Login

Proceedings

Find matching any: Reset
Hoffman, E
Balafoutis, A
Rudolph, S
Balboa, G
Gunzenhauser, R
Domingues, G
Wulfsohn, D
Wang, X
Bolfe, E
Ferguson, R
Delwiche, M
Hijmans, R.J
Duchemin, M
White, M
Delalieux, S
Whelan, B
Yang, G
Fritz, A
Add filter to result:
Authors
Yang, G
Lopes, W.C
Domingues, G
Sousa, R.V
Porto, A.J
Inamasu, R.Y
Pereira, R.R
Ma, W
Wang, X
Rojo, F
Roach, J
Coates, R
Upadhyaya, S
Delwiche, M
Han, C
Dhillon, R
Deng, W
Wang, X
Zhao, C
Huang, Y
Fountas, S
Kotseridis, Y
Balafoutis, A
Anastasiou, E
Koundouras, S
Kallithraka, S
Kyraleou, M
Zamora, I
Wulfsohn, D
Song, X
Yang, G
Ma, Y
Wang, R
Yang, C
Varela, S
Balboa, G
Prasad, V
Griffin, T
Ciampitti, I
Ferguson, A
Rudolph, S
Marchant, B.P
Gillingham, V
Kindred, D
Sylvester-Bradley, R
Yule, I.J
Chok, S.E
Grafton, M.C
White, M
Yule, I.J
Pullanagari, R.R
Kereszturi, G
Irwin, M.E
McVeagh, P.J
Cushnahan, T
White, M
Varela, S
Balboa, G
Prasad, V
Griffin, T
Ciampitti, I
Ferguson, A
Balboa, G
Varela, S
Ciampitti, I
Duncan, S
Maxwell, T
Shoups, D
Sharda, A
Delauré, B
Baeck, P
Blommaert, J
Delalieux, S
Livens, S
Sima, A
Boonen, M
Goffart, J
Jacquemin, G
Nuyttens, D
Berger, A.G
Hoffman, E
Fassana, N
Alfonso, F
Liu, S
Yang, G
Xu, X
Li, Z
Yang, G
Gu, X
Song, X
Yang, X
Feng, H
Kitchen, N.R
Yost, M.A
Ransom, C.J
Bean, G
Camberato, J
Carter, P
Ferguson, R
Fernandez, F
Franzen, D
Laboski, C
Nafziger, E
Sawyer, J
KC, K
Hannah, L
Roehrdanz, P
Donatti, C
Fraser, E
Berg, A
Saenz, L
Wright, T.M
Hijmans, R.J
Mulligan, M
Whelan, B
Fajardo, M
Gu, X
Wang, S
Yang, G
Xu, X
Evers, B
Rekhi, M
Hettiarachchi, G
Welch, S
Fritz, A
Alderman, P.D
Poland, J
Balboa, G
Puntel, L
Melchiori, R
Ortega, R
Tiscornia, G
Bolfe, E
Roel, A
Scaramuzza, F
Best, S
Berger, A
Hansel, D
Palacios, D
Nze Memiaghe, J
Cambouris, A.N
Ziadi, N
Duchemin, M
Karam, A
Mizuta, K
Miao, Y
Morales, A.C
Lacerda, L.N
Cammarano, D
Nielsen, R.L
Gunzenhauser, R
Kuehner, K
Wakahara, S
Coulter, J.A
Mulla, D.J
Quinn, D.
McArtor, B
Cambouris, A
Duchemin, M
Ziadi, N
Cesario Pereira Pinto, J
Thompson, L
Mueller, N
Mieno, T
Balboa, G
Puntel, L
Balboa, G
Degioanni, A
Bongiovanni, R
Melchiori, R
Cerliani, C
Scaramuzza, F
Bongiovanni, M
Gonzalez, J
Balzarini, M
Videla, H
Amin, S
Esposito, G
Topics
Remote Sensing Applications in Precision Agriculture
Guidance, Robotics, Automation, and GPS Systems
Precision Crop Protection
Proximal Sensing in Precision Agriculture
Spatial Variability in Crop, Soil and Natural Resources
Applications of UAVs (unmanned aircraft vehicle systems) in precision agriculture
Spatial Variability in Crop, Soil and Natural Resources
Remote Sensing Applications in Precision Agriculture
Big Data Mining & Statistical Issues in Precision Agriculture
Precision Nutrient Management
Decision Support Systems in Precision Agriculture
Unmanned Aerial Systems
In-Season Nitrogen Management
Applications of Unmanned Aerial Systems
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Geospatial Data
Decision Support Systems
Geospatial Data
ISPA Community: Latin America
Decision Support Systems
In-Season Nitrogen Management
Education and Outreach in Precision Agriculture
Type
Poster
Oral
Year
2012
2014
2016
2018
2022
Home » Authors » Results

Authors

Filter results29 paper(s) found.

1. Estimation of Soil Moisture from RADARSAT-2 Multi-Polarized SAR Data over Wheat Fields

Guijun Yanga... G. Yang

2. Compatible ISOBUS Applications Using a Computational Tool for Support the Phases of the Precision Agriculture Cycle

... W.C. Lopes, G. Domingues, R.V. Sousa, A.J. Porto, R.Y. Inamasu, R.R. Pereira

3. Development Of Variable Rate System For Soil Disinfection Based On Injection Technique

Abstract:  A variable rate system injection of soil pesticide was developed for control of soil pesticide amount by PWM. The paper analyzes the input and output conditions of control system, and designed hardware, algorithm and control of soil pesticide, mainly software flow and a feedback control way. In the paper, the variable-rate control system consisted of time delay, interface module, micro controller, speed sensor, PWM valve, and hydraulic... W. Ma, X. Wang

4. Development And Evaluation Of A Leaf Monitoring System For Continuous Measurement Of Plant Water Status In Almond And Walnut Crops

Abstract: Leaf temperature measurements using handheld infrared thermometers have been used to predict plant water stress by calculating crop water stress index (CWSI). However, for CWSI calculations it is recommended to measure canopy temperature of trees under saturated, stressed and current conditions simultaneously, which is not very practical while using handheld units. An inexpensive, easy to use sensing system was developed to predict plant water status for tree crops by measuring... F. Rojo, J. Roach, R. Coates, S. Upadhyaya, M. Delwiche, C. Han, R. Dhillon

5. Weed Identification From Seedling Cabbages Using Visible And Near-Infrared Spectrum Analysis

Target identification is one of the main research content and also a key point in precision crop protection. The main purpose of the study is to choose the characteristic wavelengths (CW for short) to classify the cabbages and the weeds at their seedling stage using different data analysis methods. Using a handheld full-spectrum FieldSpec-FR, the canopies of the seedling plants, cabbage ‘8398, cabbage ‘zhonggan’, Barnyard grass, green foxtail, goosegrass,... W. Deng, X. Wang, C. Zhao, Y. Huang

6. Site-Specific Variability Of Grape Composition And Wine Quality

Precision Viticulture (PV) is the application of site-specific tools to delineate management zones in vineyards for either targeting inputs or harvesting blocks according to grape maturity status. For the creation of management zones, soil properties, topography, canopy characteristics and grape yield are commonly measured during the growing season. The majority of PV studies in winegrapes have focused on the relation of soil and vine-related spatial data with grape composition... S. Fountas, Y. Kotseridis, A. Balafoutis, E. Anastasiou, S. Koundouras, S. Kallithraka, M. Kyraleou

7. The Use Of A Multirotor And High-Resolution Imaging For Precision Horticulture In Chile: An Industry Perspective

As part of the prototype development of a yield forecasting and precision agriculture service for Chilean horticulture, we evaluated the use of an eight-rotor Mikrokopter for high-resolution aerial imaging to support ground-based surveys. Specific considerations for UAV and communications performance under Chilean conditions are windy conditions, limited space for take-off and landing in orchards, tree height and plantation density, and the presence of high metal contents in soils. We discuss... I. Zamora, D. Wulfsohn

8. Spatial and Temporal Variation of Soil Nitrogen Within Winter Wheat Growth Season

This study aims to explore the spatial and temporal variation characteristics of soil ammonium nitrogen and nitrate nitrogen within winter wheat growth season. A nitrogen-rich strip fertilizer experiment with eight different treatments was conducted in 2014. Soil nitrogen samples of 20-30cm depth near wheat root were collected by in-situ Macro Rhizon soil solution collector then soil ammonium nitrogen and nitrate nitrogen content determined by SEAL AutoAnalyzer3 instrument. Classical statistics... X. Song, G. Yang, Y. Ma, R. Wang, C. Yang

9. Spatial-temporal Evaluation of Plant Phenotypic Traits Via Imagery Collected by Unmanned Aerial Systems (UAS)

Unmanned aerial systems (UAS) and a stereovision approach were implemented to generate a 3D reconstruction of the top of the canopy. The 3D reconstruction or CSM (crop surface model) was utilized to evaluate biophysical parameters for both spatial- and temporal-scales. The main goal of the project was to evaluate sUAVs technology to assist plant height and biomass estimation. The main outcome of this process was to utilize CSMs to gain insights in the spatial-temporal dynamic of plants within... S. Varela, G. Balboa, V. Prasad, T. Griffin, I. Ciampitti, A. Ferguson

10. 'Spatial Discontinuity Analysis' a Novel Geostatistical Algorithm for On-farm Experimentation

Traditional agronomic experimentation is restricted to small plots. Under appropriate experimental designs the effects of uncontrolled environmental variables are minimized and the measured responses (e.g. in yields) are compared to controllable inputs (seed, tillage, fertilizer, pesticides) using well-trusted design-based statistical methods. However, the implementation of such experiments can be complex and the application, management, and harvesting of treated areas might have to... S. Rudolph, B.P. Marchant, V. Gillingham, D. Kindred, R. Sylvester-bradley

11. Accuracy of Differential Rate Application Technology for Aerial Spreading of Granular Fertiliser Within New Zealand

Aerial topdressing of granular fertilizer is common practice on New Zealand hill country farms because of the challenging topography. Ravensdown Limited is a New Zealand fertilizer manufacturer, supplier and applicator, who are funding research and development of differential rate application from aircraft. The motivation for utilising this technology is to improve the accuracy of fertilizer application and fulfil the variable nutrient requirements of hill country farms.  The capability of... I.J. Yule, S.E. Chok, M.C. Grafton, M. White

12. Hyperspectral Imaging to Measure Pasture Nutrient Concentration and Other Quality Parameters

Managing pasture nutrient requirements on large hill country sheep and beef properties based on information from soil sampling is expensive because of the time and labor involved. High levels of error are also expected as these properties are often greatly variable and it is therefore extremely difficult to sample intensively enough to capture this variation. Extensive sampling was also not considered viable as there was no effective means of spreading fertilizer with a variable rate capability... I.J. Yule, R.R. Pullanagari, G. Kereszturi, M.E. Irwin, P.J. Mcveagh, T. Cushnahan, M. White

13. Spatial-temporal Evaluation of Plant Phenotypic Traits Via Imagery Collected by Unmanned Aerial Systems (UAS)

Unmanned aerial systems (UAS) and a stereovision approach were implemented to generate a 3D reconstruction of the top of the canopy. The 3D reconstruction or CSM (crop surface model) was utilized to evaluate biophysical parameters for both spatial- and temporal-scales. The main goal of the project was to evaluate sUAVs technology to assist plant height and biomass estimation. The main outcome of this process was to utilize CSMs to gain insights in the spatial-temporal dynamic of plants within... S. Varela, G. Balboa, V. Prasad, T. Griffin, I. Ciampitti, A. Ferguson

14. On Farm Studies to Determine Seeding Rate in Corn

Seeding rate (SDR) is one of the most critical production practices impacting productivity and economic return for corn (Zea mays L.) By changing SDRs in different zones within a field, herein termed as site-specific management, better economic results can be produced as the outcome of reducing SDRs in low productivity areas and increasing SDRs under high-yielding environments, relative to the uniform SDR management performed by the producer. The aim of this study was to analyze yield responses... G. Balboa, S. Varela, I. Ciampitti, S. Duncan, T. Maxwell, D. Shoups, A. Sharda

15. High Resolution Vegetation Mapping with a Novel Compact Hyperspectral Camera System

The COSI-system is a novel compact hyperspectral imaging solution designed for small remotely piloted aircraft systems (RPAS). It is designed to supply accurate action and information maps related to the crop status and health for precision agricultural applications. The COSI-Cam makes use of a thin film hyperspectral filter technology which is deposited onto an image sensor chip resulting in a compact and lightweight instrument design. This paper reports on the agricultural monitoring... B. Delauré, P. Baeck, J. Blommaert, S. Delalieux, S. Livens, A. Sima, M. Boonen, J. Goffart, G. Jacquemin, D. Nuyttens

16. Active Canopy Sensors for the Detection of Non-Responsive Areas to Nitrogen Application in Wheat

Active canopy sensors offer accurate measurements of crop growth status that have been used in real time to estimate nitrogen (N) requirements. NDVI can be used to determine the absolute amount of fertilizer requirement, or simply to distribute within the field an average rate defined by decision models using other diagnostics. The objective of this work was to evaluate the capacity of active canopy sensors to determine yield and N application requirements within a site at jointing stage (Feeks... A.G. Berger, E. Hoffman, N. Fassana, F. Alfonso

17. Estimates of Plant Number of Maize Crop at Seedling from High-Throughput UAV Imagery

The acquisition of such agricultural information as crop growth and output is of great significance for the development of modern agriculture. Using the image analysis is important to gain information on plant properties, health and phenotype. This study uses the unmanned aerial vehicle images about Maize breeding material collected in Beijing Xiao Tang mountain town in June 2017. The four color space transformation of RGB, HSV, YCbCr and L*A*B was used to divide the UAV image foreground (crop)... S. Liu, G. Yang

18. Using Canopy Hyperspectral Measurements to Evaluate Nitrogen Status in Different Leaf Layers of Winter Wheat

Nitrogen (N) is one of the most important nutrient matters for crop growth and has the marked influence on the ultimate formation of yield and quality in crop production. As the most mobile nutrient constituent, N always transfers from the bottom to top leaves under N stress condition. Vertical gradient changes of leaf N concentration are a general feature in canopies of crops. Hence, it is significant to effectively acquire vertical N information for optimizing N fertilization managements.... X. Xu, Z. Li, G. Yang, X. Gu, X. Song, X. Yang, H. Feng

19. Utilizing Weather, Soil, and Plant Condition for Predicting Corn Yield and Nitrogen Fertilizer Response

Improving corn (Zea mays L.) nitrogen (N) fertilizer rate recommendation tools should increase farmer’s profits and help mitigate N pollution. Weather and soil properties have repeatedly been shown to influence crop N need. The objective of this research was to improve publicly-available N recommendation tools by adjusting them with additional soil and weather information. Four N recommendation tools were evaluated across 49 N response trials conducted in eight U.S. states over three growing... N.R. Kitchen, M.A. Yost, C.J. Ransom, G. Bean, J. Camberato, P. Carter, R. Ferguson, F. Fernandez, D. Franzen, C. Laboski, E. Nafziger, J. Sawyer

20. Using Geospatial Data to Assess How Climate Change May Affect Land Suitability for Agriculture Production

Finding solutions to the challenge of sustainably feeding the world’s growing population is a pressing research need that cuts across many disciplines including using geospatial data. One possible area could be developing agricultural frontiers. Frontiers are defined as land that is currently not cultivated but that may become suitable for agriculture under climate change. Climate change may drive large-scale geographic shifts in agriculture, including expansion in cultivation at the thermal... K. Kc, L. Hannah, P. Roehrdanz, C. Donatti, E. Fraser, A. Berg, L. Saenz, T.M. Wright, R.J. Hijmans, M. Mulligan

21. Optimising Nitrogen Use in Cereal Crops Using Site-Specific Management Classes and Crop Reflectance Sensors

The relative cost of Nitrogen (N) fertilisers in a cropping input budget, the 33% Nitrogen use efficiency (NUE) seen in global cereal grain production and the potential environmental costs of over-application are leading to changes in the application rates and timing of N fertiliser. Precision agriculture (PA) provides tools for producers to achieve greater synchrony between N supply and crop N demand. To help achieve these goals this research has explored the use of management classes derived... B. Whelan, M. Fajardo

22. Mapping Leaf Area Index of Maize in Tasseling Stage Based on Beer-Lambert Law and Landsat-8 Image

Leaf area index (LAI) is one of the important structural parameters of crop population, which could be used to monitor the variety of crop canopy structure and analyze photosynthesis rate. Mapping leaf area index of maize in a large scale by using remote sensing technology is very important for management of fertilizer and water, monitoring growth change and predicting yield. The Beer-Lambert law has been preliminarily applied to develop inversion model of crop LAI, and has achieved good application... X. Gu, S. Wang, G. Yang, X. Xu

23. Using On-the-Go Soil Sensors to Assess Spatial Variability within the KS Wheat Breeding Program

In plant breeding the impacts of genotype by environment interactions and the challenges to quantify these interactions has long been recognized. Both macro and microenvironment variations in precipitation, temperature and soil nutrient availability have been shown to impact breeder selections. Traditionally, breeders mitigate these interactions by evaluating genotype performance across varying environments over multiple years. However, limitations in labor, equipment and seed availably can limit... B. Evers, M. Rekhi, G. Hettiarachchi, S. Welch, A. Fritz, P.D. Alderman, J. Poland

24. How Digital is Agriculture in South America? Adoption and Limitations

A rapidly growing population in a context of land and water scarcity, and climate change has driven an increase in healthy, nutritious, and affordable food demand while maintaining the current cropping area. Digital agriculture (DA) can contribute solutions to meet the demands in an efficient and sustainable way. South America (SA) is one of the main grain and protein producers in the world but the status of DA in the region is unknown. This article presents the results from a systematic review... G. Balboa, L. Puntel, R. Melchiori, R. Ortega, G. Tiscornia, E. Bolfe, A. Roel, F. Scaramuzza, S. Best, A. Berger, D. Hansel, D. Palacios

25. Impacts of Interpolating Methods on Soil Agri-environmental Phosphorus Maps Under Corn Production

Phosphorus (P) is an essential nutrient for crops production including corn. However, the excessive P application, tends to P accumulation at the soil surface under crops systems. This may contribute to increase water and groundwater pollution by surface runoff. To prevent this, an agri-environmental P index, (P/Al)M3, was developed in Eastern Canada and USA. This index aims to estimate soil P saturation for accurate P fertilizer recommendations, while integrating agronomical aspects... J. Nze memiaghe, A.N. Cambouris, N. Ziadi, M. Duchemin, A. Karam

26. Evaluating a Satellite Remote Sensing and Calibration Strip-based Precision Nitrogen Management Strategy for Corn in Minnesota and Indiana

Precision nitrogen (N) management (PNM) aims to match N supply with crop N demand in both space and time and has the potential to improve N use efficiency (NUE), increase farmer profitability, and reduce N losses and negative environmental impacts. However, current PNM adoption rate is still quite low. A remote sensing and calibration strip-based PNM strategy (RS-CS-PNM) has been developed by the Precision Agriculture Center at the University of Minnesota.... K. Mizuta, Y. Miao, A.C. Morales, L.N. Lacerda, D. Cammarano, R.L. Nielsen, R. Gunzenhauser, K. Kuehner, S. Wakahara, J.A. Coulter, D.J. Mulla, D. . Quinn, B. Mcartor

27. Nitrogen Fertilization of Potato Using Management Zone in Prince Edward Island, Canada

Potato is sensible to nitrogen (N) and optimal N fertilization improve the tuber yield and its quality. Potato crop N response varies widely within fields. It is also well recognized that significant spatial and temporal variation in soil N availability occurs within crop fields. However, uniform application of N fertilizer is still the most common practice under potato production. Management zone (MZ) approach can help growers to achieve a part of this. The goal of the project is to compare the... A. Cambouris, M. Duchemin, N. Ziadi

28. Evaluation of Nitrogen Recommendation Tools for Winter Wheat in Nebraska

Attaining both high yield and high nitrogen (N) use efficiency (NUE) simultaneously remains a current research challenge in crop production. Digital ag technologies for site-specific N management have been demonstrated to improve NUE. This is due to the ability of digital technologies to account for the spatial and temporal distribution of crop N demand and available soil N in the field which varies greatly according to... J. Cesario pereira pinto, L. Thompson, N. Mueller, T. Mieno, G. Balboa, L. Puntel

29. Overcoming Educational Barriers for Precision Agriculture Adoption: a University Diploma in Precision Agriculture in Argentina

The lack of educational programs in Precision Agriculture (PA) has been reported as one of the barriers for adoption. Our goal was to improve professional competence in PA through education in crop variability, management, and effective practices of PA in real cases. In the last 20 years different efforts has been made in Argentina to increase adoption of PA. The Universidad Nacional de Rio Cuarto (UNRC) launched in 2021 the first University Diploma in PA, a 9-month program to train agronomist... G. Balboa, A. Degioanni, R. Bongiovanni, R. Melchiori, C. Cerliani, F. Scaramuzza, M. Bongiovanni, J. Gonzalez, M. Balzarini, H. Videla, S. Amin, G. Esposito