit production. Particularly, the pigment contents are interesting to the growers as they provide information on the harvest maturity and fruit quality for marketing. The absorption of chlorophyll at its Q band provides quantitative information on the chlorophyll pool of fruit. As a challenge appears the in-situ measurement at varying developmental stage of the fruit due ... M. Zude-sasse, C. Regen, J. Käthner

268. Safety and Certification Considerations for Expanding the Use of UAS in Precision Agriculture

The agricultural community is actively engaged in adopting new technologies such as unmanned aircraft systems (UAS) to help assess the condition of crops and develop appropriate treatment plans.  In the United States, agricultural use of UAS has largely been limited to small UAS, generally weighing less than 55 lb and operating within the line of sight of a remote pilot.  A variety of small UAS are being used to monitor and map crops, while only a few are being used to apply agricul... H. Verstynen, K. Hayhurst, J. Maddalon, N. Neogi

269. Scaling Up Window-based Regression for Crop-row Detection

Crop-row detection is a central element of weed detection and agricultural image processing tasks. With the increased availability of high-resolution imagery, a precise locating of crop rows is becoming practical in the sense that the necessary data are commonly available. However, conventional image processing techniques often fail to scale up to the data volumes and processing time expectations. We present an approach that computes regression lines ... A.M. Denton, G.E. Hokanson, P. Flores

270. Seed Localization System Suite with CNNs for Seed Spacing Estimation, Population Estimation and Doubles

Proper seed placement during planting is critical to achieve uniform emergence which optimizes the crop for maximum yield potential. Currently, the ideal way to determine planter performance is to manually measure plant spacing and seeding depth. However, this process is both cost- and labor-intensive and prone to human errors. Therefore, this study aimed to develop seed localization system (SLS) system to measure seed spacing and seeding depth and providing the geo-location of each planted s... A. Sharda, R. Harsha chepally

271. Selection and Utility of Uncooled Thermal Cameras for Spatial Crop Temperature Measurement Within Precision Agriculture

Since previous research used local, single-point measurements to indicate crop water stress, thermography is presented as a technique capable of measuring spatial temperatures supporting its use for monitoring crop water stress. This study investigated measurement accuracy of uncooled thermal cameras under strict environmental conditions, developed hardware and software to implement uncooled thermal cameras and quantified intrinsic properties that impact measurement accuracy and repeatability... D.L. Mangus, A. Sharda

272. Sensor Based Soil Health Assessment

Quantification and assessment of soil health involves determining how well a soil is performing its biological, chemical, and physical functions relative to its inherent potential. Due to high cost, labor requirements, and soil disturbance, traditional laboratory analyses cannot provide high resolution soil health data. Therefore, sensor-based approaches are important to facilitate cost-effective, site-specific management for soil health. In the Central Claypan Region, visible, near-infrared ... K. Veum, K. Sudduth, N. Kitchen

273. Sensor-based Nitrogen Applications Out-performed Producer-chosen Rates for Corn in On-farm Demonstrations

Optimal nitrogen fertilizer rate for corn can vary substantially within and among fields.  Current N management practices do not address this variability.  Crop reflectance sensors offer the potential to diagnose crop N need and control N application rates at a fine spatial scale.  Our objective was to evaluate the performance of sensor-based variable-rate N applications to corn, relative to constant N rates chosen by the producer.  Fifty-five replicated on-farm demonstrat... P. Scharf, K. Shannon, K. Sudduth, N. Kitchen

274. Sensor-based Technologies for Improving Water and Nitrogen Use Efficiency

 Limited reports exist on identifying the empirical relationships between plant nitrogen and water status with hyperspectral reflectance. This project is aiming to develop effective system for nitrogen and water management in wheat. Specifically: 1) To evaluate the effects of nitrogen rates and irrigation treatments on wheat plant growth and yield; 2) To develop methods to predict yield and grain protein content in varying nitrogen and water environments, and to determine the minimum nit... O.S. Walsh, K. Belmont, J. Mcclintick-chess

275. Sensor-based Variable-rate N on Corn Reduced Nitrous Oxide Emissions

More nitrogen fertilizer is applied to corn than to all other U.S. crops combined, contributing to atmospheric heat trapping when nitrous oxide is produced.  Higher nitrogen rate is well known to increase nitrous oxide emissions, and earlier N application time may increase the window during which nitrous oxide can form.  An experiment was initiated in 2012 comparing nitrogen management and drainage effects on corn yield and nitrous oxide emissions.  Two nitrogen treatments... P. Scharf

276. Shifting Fertiliser Response Zones in a Four Year, Whole-paddock Cereal Cropping Experiment.

Precision agriculture in cropping areas of dryland Australia has focused on managing within production zones. These are ideally stable, possibly soil- and topography-based areas within fields. There are many different ideas on how to delimit and implement zones, and a four year whole-field experiment, with low, medium and high treatment philosophies applied per 9m seeder/harvester width across the entire field, was established to explore how zones might best be established and used. The treat... B. Jones, T. Mcbeath, N. Wilhelm

277. Should One Phosphorus Extraction Method Be Used for VRT Phosphorus Recommendation in the Southern Great Plains?

Winter Wheat has been produced throughout the southern Great Plains for over 100 years.  In most cases this continuous production of mono-culture lower value wheat crop has led to the neglect of the soils, one such soil property is soil pH. In an area dominated by eroded soils and short term leases, Land-Grant University wheat breeders have created lines of winter wheat which are aluminum tolerant to increase production in low productive soils.  Now the fields in this region can hav... D.B. Arnall, S. Phillips, C. Penn, P. Watkins, B. Rutter, J. Warren

278. Should We Increase or Decrease the Fertilization in the Zones with the Highest Crop Productivity Potential?

Introduction. In traditional farming, fertilizers are applied homogeneously on the agricultural fields taking into account the average crop recommendation. As most fields are not homogeneous, this results in overfertilization of certain zones and underfertilization of other zones. The excess of nitrate leaches to the surface and groundwaters which causes problems with the water quality. Precision fertilizer management has been proposed to reduce these negative e... A. Tsibart, A. Postelmans, J. Dillen, A. Elsen, G. Van de ven, W. Saeys

279. Simulation of Curiosity and Exo Mars Rovers on Agriculture Terrain

Improving agricultural productivity is one of the biggest challenges Agriculture and Engineering face. A possible solution is the creation of soil databases and/or maps to apply precision agriculture techniques, aiming to produce more in the same land, using less agricultural supplies. This practice may be developed with the help of rovers applied to e.g. agricultural data collect, mapping, scouting and supply tasks. However, the rover needs to move and adapt to the terrain to obtain a real a... J.F. Archila-diaz, M. Becker

280. Site Specific Costs Concerning Machine Path Orientation

Computer algorithms have been created to simulate in advance the orientation/pattern of a machine operation on a field. Undesired impacts were obtained and quantified for these simulations, like: maneuvering and overlap of inputs in headlands; servicing of secondary units; and soil loss by water erosion. While the efforts could minimize the overall costs, they disregard the fact that these costs aren’t uniformly distributed over irregular fields. The cost of a non-productive machine pro... M. Spekken, J.P. Molin, T.L. Romanelli, M.N. Ferraz

281. Site-specific Scale Efficiency Determined by Data Envelopment Analysis of Precision Agriculture Field Data

Since its inception and acceptance as a benchmarking tool within the economics literature, data envelopment analysis (DEA) has been used primarily as a means of calculating and ranking whole-farm entities marked as decision making units (DMU) against one another.  Within this study, instead of ranking the entire farm operation against similar peers that encompass the study, individual data points from within the field are evaluated to analyze the site-specific technical efficiencies esti... J.L. Maurer, T.W. Griffin, A. Sharda

282. Small UAS Integrated Sensing Tools for Abiotic Stress Monitoring in Irrigated Pinto Beans

Precision agriculture is a practical approach to maximize crop yield with optimal use of rapidly depleting natural resources. Availability of specific and high resolution crop data at critical growth stages is a key for real-time data driven decision support for precision agriculture management during the production season. The goal of this study was to evaluate the feasibility of using small unmanned aerial system (UAS) integrated remote sensing tools to monitor the abiotic stress of eight i... L. Khot, J. Zhou, R. Boydston, P.N. Miklas, L. Porter

283. Smart Agriculture: A Futuristic Vision of Application of the Internet of Things (IoT) in Brazilian Agriculture

With the economy based on agribusiness, Brazil is an important representative on the world stage in agricultural production, either in terms of quantity or cultivated diversity due to a scenario with vast arable land and favorable climate. There are many crops that are adapteble to soils of the country. Despite the global representation, it is known that the Brazilian agricultural production does not yet have a modern agriculture by restricting the use of new technologies to farmers with bett... C.L. Bazzi, R. Araujo, E.G. Souza, K. Schenatto, A. Gavioli, N.M. Betzek

284. Smart Food Oases: Development of a Distributed Point-to-point Urban Food Ecosystem in Food Desert Areas

Urban agriculture has been getting much attention in the past decade as a solution to overcome food insecurity and accessibility of food for urban residents and to have better green environments in cities. Urban agriculture is expected to provide better nutrients to residents, reduce transportation and environmental costs, and help urban dwellers access food efficiently. The present study is to build a collaborative ecosystem among urban growers/producers and create bridges from these farmers... J. Lee, S. Song, S. Oh, K. Krishnaswamy, C. Sun, Y. Adu-gyamfi

285. SmartAgriHubs FIE20 - Groundwater and Meteo Sensors and Earth Observation for Precision Agriculture

The solution developed under the SmartAgriHubs project in the scope of the Flagship Innovation Experiment FIE20 Groundwater and meteo sensors is an expert system to support farmers in decision-making process and planning process of field interventions. This FIE20 solution integrates various data sources and different analytical processes in a complete system and provides users an easy-to-use web map application as a common user interface. The FIE20 system integrates components developed durin... K. Charvat, M. Kepka, R. Berzins, F. Zadrazil, D. Langovskis, M. Musil

286. SMARTfarm Learning Hub: Next Generation Precision Agriculture Technologies for Agricultural Education

The industry demands on higher education agricultural students are rapidly changing. New precision agriculture technologies are revolutionizing the farming industry but the education sector is failing to keep pace. This paper reports on the development of a key resource, the SMARTfarm Learning Hub (www.smartfarmhub.com) that will increase the skill base of higher education students using a range of new agricultural technologies and innovations. The Hub is a world first; it links real industry... M. Trotter, S. Gregory, T. Trotter, T. Acuna, D. Swain, W. Fasso, J. Roberts, A. Zikan, A. Cosby

287. Snap-shot Hyperspectral Camera for Potassium Prediction of Peach Trees Using Multivariate Analysis

Hyperspectral imaging (HSI) is an emerging technology being utilized in agriculture. This system could be used to monitor the overall health of plants or pest disease detection. As sensing technology advances, measuring nutrient levels and disease detection also progresses. This study aimed to predict the levels of potassium (K) content in peach leaves with the new snapshot hyperspectral camera. The study was conducted at the Clemson University Musser Fruit Research Farm (Seneca, SC, USA, 34.... J.J. Maja, M. Abenina, M. Cutulle, J. Melgar, H. Liu

288. Soil and Crop Factors to Site-specific Nitrogen Management on Sugarcane Fields

Nitrogen (N) is one of the most widely used fertilizers in crops and the most harmful to the environment. The increase fertilizers consumption, mainly N sources (one of the most widely fertilizer used in sugarcane fields), is one of the main factors underlying the sustainability of the entire production process. Currently, N recommendations in sugarcane are based only on the expected yield. However, there is little agronomic support for nitrogen (N) recommendations based on expected yield, de... G.M. Sanches, R. Otto, F.R. Pereira

289. Soil Attributes Estimation Based on Diffuse Reflectance Spectroscopy and Topographic Variability

The local management of crop areas, which is the basic concept of precision agriculture, is essential for increasing crop yield. In this context, diffuse reflectance spectroscopy (DRS) and digital elevation modelling (DEM) appears as an important technique for determining soil properties, on an adequate scale to agricultural management, enabling faster and less costly evaluations in soil studies. The objective of this work was to evaluate the use of DRS together with topographic parameters fo... J.V. fontenelli, L.R. Amaral, J.M. Demattê, P.G. Magalhães, G. Sanches

290. Soil Moisture Variability on Golf Course Fairways Across the United States: an Opportunity for Water Conservation with Precision Irrigation

Fairways account for an average of 11.3 irrigated hectares on each of the 15,000+ golf courses in the US. Annual median water use per hectare on fairways is between ~2,800,000 and 14,000,000 liters, depending on the region. Conventional fairway irrigation relies on visual observation of the turfgrass, followed by secondary considerations of short-term weather forecasts, which oftentimes lead to “blanket” applications to the entire area. The concept of precision irrigation is a str... C. Straw, C. Bolton, J. Young, R. Hejl, J. Friell, E. Watkins

291. Soil Variability Mapping with Airborne Gamma-ray Spectrometry and Magnetics

The knowledge of spatial distribution of agricultural soils physical and chemical properties is critical for profitable and sustainable crop and food production. The collection of soil data presents however obvious problems arising from sampling a dense, opaque and very heterogeneous medium. Conventional methods consisting of ground-based grid survey are laborious, expensive and lack appropriate spatial resolution to allow best farm management decision. Over the past 50 years, airborne geophy... L. Ameglio, E. Stettler, D. Eberle

292. Soil, Landscape, and Weather Affect Spatial Distributions of Corn Population and Yield

As more planters are equipped with the technology to vary seeding rate, evaluation of the within-field relationships between plant stand density (or population) and yield is needed. One aspect of this evaluation is determining how stand loss and yield are related to soil and landscape factors, and how these relationships vary with different weather conditions. Therefore, this research examined nine site-years of mapped corn yield, harvest population, and soil and landscape data obtained for a... K.A. Sudduth, N.R. Kitchen, L.S. Conway

293. SoilView, LLC

SoilView is an independent provider specializing in precision sampling and field services for agriculture retail, research groups, universities, and the evolving carbon market. Our areas of expertise include sampling for soil nutrients, carbon sampling, soil health and biology, and custom sampling processes for field research. We aim to remove the burden of sample collection for our customers by expertly managing all steps from field collection to final data delivery.   Our... R. Shorkey

294. Sources of Information to Delineate Management Zones for Cotton

Cotton in Brazil is an input-intensive crop. Due to its cultivation in large fields, the spatial variability takes an important role in the management actions. Yield maps are a prime information to guide site-specific practices including delineation of management zones (MZ), but its adoption still faces big challenges. Other information such as historical satellite imagery or soil electrical conductivity might help delineating MZ as well as predicting crop performance. The objective of this w... R.G. Trevisan, M.T. Eitelwein, A.F. Colaço, J.P. Molin

295. Soybean Variable Rate Planting Simulator Using Economic Scenarios

Soybean seed costs have increased considerably over the past 15 years, causing a growing interest in variable rate planting (VRP) to optimize seeding rates within soybean fields. We developed a publicly available online Soybean Variable Rate Planting Simulator (http://analytics.iasoybeans.com/cool-apps/SoybeanVRPsimulator/) tool to help farmers, agronomists, and other agriculturalists to understand the essential prerequisite agronomic or economic conditions necessary for profitable VRP implem... B. Mcarthor , A. Prestholt, P. Kyveryga

296. Spatial Analysis of Soil Moisture and Turfgrass Health to Determine Zones for Spatially Variable Irrigation Management

The Western United States is currently experiencing a “Mega Drought”. This makes efficient water use more important than ever. Turfgrass is a major vegetation type in urban areas and performs many ecosystem services such as cooling through evapotranspiration, fixing carbon from the atmosphere and reducing wild-fire risk. There are now more acres of irrigated turfgrass (>40 million) in the USA than irrigated corn, wheat and fruit trees combined (Milesi et al., 2005). It has been... R. Kerry, S. Shumate, B. Ingram, K. Hammond, D. Gunther, R. Jensen, S. Schill, N. Hansen, B. Hopkins

297. Spatial and Temporal Factors Impacting Incremental Corn Nitrogen Fertilier Use Efficiency

Current tools for making crop N fertilizer recommendations are primarily based on plot and field studies that relate the recommendation to the economic optional N rate (EONR).  Some tools rely entirely on localized EONR (e.g., MRTN). In recent years, tools have been developed or adapted to  account for within-field variation in crop N need or variable within season factors. Separately, attention continues to elevate for how N fertilizer recommendations might account for environmenta... N.R. Kitchen, C.J. Ransom, J.S. Schepters, J.L. Hatfield, R. Massey

298. Spatial and Temporal Variation of Soil Nitrogen Within Winter Wheat Growth Season

This study aims to explore the spatial and temporal variation characteristics of soil ammonium nitrogen and nitrate nitrogen within winter wheat growth season. A nitrogen-rich strip fertilizer experiment with eight different treatments was conducted in 2014. Soil nitrogen samples of 20-30cm depth near wheat root were collected by in-situ Macro Rhizon soil solution collector then soil ammonium nitrogen and nitrate nitrogen content determined by SEAL AutoAnalyzer3 instrument. Classical statisti... X. Song, G. Yang, Y. Ma, R. Wang, C. Yang

299. Spatial Variability and Correlations Between Soil Attributes and Productivity of Green Corn Crop

In Brazil, the progressive development in the cultivation of the corn for consumption in the green stadium stands by the relevant socio-economic role that this related to multiple applications, the attractive market price and continuous demand for the product in nature. Therefore, this study was to analyze the correlations and spatial variability of the productivity of the culture of the green corn in winter, in alluvial soil of the type Cambisols eutrophic in the amount areas and Hydromorphi... W.J. Souza, S.H. Benez, P.H. Nakazawa, A.J. Santana neto, L.C. Citon, V.S. Akune

300. Spatial Variability of Canopy Volume in a Commercial Citrus Grove

LiDAR (light detection and ranging) sensors have shown good potential to estimate canopy volume and guide variable rate applications in different fruit crops. Oranges are a major crop in Brazil; however the spatial variability of geometrical parameters remains still unknown in large commercial groves, as well as the potential benefit of sensor guided variable rate applications. Thus, the objective of this work was to characterize the spatial variability of the canopy volume in a commercial or... A.F. Colaço, J.P. Molin, R.G. Trevisan, J.R. Rosell-polo, A. Escolà

301. Spatial Variability of Soil Nutrients and Precision Nutrient Management for Targeted Yield Levels of Groundnut (Arachis Hypogaea L.)

A field study was conducted during rabi / summer 2014-15 to know the spatial variability and precision nutrient management practices on targeted yield levels of groundnut. The experimental field has been delineated into 36 grids of 9 m x 9 m using geospatial technology. Soil samples from 0-15 cm were collected and analysed. Spatial variability exists for available nitrogen, phosphorous and potassium and they varied from 99 to 197 kg N, 12.1 to 64.0 kg P2O5 and 1... H. D.c, S. Dr., N. Dr., M. Giriyappa, S. T

302. Spatial Variability of Soil Nutrients and Site Specific Nutrient Management in Maize

A field study was conducted during kharif 2014 and rabi 2014-15 at Southern Transition Zone of Karnataka under the jurisdiction of University of Agricultural Sciences, GKVK, Bangalore, India to know the spatial variability for available nutrient content in cultivator’s field and effect of site specific nutrient management in maize. The farmer’s fields have been delineated with each grid size of 50 m x 50 m using geospatial technology. Soil samples from 0-15 cm we... S. T, M. Giriyappa, D. Hanumanthappa, N. Dr., S. K, S. Yogananda, A. Kiran

303. Spatial-temporal Evaluation of Plant Phenotypic Traits Via Imagery Collected by Unmanned Aerial Systems (UAS)

Unmanned aerial systems (UAS) and a stereovision approach were implemented to generate a 3D reconstruction of the top of the canopy. The 3D reconstruction or CSM (crop surface model) was utilized to evaluate biophysical parameters for both spatial- and temporal-scales. The main goal of the project was to evaluate sUAVs technology to assist plant height and biomass estimation. The main outcome of this process was to utilize CSMs to gain insights in the spatial-temporal dynamic of plants within... S. Varela, G. Balboa, V. Prasad, T. Griffin, I. Ciampitti, A. Ferguson

304. Spatial-temporal Evaluation of Plant Phenotypic Traits Via Imagery Collected by Unmanned Aerial Systems (UAS)

Unmanned aerial systems (UAS) and a stereovision approach were implemented to generate a 3D reconstruction of the top of the canopy. The 3D reconstruction or CSM (crop surface model) was utilized to evaluate biophysical parameters for both spatial- and temporal-scales. The main goal of the project was to evaluate sUAVs technology to assist plant height and biomass estimation. The main outcome of this process was to utilize CSMs to gain insights in the spatial-temporal dynamic of plants within... S. Varela, G. Balboa, V. Prasad, T. Griffin, I. Ciampitti, A. Ferguson

305. Spatially Explicit Prediction of Soil Nutrients and Characteristics in Corn Fields Using Soil Electrical Conductivity Data and Terrain Attributes

Site specific nutrient management (SSNM) in corn production environments can increase nutrient use efficiency and reduce gaseous and leaching losses. To implement SSNM plans, farmers need methods to monitor and map the spatial and temporal trends of soil nutrients. High resolution electrical conductivity (EC) mapping is becoming more available and affordable. The hypothesis for this study is that EC of the soil, in conjunction with detailed terrain attributes, can be used to map soil nutrient... S. Sela, N. Graff, K. Mizuta, Y. Miao

306. Spectral Vegetation Indices to Quantify In-field Soil Moisture Variability

Agriculture is the largest consumer of water globally. As pressure on available water resources increases, the need to exploit technology in order to produce more food with less water becomes crucial. The technological hardware requisite for precise water delivery methods such as variable rate irrigation is commercially available. Despite that, techniques to formulate a timely, accurate prescription for those systems are inadequate. Spectral vegetation indices, especially Normalized Differenc... J. Siegfried, R. Khosla, L. Longchamps

307. Spotweeds: a Multiclass UASs Acquired Weed Image Dataset to Facilitate Site-specific Aerial Spraying Application Using Deep Learning

Unmanned aerial systems (UASs)-based spot spraying application is considered a boon in Precision Agriculture (PA). Because of spot spraying, the amount of herbicide usage has reduced significantly resulting in less water contamination or crop plant injury. In the last demi-decade, Deep Learning (DL) has displayed tremendous potential to accomplish the task of identifying weeds for spot spraying application. Also, most of the ground-based weed management technologies have relied on DL techniqu... N. Rai, Y. Zhang, J. Quanbeck, A. Christensen, X. Sun

308. Springer

Springer is a leading global scientific, technical and medical publisher, providing researchers in academia, scientific institutions and corporate R&D departments with quality content via innovative information products and services. Springer is part of Springer Nature, one of the world’s leading global research, educational and professional publishers. ...

309. Static and Kinematic Tests for Determining Spreaders Effective Width

Spinner box spreaders are intensively used in Brazil for variable rate applications of lime in agriculture. The control of that operation is a challenging issue because of the complexity involved on the interactions between product and machine. Quantification of transverse distribution of solids thrown from the spinner box spreaders involves dynamic conditions tests where the material deposited on trays is evaluated along the pass of the machinery. There is a need of alternative testing metho... L. Maldaner, T. Canata, J. Molin, B. Passalaqua, J.J. Quirós

310. Statistical Variability of Crop Yield, Soil Test N and P Within and Between Producer’s Fields

Soil test N and P significantly affect crop production in the Canadian Prairies, but vary considerably within and between producer's fields.  This study describes the variability of crop yield, soil test N and P within and between producer's fields in the context of variable fertilizer rates.  Yield, terrain attribute, soil test N and P data were collected for 10 fields in Alberta, Saskatchewan and Manitoba Canada in 2014 and 2015.  The influence of ... A. Moulin, M. Khakbazan

311. Steering Strategy Selection of a Robotic Platform for Bin Management in Orchard Environment

For a robotic bin-managing system working in an orchard environment, especially in modern narrow row spaced orchards in the Pacific Northwest (PNW) region of the U.S., path planning is an essential function to achieve highly efficient bin management. Unlike path planning for a car-like vehicle in an open field, path planning for a four-wheel-independent-steered (4WIS) robotic bin-managing platform in orchard environment is much more challenging due to the very confined working space between t... Y. Ye, L. He, Q. Zhang

312. Stem Characteristics and Local Environmental Variables for Assessment of Alfalfa Winter Survival

Alfalfa (Medicago sativa L.) is considered the queen of forage due to its high yield, nutritional qualities, and capacity to sequester carbon. However, there are issues with its relatively low persistency and winter survival as compared to grass. Winter survival in alfalfa is affected by diverse factors, including the environment (e.g., snow cover, hardiness period, etc.) and management (e.g., cutting timing, manure application, etc.). Alfalfa's poor winter survival reduces the number of ... M. Saifuzzaman, V. Adamchuk, M. Leduc

313. Strawberry Pest Detection Using Deep Learning and Automatic Imaging System

Strawberry growers need to monitor pests to determine the options for pest management to reduce damage to yield and quality.  However, manually counting strawberry pests using a hand lens is time-consuming and biased by the observer. Therefore, an automated rapid pest scouting method in the strawberry field can save time and improve counting consistency. This study utilized six cameras to take images of the strawberry leaf. Due to the relatively small size of the strawberry pest, six cam... C. Zhou, W. Lee, A. Pourreza, J.K. Schueller, O.E. Liburd, Y. Ampatzidis, G. Zuniga-ramirez

314. Studies on Soil Spatial Variability and Its Impact on Cane Yield Under Precision Nutrient Management System

In present investigation an attempt was made to quantify the soil variability of 30 grids of 10 m x 10 m dimension at research farm of Nandi Sahakari Sakkare Karkhane (NSSK), Krishna Nagar, District. Bijapur. Each grid (10 m x 10 m) showed variation with available nitrogen as low as 140 kg ha-1 to as high as 245 kg/ha with a range of 105 kg/ha, phosphorus as low as 53 kg P2O5 ha-1 and as high as 89.3 kg P2O5 ha-1 wit... M. Kumar r, M. Kumar r, D. Nadagouda

315. Suitability of ML Algorithms to Predict Wild Blueberry Harvesting Losses

The production of wild blueberries (Vaccinium angustifolium.) is contributing 112.2 million dollars to the Canada’s revenue which can be further increased through controlling harvest losses. A precise prediction of blueberry harvesting losses is necessary to mitigate such losses. In this study, the performance of three machine learning (ML) models was evaluated to predict the wild blueberry harvest losses on the ground. The data from four commercial fields in Atlantic Canada we... H. Khan, T. Esau, A. Farooque, F. Abbas

316. Sun Effect on the Estimation of Wheat Ear Density by Deep Learning

Ear density is one of the yield components of wheat and therefore a variable of high agronomic interest. Its traditional measurement necessitates laborious human observations in the field or destructive sampling. In the recent years, deep learning based on RGB images has been identified as a low-cost, robust and high-throughput alternative to measure this variable. However, most of the studies were limited to the computer challenge of counting the ears in the images, without aiming to convert... S. Dandrifosse, E. Ennadifi, A. Carlier, B. Gosselin, B. Dumont, B. Mercatoris

317. Supervised Feature Selection and Clustering for Equine Activity Recognition

In this paper we introduce a novel supervised algorithm for equine activity recognition based on accelerometer data. By combining an approach of calculating a wide variety of time-series features with a supervised feature significance test we can obtain the best suited features using just 5 labeled samples per class and without requiring any expert domain knowledge. By using a simple cluster assignment algorithm with these obtained features, we get a classification algorithm that achieves a m... T. De waele, D. Peralta, A. Shahid, E. De poorter

318. Surplus Science and a Non-linear Model for the Development of Precision Agriculture Technology

The advent of ‘big data technologies’ such as hyperspectral imaging means that Precision Agriculture (PA) developers now have access to superabundant and highly  heterogeneous data.  The authors explore the limitations of the classic science model in this situation and propose a new non-linear process that is not based on the premise of controlled data scarcity. The study followed a science team tasked with developing highly advanced hyperspectral techniques for a &lsquo... M.Z. Cushnahan, I.J. Yule, B.A. Wood, R. Wilson

319. Survey of Pesticide Application Practices and Technologies in Georgia Agricultural Crops

Georgia is a leading producer of numerous crops including cotton, peanut, blueberries, pecans, bell peppers, cabbage, watermelons, and peaches in the United States. Pesticide applications are critical for the successful production of these crops. Pesticide regulations and application technologies are changing rapidly due to growing concerns around off-target movement and increased focus on improving the efficiency and efficacy of pesticide applications. In order to provide suitable ... S.S. Virk, E.P. Prostko

320. Survey Shows Specialty and Commodity Crop Retailers Use Precision Agriculture Differently

The 2021 CropLife-Purdue Survey of precision agricultural practices by US agricultural input dealers serving the American grain and oilseed sector shows that most of them use GPS guidance and related technologies like sprayer boom control, most provide variable rate fertilizer services, and the majority say that fertilizer decisions are influenced by grower data. In contrast, dealers serving horticultural and specialty crop farms indicate comparatively modest adoption of many precision agricu... B.J. Erickson, J. Lowenberg-deboer

321. Synchronized Windrow Intelligent Perception System (SWIPE)

The practice of bale production, in forage agriculture, involves various machines that include tractors, tedders, rakers, and balers. As part of the baling process, silage material is placed in windrows, linearly raked mounds, to drive over with a baler for easy collection into bales. Traditionally, a baler is an implement that is attached on the back of a tractor to generate bales of a specific shape. Forage agricultural equipment manufacturers have recently released an operator driven, self... E.M. Dupont, P.R. Kolar

322. Teaching Mathematics Towards Precision Agriculture Through Data Analysis and Models

Precision agriculture is used in a wide variety of field operations and agricultural practices that affect our daily lives. Many fields of agriculture are increasingly adopting equipment automation, robotics, and machine learning techniques. These all lead to recognize that data collection and exploitation is a valuable tool assisting in real-time farming and livestock decisions. Thus, the immediate need to empower students in Agriculture Sciences with mathematical tools using data analysis i... R. Sviercoski

323. Technology Support for Game Monitoring As a Tool for Damages Reduction of Field Crops

Wild boars (Sus scrofa) are increasingly becoming the main cause of field crops damage in Czech Republic and central Europe area. There are many reasons why wild boars population is growing. The major reason is most likely change in the composition of field crops. In some areas in particular there is focus on oilseed rape and maize, for which there are also recorded the biggest losses. One of the key discussion topics is the issue of estimation of animal quantities and its traceabil... J. Jarolimek, M. Stočes, M. Ulman, J. Vaněk

324. Temperature Effect on Wild Blueberry Fruit Quality During Mechanical Harvest

Mechanical harvesters, utilizing a range of technologies, have been developed for timely operations and remain the most cost-effective means of picking the wild blueberry crop. Approximately 95% of wild blueberries in Atlantic Canada are immediately frozen and processed, while only a small percentage is sold in the fresh market. However, the producers can benefit by increasing the value of their harvested crop through fresh market sales. The objective of this study was to determine the optimu... T.J. Esau, A.A. Farooque, F. Abbas

325. The Agriculture Operations Center: the Answer to “What If...”

Can’t farming be simpler?  Yes…with an Agriculture Operations Center -- we call it the AGOC, and it’s the next big step for precision agriculture.  Leveraging decades of lessons from the US Air Force, the AGOC provides the ability to schedule, execute, collect, consolidate, and distribute all the support a farmer needs from satellites, piloted aircraft, unmanned aircraft, sensing, modeling, and analysis…all packaged into “one stop shopping.”&nbs... M. Zamzow

326. The Daily Erosion Project - High Resolution, Daily Estimates of Runoff, Detachment, Erosion, and Soil Moisture

Runoff and sediment transport from agricultural uplands are substantial threats to water quality and sustained crop production. Farmers, conservationists, and policy makers must understand how landforms, soil types, farming practices, and rainfall affect soil erosion and runoff in order to improve management of soil and water resources. A system was designed and implemented a decade ago to inventory precipitation, runoff, and soil erosion across the state of Iowa, United States. That system u... B.K. Gelder, R. Cruse, D. James, D. Herzmann, C. Sandoval-green, T. Sklenar

327. The Device of Air-assisted Side Deep Precision Fertilization for Rice Transplanter

Rice is the most important crop in China, which has the largest plant area. Fertilization is an important process of rice production, which directly affects the yield of crops, reasonable and effective use of chemical fertilizer can improve the yield of crops. At present, the mechanization level of rice fertilization is very low in China, and the artificial fertilization requires a large amount of fertilizer which caused the uneven distribution. The rice side deep fertilizing is an ideal way ... C. Zhao, G. Wu, Z. Meng, W. Fu, L. Li, X. Wei

328. The Effect of Slope Gradient on the Modelling of Soil Carbon Dioxide Emissions in Different Tillage Systems at a Farm Using Precision Tillage Technology in Hungary

Understanding the role of natural drivers in greenhouse gas (GHG) emitted by agricultural soils is crucial because it contributes to selecting and adapting acceptable eco-friendly farming practices. Hence, Syngenta Ltd. collaborating with researchers, aimed to investigate the effect of two tillage treatments, conventional-tillage (CT) and minimum-tillage (MT) on soil carbon dioxide (CO2) emissions. The research field is in Hungary. Soil columns were derived from different tillage s... I.M. Kulmany, S. Benke, L. Bede, R. Pecze, V. Vona

329. The ISO Strategic Advisory Group for Smart Farming: a Multi-pronged Opportunity for Greater Global Interoperability

Agriculture is becoming increasingly complex and producers must secure their profitability, sustainability, and freedom to operate under a progressively more challenging set of constraints such as climate change, regulatory pressure, changes in consumer preferences, increasing cost of inputs, and commodity price volatility. We have not, however, yet reached the level of data interoperability required for a truly "smart" farming that can tackle the aforementioned probl... R. Ferreyra, J. Lehmann

330. The Methods and Applications of Artificial Intelligence Used in the Technologies of Precision Agriculture

The methods and applications of artificial intelligence more and more are linking with technologies of precision agriculture. The classical and modern approaches to artificial intelligence used for problem solving in the technologies of precision agriculture. Searching methods include uninformed and informed search methods which is better way to achieve optimality. Expert systems are typical classical approaches to artificial intelligence and they can be applied for problem solutions. Decisio... A. Gailums

331. The New Digital Soil Map of Sweden -Derived for Free Use in Precision Agriculture

The Digital Soil Map of Sweden (DSMS) was finalized in 2015. The present paper describes the mapping strategy, the estimated uncertainty of the primary map layers and its potential use in precision agriculture. The DSMS is a geodatabase with information on the topsoil of the arable land in Sweden. The spatial resolution is 50 m × 50 m and it covers > 90% of the arable land of the country (~2.5 million ha). Non-agriculture land and areas with organic soil are excluded. Access to a num... K. Piikki, M. Söderström

332. The Use of Spatial and Temporal Measures to Enhance the Sensitivity of Satellite-based Spectral Vegetation Indices to (Water) Stress in Maize Fields

Climate change and water scarcity are reducing the available irrigation water for agriculture thus turning it into a limited resource. Today calculating and estimating crop water requirements are achieved through the ETc FAO-56 model where the effect of climate on crop water requirement is determined through the water evaporation from the soil and plant (ETref), and a calendar crop coefficient (Kc). Models t... Y. Goldwasser, V. Alchanati, E. Goldshtein, Y. Cohen, A. Gips, I. Nadav

333. Time Series Analysis of Vegetation Dynamics and Burn Scar Mapping at Smoky Hill Air National Guard Range, Kansas Using Moderate Resolution Satellite Imagery

Military installments are import assets for the proper training of armed forces. To ensure the continued viability of the training grounds, management practices need to be implemented to sustain the necessary environmental conditions for safe and effective training. This analysis uses satellite imagery over time to gain insight into vegetation conditions over a large military installment. MODIS imagery was collected multiple times a year for 11 years at Smoky Hill Air National Guard Range (Sm... E. Williams

334. Time Series Study of Soybean Response Based on Adjusted Green Red Index

Four time-lapse cameras, Bushnell Nature View HD Camera (Bushnell, Overland Park, KS) were installed in a soybean field to track the response of soybean plants to solar radiation, air temperature, relative humidity, soil surface temperature, and soil temperature at 5-cm depth. The purpose was to confirm if visible spectroscopy can provide useful data for tracking the condition of crops and, if so, whether game and trail time-lapse cameras can serve as reliable crop sensing and monitoring devi... P.A. Larbi, S. Green

335. Toward Geopolitical-Context-Enabled Interoperability in Precision Agriculture: AgGateway's SPADE, PAIL, WAVE, CART and ADAPT

AgGateway is a nonprofit consortium of 240+ businesses working to promote, enable and expand eAgriculture. It provides a non-competitive collaborative environment, transparent funding and governance models, and anti-trust and intellectual property policies that guide and protect members’ contributions and implementations. AgGateway primarily focuses on implementing existing standards and collaborating with other organizations to extend them when necessary. In 2010 AgGateway id... R. Ferreyra, D.B. Applegate, A.W. Berger, D.T. Berne, B.E. Craker, D.G. Daggett, A. Gowler, R.J. Bullock, S.C. Haringx, C. Hillyer, T. Howatt, B.K. Nef, S.T. Rhea, J.M. Russo, S.T. Nieman, P. Sanders, J.A. Wilson, J.W. Wilson, J.W. Tevis, M.W. Stelford, T.W. Shearouse, E.D. Schultz, L. Reddy

336. Toward Smart Soybean Variety Selection Using UAV-based Imagery and Machine Learning

The efficiency of crop breeding programs is evaluated by the genetic gain of a primary trait of interest, e.g., yield and resilience to stress, achieved in one year through artificial selection of advanced breeding materials. Conventional breeding programs select superior genotypes using the primary trait (yield) based on combine harvesters, which is labor-intensive and often unfeasible for single-row progeny trials due to their large population, complex genetic behavior, and high genotype-en... J. Zhou, J. Zhou

337. Towards Calibrated Vegetation Indices from UAS-derived Orthomosaics

Crop advisors and farmers increasingly use drone data as part of their decision making. However, the vast majority of UAS-based vegetation mapping services support only the calculation of a relative NDVI derived from compressed JPEG pixel values and do not include the possibility to include more complex aspects like soil correction. In our ICPA12 contribution, we demonstrated the effects and consequences of the above shortcomings. Here, we present the stepwise development of a solution to ens... K. Pauly

338. Towards Data-intensive, More Sustainable Farming: Advances in Predicting Crop Growth and Use of Variable Rate Technology in Arable Crops in the Netherlands

Precision farming (PF) will contribute to more sustainable agriculture and the global challenge of producing ‘More with less’. It is based on the farm management concept of observing, measuring and responding to inter- and intra-field variability in crops. Computers enabled the use of Farm Management Information Systems (FMIS) and farm and field specific Decision Support Systems (DSS) since mid-1980s. GIS and GNSS allowed since ca. 2000 geo-referencing of data and controlled traff... C. Kempenaar, F. Van evert, T. Been, C. Kocks, K. Westerdijk, S. Nysten

339. Towards Precision Microbiology

In the recent years, the use of organic matter (OM) and microorganisms is increasing beyond organic agriculture, into conventional horticultural systems, in order to achieve high yields and quality through a more sustainable soil management. Thus, Integrated Nutrient Management (INM), that includes the use of diagnostic tools, high quality OM, microbial inoculants, highly-efficient fertilizer, and site-specific management in gaining space in intensive production systems. Precision m... V. Gutiérrez, R. Ortega

340. Translating Data into Knowledge - Precision Agriculture Database in a Sugarcane Production.

The advent of Information Technology in agriculture, surveying and data collection became a simple task, starting the era of "Big Data" in agricultural production. Currently, a large volume of data and information associated with the plant, soil and climate are collected quick and easily. These factors influence productivity, operating costs, investments and environment impacts. However, a major challenge for this area is the transformation of data and in... G.M. Sanches, O.T. Kolln, H.C. Franco, P.S. Magalhaes, D.G. Duft

341. UAV-based Crop Scouting for Precision Nutrient Management

Precision agriculture – is one of the most substantial markets for the Unmanned Aerial Vehicles (UAVs). Mounted on the UAVs, sensors and cameras enable rapid screening of large numbers of experimental plots to identify crop growth habits that contribute to final yield and quality in a variety of environments. Wheat is one of the Idaho’s most important cereal crops grown in 42 of 44 Idaho counties. We are working on establishing a UAV-based methodology for in-season prediction of w... O.S. Walsh, K. Belmont, J. Mcclintick-chess, J. Marshall, C. Jackson, C. Thompson, K. Swoboda

342. UAV-based Hyperspectral Monitoring of Peach Trees As Affected by Silicon Applications and Water Stress Status

Previous research has shown that the application of reduced doses of Silicon (Si) improves crop tolerance to water stress, which is common in commercial young peach trees because irrigation is not usually applied during their first two years. In this study, aerial images were used to monitor the impact of different Si and water treatments on the hyperspectral response of peach trees. An experiment with 60 young (under 1 year old) peach trees located at the Musser Fruit Research Center (Seneca... J. Peña, J. Melgar, A. De castro, J. Maja, K. Nascimento-silva

343. Understanding Complex Soil Variability: the Application of Archaeological Knowledge to Precision Agriculture Systems in the UK.

As higher resolution datasets have become more available and more accessible within commercial agriculture, there has been an increasing expectation that more data will bring more answers to questions surrounding soil, crop and yield variability. When this does not happen, trust and confidence in data can be lost, affecting the uptake and use of precision agriculture. This research presents a novel approach for understanding complex soil variability at a variety of different scales.... H. Webber

344. Use of Crop Canopy Reflectance Sensor in Management of Nitrogen Fertilization in Sugarcane in Brazil

Given the difficulty to determine N status in soil testing and lack of crop parameters to recommend N for sugarcane in Brazil raise the necessity of identify new methods to find crop requirement to improve the N use efficiency. Crop canopy sensor, such as those used to measure indirectly chlorophyll content as N status indicator, can be used to monitor crop nutritional demand. The objective of this experiment was to assess the nutritional status of the sugarcane fertilized with different nitr... S.G. Castro, G.M. Sanches, G.M. Cardoso, A.E. Silva, H.C. Franco, P.S. Magalhães

345. Use of MLP Neural Networks for Sucrose Yield Prediction in Sugarbeet

INTRODUCTION Sugar beet is one of the more technified agro industries in Spain. In the last years, it has leaded as well the digital transformation with the objective of maintaining sugar beet competitivity both national and internationally. Among other lines, very high potential has been identified in determining the sucrose content using a combination of Artificial Intelligence and Remote Sensing. This work presents the conclusions of an extensive data acquisition task, creation o... M. Cabrera dengra, C. Ferraz pueyo, V. Pajuelo madrigal, L. Moreno heras, G. Inunciaga leston, R. Fortes

346. Use of Precision Technologies to Conduct Successful Within-field, On-farm Trials

Performing randomized replicated trials in row crop field environments has the potential to increase crop production in environmentally sustainable ways.  Successful implementation requires an understanding of implement capabilities and sources of potential systematic error, including operator error.  Equipment capabilities can be thought of as a series of several critical “links in a chain,” each with implications that propagate downstream.   We will... M. Stelford, A. Krmenec

347. Use of Remotely Measured Potato Canopy Characteristics As Indirect Yield Estimators

Prediction of potato yield before harvest is important for making agronomic and marketing decisions. Active optical sensors (AOS) are rarely used together with other hand-held instruments for monitoring potato growth, including yield prediction. The aim of the research was to determine the relationship between manually and remotely measured potato crop characteristics throughout the growing season and yield in commercial potato fields. Objective was also to identify crop characteristics that ... S.M. Samborski, J. Szatylowicz, T. Gnatowski, R. Leszczyńska, M. Thornton, O. Walsh

348. Use of Satellite Data to Improve Damage Assessment Process for Agricultural Insurance Scheme in Indonesia

Goal is to develop new method utilizing satellite data for assessment of damage in paddy field which can contribute toward substantial reduction of the damage assessment time and costs in framework of agricultural insurance in Indonesia. For the damage assessment, estimation of yield in each paddy plot is a key, so the research on the estimation of rice yield was carried out using satellite data which was acquired in harvesting season. Multiple linear regression analysis was conducted for the... C. Hongo, C. Ogasawara, E. Tamura, G. Sigit

349. Use of the Active Sensor Optrx to Measure Canopy Changes to Evaluate Foliar Treatments and to Identify Soil Quality in Table Grape

Table Grape (Vitis vinifera L.) is the main exporting horticultural crop in Chile, with the country being one of the top exporters at the world level. Commonly, grape producers perform trials of different commercial products which are not evaluated in an objective way. On the other hand they do not have the tools to easily identify areas within the field that may have some limiting factor. The use of active ground sensors that pass under the canopy several times during the season ma... R.A. Ortega, M.M. Martinez, H.P. Poblete

350. Use of Unmanned Aerial Vehicles to Inform Herbicide Drift Analysis

A primary advantage of unmanned aerial vehicle-based imaging systems is responsiveness.  Herbicide drift events require prompt attention from a flexible collection system, making unmanned aerial vehicles a good option for drift analysis.  In April 2015, a drift event was documented on a Mississippi farm.  A combination of corn and rice fields exhibited symptomology consist with non-target injury from a tank mix of glyphosate and clethodim.  An interesting observation was t... J.M. Prince czarnecki, D.B. Reynolds, R.J. Moorhead

351. Use of Watering Hole Data As a Decision Support Tool for the Management of a Grazing Herd of Cattle

Establish grazing practices would improve the welfare of the animals, allowing them to express more natural behaviours. However, free-range reduces the ability to monitor the animals, thus increase the time needed to intervene in the event of a health problem. To ease the adoption of grazing, farmer would benefit from autonomously collected indicators at pasture that identify abnormal behaviours possibly related to a health problem in a bovine. These indicators must be individualised and coll... J. Plum, B. Quoitin, I. Dufrasne, S. Mahmoudi, F. Lebeau

352. Using On-the-Go Soil Sensors to Assess Spatial Variability within the KS Wheat Breeding Program

In plant breeding the impacts of genotype by environment interactions and the challenges to quantify these interactions has long been recognized. Both macro and microenvironment variations in precipitation, temperature and soil nutrient availability have been shown to impact breeder selections. Traditionally, breeders mitigate these interactions by evaluating genotype performance across varying environments over multiple years. However, limitations in labor, equipment and seed availably can l... B. Evers, M. Rekhi, G. Hettiarachchi, S. Welch, A. Fritz, P.D. Alderman, J. Poland

353. Using Prescription Maps for in Field Evaluations of Parameteres Affecting Spraying Accuracy of Self-propelled Sprayer

Weed presence continues to reemerge year over year, chemical costs continue to increase, and chemical usage continuing to face increasing government oversight, are just a few of the challenges that site-specific weed management intends to address by minimizing wasted application of chemicals and reducing environmental load of active ingredients. Thus, sprayer system manufacturers have developed precision spray systems that allow the individual spray nozzles to be controlled precisely. These s... J. Mayer, P. Flores, J. Stenger

354. Using the Adapt-N Model to Inform Policies Promoting the Sustainability of US Maize Production

Maize (Zea mays L.) production accounts for the largest share of crop land area in the U.S. It is the largest consumer of nitrogen (N) fertilizers but has low N Recovery Efficiency (NRE, the proportion of applied N taken up by the crop). This has resulted in well-documented environmental problems and social costs associated with high reactive N losses associated with maize production. There is a potential to reduce these costs through precision management, i.e., better application timing, use... S. Sela, H. Van-es, E. Mclellan, J. Melkonian, R. Marjerison , K. Constas

355. Utilization of UASs to Predict Sugarcane Yields in Louisiana Prior to Harvest

One of the most difficult tasks that both sugarcane producers and processors face every year is estimating the yields of sugarcane fields prior to the start of harvest. This information is needed by processors to determine when the harvest season is to be initiated each year and by producers to decide when each field should be harvested. This is particularly important in Louisiana because the end of the harvest season is often affected by freeze events. These events can severely damage the cr... R.M. Johnson, B. Ramachandran

356. Utilizing Space-based Technology for Cotton Irrigation Scheduling

Accurate soil moisture content measurements are vital to precision irrigation management. Electromagnetic sensors such as capacitance and time domain reflectometry have been widely used for measuring soil moisture content for decades. However, to estimate average soil moisture content over a large area, a number of ground-based in-situ sensors would need to be installed, which would be expensive and labor intensive. Remote sensing using the microwave spectrum (such as GPS signals) has been us... A. Khalilian, X. Qiao, J.O. Payero, J.M. Maja, C.V. Privette, Y.J. Han

357. Value of Map Sharing Between Multiple Vehicles Using Automated Section Control in the Same Field

Large area farms and even moderate sized farms employing custom applicators and harvesters have multiple machines in the same field at the same time conducting the same field operation.  As a method to control input costs and minimize application overlap, these machines have been equipped with automatic section control (ASC). Over application is a concern especially for more irregularly shaped fields; however modern technology including automated guidance combined with automatic section ... J. Bennett, C. Wilson, A. Sharda, T. Griffin

358. Variability in Yield Response of Maize to N, P and K Fertilization Towards Site-specific Nutrient Recommendations in Two Maize Belts in Togo

Savannah and central regions are the major maize production zones in Togo, but with maize grain yields at a threshold of only 1.5 Mg ha-1. We use a participatory approach to assess the importance of the major three macro elements (N, P and K) for maize cropping in the two regions in order to further allow for site-specific and scalable fertilizer recommendations. Thirty farmers’ fields served as pilot sites, allocated within the two regions to account for spatial variability ... J.M. Sogbedji, M. Lare, A.K. Lotsi, K.A. Amouzou, T. Agneroh

359. Variable Rate Fertilization in a High-yielding Vineyard of Cv. Trebbiano Romagnolo May Reduce Nitrogen Application and Vigour Variability Without Loss of Crop Load

The site-specific management of vineyard cultural practices may reduce the spatial variability of vine vigor, contributing to achieve the desired yield and grape composition. In this framework, variable rate fertilization may effectively contribute to reduce the different availability of mineral nutrients between different areas of the vineyard, and so achieving the vine’s aforementioned performances. The present study was aimed to apply a variable rate fertilization in a high... G. Allegro, R. Martelli, G. Valentini, C. Pastore, R. Mazzoleni, F. Pezzi, I. Filippetti, A. Ali

360. Variable Rate Nitrogen Approach in a Potato-wheat-wheat Cropping System

Nitrogen application in agriculture is a vital process for optimal plant growth and yield outcomes. Different factors such as topography, soil properties, historical yield, and crop stress affect nitrogen (N) needs within a field. Applying variable N within a field could improve precision agriculture. Optimal N management is a system that involves applying a conservative variable base rate at or shortly after planting followed by in-season assessment and, if needed, variable rate application&... E.A. Flint, M. Yost, B.G. Hopkins

361. Vis/NIR Spectroscopy to Estimate Crude Protein (CP) in Alfalfa Crop: Feasibility Study

The fast and reliable quality determination of alfalfa crop is of interest for producers to make management decisions, the dealers to determine the price, and the dairy producers for livestock management. In this study, the crude protein (CP), one of the main quality indices of alfalfa, was estimated using the visible and near-infrared (Vis/NIR) spectroscopy. A total of 68 samples from various variety trials of alfalfa crop were collected under the irrigated and rainfed conditions. The diffus... M. Maharlooei, S. Bajwa, S.A. Mireei, A. Shirzadi, S. Sivarajan, M. Berti, J. Nowatzki

362. Weather Impacts on UAV Flight Availability for Agricultural Purposes in Oklahoma

This research project analyzed 21 years of historical weather data from the Oklahoma Mesonet system.  The data examined the practicality of flying unmanned aircraft for various agricultural purposes in Oklahoma.  Fixed-wing and rotary wing (quad copter, octocopter) flight parameters were determined and their performance envelope was verified as a function of weather conditions.  The project explored Oklahoma’s Mesonet data in order to find days that are acceptable for fly... P. Weckler, C. Morris, B. Arnall, P. Alderman, J. Kidd, A. Sutherland

363. Web Application for Automatic Creation of Thematic Maps and Management Zones - AgDataBox-Fast Track

Agriculture is challenging to produce more profitably, with the world population expected to reach some 10 billion people by 2050. Such a challenge can be achieved by adopting precision agriculture and digital agriculture (Agriculture 4.0). Digital agriculture (DA) has become a reality with the availability of cheaper and more powerful sensors, actuators and microprocessors, high-bandwidth cellular communication, cloud communication, and Big Data. DA enables information to flow from used agri... J. Aikes junior, E.G. Souza, C. Bazzi, R. Sobjak, A. Hachisuca, A. Gavioli, N. Betzek, K. Schenatto, W. Moreira, E. Mercante, M. Rodrigues

364. Where to Put Treatments for On-farm Experimentation

On-farm experimentation has become more and more popular due to advancements in technology. These experiments are not as costly as before, as current machinery can allocate different levels of treatment to specific plots. The main goal of this kind of experiment is to obtain a site-specific nutrient level. The yield behavior is different based on the researcher’s treatment. One unanswered question for on-farm experimentation is how the treatments should be allocated in the first place s... D. Poursina, W. Brorsen

365. Window-based Regression Analysis of Field Data

High-resolution satellite and areal imagery enables multi-scale analysis that has previously been impossible.  We consider the task of localized linear regression and show that window-based techniques can return results at different length scales with very high efficiency.  The ability of inspecting multiple length scales is important for distinguishing factors that vary over different length scales.  For example, variations in fertilization are expected to occur on shorter len... A.M. Denton, H. Chavan, D.W. Franzen, J.F. Nowatzki

366. Winter Wheat Genotype Effect on Canopy Reflectance: Implications for Using NDVI for In-season Nitrogen Topdressing Recommendations

Active optical sensors (AOSs) measure crop reflectance at specific wavelengths and calculate vegetation indices (VIs) that are used to prescribe variable N fertilization. Visual observations of winter wheat (Triticum aestivum L.) plant greenness and density suggest that VI values may be genotype specific. Some sensor systems use correction coefficients to eliminate the effect of genotype on VI values. This study was conducted to assess the effects of winter wheat cultivars and growing conditi... O.S. Walsh, S.M. Samborski, M. Stępień, D. Gozdowski, D.W. Lamb, E.S. gacek, T. Drzazga

367. Within-field Profitability Assessment: Impact of Weather, Field Management and Soils

Profitability in crop production is largely driven by crop yield, production costs and commodity prices. The objective of this study was to quantify the often substantial yet somewhat illusive impact of weather, management, and soil spatial variability on within-field profitability in corn and soybean crop production using profitability indices for profit (net return) and return-on-investment (ROI) to produce estimates. We analyzed yield and cropping system data provided by 42 farmers within ... P.M. Kyveryga, S. Fey, J. Connor, A. Kiel, D. Muth

368. Yield Estimation for Avocado Using Systematic Sampling Techniques

Avocado is a high value crop ranking fourth among the planted fruit species in Chile with more than 32,000 ha. Yield estimation is an important challenge in avocado due to its phenology, the size of the tree, and to the large variability usually observed within the orchards. Due to the practical difficulties to sample the trees we use the following approach: 1) establish a systematic, non-aligned grid with > 20 sampling points (trees)/field, 2) previous to harvest, and ... H.P. Poblete, R.A. Ortega

369. Yield Mapping in Fruit Farming

Due to the importance of increasing the quantity and quality of world agricultural production, the use of technologies to assist in production processes is essential. Despite this, a timid adoption by precision agriculture (PA) technologies is verified by the Brazilian fruit producers, even though it is one of the segments that had been stood out in recent years in the country's economy. In the PA context, yield maps are rich sources of information, especially by species harvested through... C.L. Bazzi, M.R. Martins, L. Gebler, E.G. Souza, K. Schenatto, R. Sobjak, A. . Hachisuca, F. Franz

370. Yield, Residual Nitrogen and Economic Benefit of Precision Seeding and Laser Land Leveling for Winter Wheat

Rapid socio-economic changes in China, such as land conversion and urbanization etc., are creating new scopes for application of precision agriculture (PA). It remains unclear the application effective and economic benefits of precision agriculture technologies in China. In this study, our specific goal was to analyze the impact of precision seeding and laser land leveling on winter wheat yield,... J. Chen , P.L. Chen, J.C. Zhao, S.Y. Wang, J.C. Li, Q. Zhang, T.H. Hu, G.L. Shi

371. You Can Not Manage What You Dont Measure

The problem of variability in soil nutrient analysis has been studied for years by a number of industry experts; unable to decipher and commercialize hyperspectral soil sensing. Many studies have taken years of testing to account for variability thathas a dramatic impacts on precision of recommendations. The main tradeoff we have identified is between accuracy and precision. Large quantities of raw data are requir... K. Fleming, N. Schottle, P. Nagel, G. Koch