Login

Proceedings

Find matching any: Reset
Modeling and Geo-statistics
Precision Nutrient Management
ISPA Community: Economics
Sensor Application in Managing In-season Crop Variability
Big Data Mining & Statistical Issues in Precision Agriculture
Precision Dairy and Livestock Management
Big Data, Data Mining and Deep Learning
Temporal Aspects of PA
Sensor Application in Managing In-season Crop Variability
Profitability, Sustainability and Adoption
Add filter to result:
Authors
Acquah, H.D
Adamchuk, V.I
Adamchuk, V.I
Adamchuk, V.I
Alabi, T
Amaral, L.R
Amaral, L.R
B, K
Babar, I
Baghernejad, M
Balkcom, K
Balmos, A
Baresel, P
Bareth, G
Basso, B
Bastos, A.H
Bastos, L
Bazzi, C.L
Bazzi, C.L
Bazzi, C.L
Bean, G
Bean, M
Behrendt, K
Beitz, T
Belmont, K
Belmont, K
Ben Abdallah, F
Beneduzzi, H.M
Bernardi, A.C
Bettiol, G.M
Betzek, N.M
Bishop, T.F
Biswas, A
Biswas, A
Boini, A
Bosompem, M
Bourouah, M
Bouroubi, Y
Boyer, C.N
Bresilla, K
Buckmaster, D
Bugnet, P
Burke, C.R
Burke, J
Burris, E
Buschermohle, M.J
Bélec, C
Büchele, D
Camberato, J
Camberato, J
Cammarano, D
Campana, M
Cardoso, G.M
Carneiro Amado, T.J
Carter, P
Carter, P
Castro, S.G
Chen, J
Chen, L
Chen, P.L
Chen, T
Chiang, R.C
Cho, W
Choi, D
Chok, S.E
Chudy, T
Chung, S
Claire, G
Cointault, F
Colley III, R
Connor, J
Constas, K
Cooper, J
Corassa, G.M
Craker, B.E
Cushnahan, M.Z
D.C, H
D.C, H
Danford, D.D
Dela Rue, B.T
Dela Rue, B.T
Dela Rue, B.T
Dhawale, N
Douridas, N
Dr., N
Dr., N
Dr., S
Draganova, I
Draye, X
Drew, P
Drexler, D
Drzazga, T
Duft, D.G
Dunn, D
Dutilleul, P
Dworak, V
Eastwood, C
Ehsani, R
Elmore, R
Emadi, M.M
Erbe, A
Erdle, K
Fajardo, M
Fergugson, R.B
Ferguson, R.B
Ferguson, R.B
Ferguson, R.B
Ferguson, R.B
Fernandez, F.G
Fernandez, F.G
Ferreyra, R
Fey, S
Filippi, P
Fleming, K
Franco, H.C
Franco, H.C
Franzen, D.W
Franzen, D.W
Franzen, D.W
Fulton, J
Fulton, J.P
Gacek, E.S
Garcia, A.H
Gavioli, A
Gavioli, A
Gebbers, R
Gebert, F.H
Gholizadeh, A
Gillingham, V
Glewen, K
Gnyp, M.L
Goffart, J
Gornushkin, I
Gosselin, C
Gozdowski, D
Gozdowski, D
Grafton, M.C
Grappadelli, L.C
Griffin, T.W
Grove, J
Gupta, S
Gutiérrez, V
Hackl, H
Hand, K.J
Hauser, J.S
Heggemann, T
Heil, K
Helga, W
Hinsinger, P
Hirai, Y
Hoffmann, W.C
Horbe, T
Hu, T.H
Huang, H
Huang, S
Huang, W
Hunsche, M
Ikpi, A.E
Inamasu, R.Y
Inoue, E
Jackson, C
Jago, J
Jago, J
Jago, J.G
Jasper, J
Jasper, J
Jasse, E.P
Jha, S
Ji, W
Jiang, J
Jiang, R
Jones, E.J
Journaux, L
Kamphuis, C
Kamphuis, C
Kamphuis, C
Kang, C
Kantipudi, K
Kechadi, M
Kersebaum, C
Khosla, R
Kiel, A
Kim, D
Kim, H
Kindred, D
Kipp, S
Kitchen, N
Kitchen, N
Kitchen, N.R
Kolln, O.T
Kombali, G
Krienke, B
Krogmeier, J
Krueger Shvetsova, E
Kumar R, M
Kumar R, M
Kumke, M
Kurtener, D
Kurtener, D
Kwarteng, J.A
Kyveryga, P.M
Laacouri, A
Laboski, C
Laboski, C
Lai, C
Lamb, D.W
Lambert, D.M
Lan, Y
Larson, J.A
Laurent, P
Lauzon‎, S
Le-Khac, N
Lee, W
Lee, W
Leenen, M
Lenssen, A
Leszczyńska, E
Li, J.C
Licht, M.A
Longchamps, L
Lu, J
Luck, J
Magalhaes, P.S
Magalhaes, P.S
Magalhães, P.S
Magalhães, P.S
Mahns, B
Mailwald, M
Maiwald, M
Makkar, M.S
Manfrini, L
Manon, M
Marchant, B.P
Marin, A
Marine, L
Marjerison, R
Marshall, J
Martin, D.L
Martin, R
Martre, P
Maurer, J.L
McCarter, K.S
McClintick-Chess, J
McClintick-Chess, J
McLellan, E
Melkonian, J
Miao, Y
Michelon, G.K
Miles, R.J
Min, C
Mistele, B
Mistele, B
Mistele, B
Miteran, J
Mitsuoka, M
Mizgirev, A
Mohd Soom, M
Molin, J.P
Molin, J.P
Molin, J.P
Morandi, B
Mostafa, F
Mulla, D
Murrell, S
Muth, D
Nadagouda, D
Nafziger, E
Nafziger, E
Nagel, P
Naima, B
Nelson, K.J
Ngo, V.M
Nguyen-Xuan, T
Nigon, T
Nisa, M.U
Nobakhti, A
Noga, G
Noorasma, S
Okayasu, T
Okoruwa, V.O
Oksanen, T
Olayide, O.E
Oliveira, P.P
Olivier, G
Omodele, T
Ortega, R
Ortega, R.A
Ortiz, B.V
Ostermann, M
PATIL, B
Pan, L
Parrish, J
Pecchioni, N
Pena-Yewtukhiw, E.M
Perulli, G
Pl, L
Port, K
Portz, G
Portz, G
Portz, G
Pourreza, A
Pourshamsaei, H
Prabhudeva, D
Preiner, M
Pätzold, S
R, C
Rabe, N
Rabello, L.M
Ragab, R
Rainbow, R
Ransom, C
Ransom, C.J
Rhea, S.T
Riebe, D
Ritenour, M.A
Roberts, P
Rodrigues Júnior, F.H
Roka, F.M
Rudolph, S
Rumpf, T
Rund, Q
Rutter, M.S
Rühlmann, J
Rühlmann, M
Sébastien, D
Saberioon, M
Sadler, E
Saifuzzaman, M
Samborski, S.M
Samborski, S.M
Sanches, G.M
Sanches, G.M
Saraswat, D
Sarwar, M
Savoy, H.J
Sawyer, J
Sawyer, J
Scharf, P
Scharf, P
Scharf, P.C
Scheithauer, H
Schenatto, K
Schenatto, K
Schmid, T
Schmidhalter, U
Schmidhalter, U
Schmidhalter, U
Schroeder, M.A
Schueller, J.K
Schwalbert, R
Sela, S
Sessitsch, A
Shahzad, M.A
Shanahan, J
Shanahan, J
Shannon, K
Sharda, A
Sharma, A
Sharma, L
Shi, G.L
Shi, Y
Shibusawa, S
Silva, A.E
Silva, M.J
Son, J
Souza, E.G
Souza, E.G
Souza, E.G
Stefanini, M
Stelford, M.W
Stevenson, M
Stiehl, D
Stępień, M
Stępień, M
Sudduth, K
Sudduth, K.A
Sumpf, B
Swoboda, K
Sylvester-Bradley, R
T, S
T, S
Tahir, M
Takahashi, T
Tauqir, N.A
Thimmegowda, M
Thompson, C
Thompson, L
Torbert, H
Torino, M.S
Trebilcock, P
Trindall, J
Tubaña, B.S
Tyler, D.D
Varco, J.J
Vigneault, P
Voicu, A
Wagner, P
Wagner, P
Wallor, E
Walsh, O.S
Walsh, O.S
Walsh, O.S
Walsh, O.S
Wang, J
Wang, N
Wang, S.Y
Wang, Y
Ward, M.D
Welp, G
Weltzien, C
Westbrook, J
Whelan, B.M
White, M
Williams, E
Williams, R
Wilson, J.A
Wilson, R
Wood, B.A
Yamakawa, T
Yang, C
Yao, Y
Yin, X
Yule, I
Yule, I
Yule, I.J
Yule, I.J
Yun, H
Yuncai, H
Zaller, M
Zhang, Q
Zhao, C
Zhao, J.C
Zoran, C
giriyappa, M
giriyappa, M
http://icons.paqinteractive.com/16x16/ac, G
http://icons.paqinteractive.com/16x16/ac, G
http://icons.paqinteractive.com/16x16/ac, G
van-Es, H
Topics
Modeling and Geo-statistics
Sensor Application in Managing In-season Crop Variability
Precision Nutrient Management
Profitability, Sustainability and Adoption
Big Data Mining & Statistical Issues in Precision Agriculture
Big Data, Data Mining and Deep Learning
Precision Dairy and Livestock Management
Sensor Application in Managing In-season Crop Variability
ISPA Community: Economics
Type
Poster
Oral
Year
2010
2012
2016
2018
2022
Home » Topics » Results

Topics

Filter results94 paper(s) found.

1. Saltmed Model As An Integrated Management Tool For Precision Management Of Water, Crop, Soil, And Fertilizers

                 SALTMED-2009: A modelling tool for Precision Agriculture                                                    R. Ragab Centre for Ecology and H... R. Ragab

2. Smoothness Index Of Thematic Maps

A thematic map shows the spatial distribution of one or more specific data themes for standard geographic areas. The thematic maps are generated to represent the studied variables, so interpolators are used to determine their values in places not sampled. It is usuall... C.L. Bazzi, E.G. Souza, D. Stiehl

3. Application Of Algebra Hyper-curve Neural Network In Soil Nutrient Spatial Interpolation

Study on spatial variability of soil nutrient is the basis of soil nutrient management in precision agriculture. For study on application potential and characteristics of algebra hyper-curve neural network(AHNN) in delineating soil properties spatial variability and interpolation, total 956 soil samples were taken for alkaline hydrolytic nitrogen measurement from a 50 hectares field using 20m*20m grid sampling. The test data set consisted of 100 random samples extracti... L. Chen, C. Zhao, W. Huang, T. Chen, J. Wang

4. Analysis Of Water Use Efficiency Using On-the-go Soil Sensing And A Wireless Network

An efficient irrigation system should meet the demands of the growing crops. While limited water supply may result in yield reduction, excess irrigation is a waste of resources. To investigate water use efficiency, on-the-go sensing technology was used to reveal soil spatial variability relevant to water holding capacity (in this example, field elevation and apparent electrical conductivity). These high-density data layers were used to identify strategic sites where monitoring water availabil... L. Pan, V.I. Adamchuk, D.L. Martin, M.A. Schroeder, R.B. Fergugson

5. Evaluation Of Yield Maps Using Fuzzy Indicators

  The ultimate goal of application of yield maps is profitable crop output in many farming systems. Yield maps are the starting point in the precision farming system, and provide the final record indicating the effectiveness of any management changes. Researches on yield mapping shown, that positions and boundaries of zones with different levels ... E. Krueger shvetsova, D. Kurtener, D. Kurtener, H. Torbert

6. Assessment Of Climate Variability On Optimal Nitrogen Fertilizer Rates For Precision Agriculture

 Yield response functions... B. Basso, G. Http://icons.paqinteractive.com/16x16/ac, G. Http://icons.paqinteractive.com/16x16/ac, G. Http://icons.paqinteractive.com/16x16/ac

7. Mapping The Effect Of Food Prices, Productivity And Poverty In The Development Domains Of Nigeria

  Poverty remains the major obstacle to economic emancipation and achievement of development agenda in Nigeria. Worse still, rising food prices pose a major threat to feeding the teeming population in Nigeria. Declining food production, high population growth, and negative food trade balance combine to worsen the food and poverty situations in Nigeria. We stand on the premise that surging and volatile food prices could have a hardest hit on those who could not afford it –... O.E. Olayide, A.E. Ikpi, V.O. Okoruwa, , T. Alabi, T. Omodele

8. Early Identification Of Leaf Rust On Wheat Leaves With Robust Fitting Of Hyperspectral Signatures

Early recognition of pathogen infection is of great relevance in precision plant protection. Disease detection before the occurrence of visual symptoms is of particular interest. By use of a laserfluoroscope, UV-light induced fluorescence data were collected from healthy and with leaf rust infected wheat leaves of the susceptible cv. Ritmo 2-4 days after inoculation under controlled conditions. In order to evaluate disease impact on spectral characteristics 215 wavelengths in the range of 370... C. R, T. Rumpf, K. B, M. Hunsche, L. Pl, G. Noga

9. Decision Making And Operational Planning

In order to automatize crop farming and its processes, a number of technological and other problems have to be solved. Agricultural field robots are in our vision to fulfill operations in fields. Robots involve number of technological challenges in order to be functional and reliable, but also systems controlling these robots are to be developed. In this paper automatic crop farming is the vision, and decision making models and operational planning is discussed. Study is carried out with simu... T. Oksanen, ,

10. Wheat Growth Stages Discrimination Using Generalized Fourier Descriptors In Pattern Recognition Context

... F. Cointault, A. Marin, L. Journaux, J. Miteran, R. Martin

11. Development Of A Decision Support System For Precision Areawide Pest Management In Cotton Production

  Crop models simulate growth and development, and provide relevant information for the routine management of the crop.  The use of crop models on large areas for diagnosing crop growing conditions or predicting crop production is hampered by the lack of sufficient spatial information about model inputs. Integrating crop models with other information technologies such as geographic information systems (GIS), variable rate technology, remote sensing, and global p... Y. Lan, W.C. Hoffmann, J. Westbrook, M. Zaller

12. Mapping Soil Salinity Using Cokriging Method In Arsanjan Plain, Southern Iran

  Salt-affected landscapes are highly sensitive to changes in climatic, edaphic and hydrological conditions in time and space in semi-arid regions such as Arsanjan plain, southern Iran. The objective of this study was to combine digital satellite data with ground based measurements of ECe by cokriging method to possibility improve the soil salinity maps of study area. Soil samples in the 85 sampling site (10187 ha)were collected from 0-30 cm depths, georefrenced using GPS recei... M.P. Baghernejad, M.M. Emadi

13. Accounting For Spatial Correlation Using Radial Smoothers In Statistical Models Used For Developing Variable-rate Treatment Prescriptions

Variable-rate treatment prescriptions for use on commercial farms can be developed from embedded field trials on those farms. Such embedded trials typically involve non-random, high-density sampling schemes that result in large datasets and response variables exhibiting spatial correlation. In order to accurately evaluate the significance of the effects of the applied treatments and the measured field characteristics on the response of interest, this spatial correlation must be accounted for ... K.S. Mccarter, E. Burris

14. Crop Rotation Impacts ‘Temporal Sampling’ Needed For Landscape-defined Management Zones

Yield and landscape position are used to delineate management zones, but this approach is confounded by yield’s weather dependence, causing yield to evidence temporal variability/lack of yield stability. Management options (e.g. crop rotation) also influence yield stability. Our objective was to build a model that would describe the influence of crop rotation on the temporal yield stability of landscape defined management zones. Corn (Zea mays L.) yield data for two rotat... E.M. Pena-yewtukhiw, J. Grove

15. Use of Corn Height to Improve the Relationship Between Active Optical Sensor Readings and Yield Estimates

Pre-season and early in-season loss of N continues to be a problem in corn. One method to improve nitrogen use efficiency is to fertilize based on in-season crop foliage sensors. The objective of this study was to evaluate two different ground-based, active-optical sensors and explore the use of corn height with sensor readings for improved relationship with corn yield. Two different ground-based active-optical sensors (GreenseekerTM ... L. Sharma, D.W. Franzen

16. Development of Ground Based Multi-source Crop Information Collection System.

Precision agriculture requires reliable technology to acquire accurate information on crop conditions. A ground-based integrated sensor and instrumentation system was developed to measure real-time crop conditions. The integration system included multispectral camera and N-sensor for real time Nitrogen application. The system was interfaced with a DGPS receiver to provide spatial coordinates for sensor readings. Before mounting of the sensors on modified paddy transplanter, different mounting... A. Sharma, M.S. Makkar, S. Gupta

17. Spatial Variability of Soil Properties in Intensively Managed Tropical Grassland in Brazil

For the intensification of tropical grass pastures systems the soil fertility building up by liming and balanced fertilization is necessary. The knowledge of spatial variability soil properties is useful in the rational use of inputs, as in the variable rate application of lime and fertilizers. PA requires methods to indicate the spatial variability of soil and plant parameters. The objective of this work was to map and evaluate the soil properties and maps the site specific liming and fertil... G.M. Bettiol, R.Y. Inamasu, L.M. Rabello, A.C. Bernardi, M. Campana, P.P. Oliveira

18. Active Sensor Performance – Dependence to Measuring Height, Light Intensity and Device Temperature

For land use management, agriculture, and crop management spectral remote sensing is widely used. Ground-based sensing is particularly advantageous allowing to directly link on-site spectral information with agronomic algorithms. Sensors are nowadays most frequently used in site-specific oriented applications of fertilizers, but similarly site-specific applications of growth regulators, herbicides and pesticides become more often adopted. Generally little is known about the effects ... B. Mistele, U. Schmidhalter, S. Kipp

19. Estimation of Nitrogen of Rice in Different Growth Stages Using Tetracam Agriculture Digital Camera

Many methods are available to monitor nitrogen content of rice during various growth stages. However, this monitoring still requires a quick, simple, accurate and inexpensive technique that needs to be developed. In this study, Tetracam Agriculture Digital Camera (ADC) was used to acquire high spatial and temporal resolution in order to determine the status of nitrogen (N) and predict the grain yield of rice (Oriza sativa L.). In this study, 12 pots of rice with four different N treatments (0, ... A. Gholizadeh , M. Mohd soom , M. Saberioon

20. Comparison of Active and Passive Spectral Sensors in Discriminating Biomass Parameters and Nitrogen Status in Wheat Cultivars

Several sensor systems are available for ground-based remote sensing in crops. Vegetation indices of multiple active and passive sensors have seldom been compared in determining plant health. This study was aimed to compare active and passive sensing systems in terms of their ability to recognize agronomic parameters. One bi-directional passive radiometer (BDR) and three active sensors (Crop Circle, GreenSeeker, and an active flash sensor (AFS)) were tested for their ability to assess six des... B. Mistele, U. Schmidhalter, K. Erdle

21. Influence Of Phosphorus Application With Or Without Nitrogen On Oat (Avena Sativa) Grass Nutritive Value And In Situ Digestion Kinetics In Buffalo Bulls

Fodder is the mainstay of ruminant production in majority of developing countries. However, its low yield and poor quality are considered considerable constrains which impede ruminant productivity. Fodder production and its nutritive value can be enhanced by ensuring adequate supply and utilization of nutrien... M.U. Nisa, I. Babar, M. Sarwar, N.A. Tauqir, M.A. Shahzad

22. A Comparison of Plant Temperatures as Measured By Thermal Imaging and Infrared Thermometry

... P. Baresel, B. Mistele, H. Yuncai, U. Schmidhalter, H. Hackl

23. Assembly of an Ultrasound Sensors System for Mapping of Sugar Cane Height

In Precision Agriculture, the use of sensors provides faster data collection on plant, soil, and climate, allowing collecting larger sample sets with better information quality. The objective of this study was the development of a system for plant height measurement in order to mapping of sugar cane crop, so that regions with plant growth variation and grow failures could be id... A.H. Garcia, F.H. Rodrigues júnior, A.H. Bastos, P.S. Magalhaes, M.J. Silva

24. In-Field Corn Stalk Location Using Rapid Line-Scan Technique

... Y. Shi, N. Wang

25. Remote Collection of Behavioral and Physiological Data to Detect Lame Cows

Authors of abstract: C. Kamphuis, J. Burke, J. Jago ... J. Jago, J. Burke, C. Kamphuis, B. Dela rue

26. Model for Remote Estimation of Nitrogen Contents of Corn Leaf Using Hyper-Spectral Reflectance under Semi-Arid Condition.

Accuracy and precision of nitrogen estimation can be improved by hyperspectral remote sensing that lead... M. Tahir

27. Two On-Farm Tests to Evaluate In-Line Sensors for Mastitis Detection

To date, there is no independent and uniformly presented information available regarding detection performance of automated in-line mastitis detection systems. This lack of information makes it hard for farmers ... B. Dela rue, J. Jago, C. Kamphuis

28. Using Multiplex® to Manage Nitrogen Variability in Champagne Vineyard

... L. Marine, M. Manon, G. Claire, P. Laurent, F. Mostafa, C. Zoran, B. Naima, D. Sébastien, G. Olivier

29. Potential Indicators Based On Leaf Flavonoids Content for the Evaluation of Potato Crop Nitrogen Status

Nitrogen (N) fertilization strategies aim to limit environmental pollution by improving potato crop N use efficiency. Such strategies may use indicators for the assessment of in season crop N status (CNS). Leaf polyphenolics (flavonoids) content appears as a valuable indicator of CNS. Because of their absorption features ... J. Goffart, F. Ben abdallah

30. Field Evaluation of Automated Estrus Detection Systems - Meeting Farmers' Expectation

Automated systems for oestrus detection are commonly marketed as a suitable, or in some cases, a higher performing alternative to visual observation. Farmers, particularly those with larger herds relying on less experienced staff, view the perceived benefits of automated systems as both economic and physical, with expectations of improved oestrus detection efficiency with lower labour input. There is little evidence-based information available on the field performance of these systems to... B.T. Dela rue, C. Kamphuis, J.G. Jago, C.R. Burke

31. Measuring Sugarcane Height in Complement to Biomass Sensor for Nitrogen Management

Although extensive studied, nitrogen management remains a challenger for sugarcane growers, especially the nutrient spatial variability management, which demands the use of variable rate application. Canopy reflectance sensors are being studied, but it seems to saturate the sensor s... J.P. Molin, G. Portz, L.R. amaral

32. Optimum Sugarcane Growth Stage for Canopy Reflectance Sensor to Predict Biomass and Nitrogen Uptake

The recent technology of plant canopy reflectance sensors can provide the status of biomass and nitrogen nutrition of sugarcane spatially and in real time, but it is necessary to know the right moment to use this technology aiming the best predictions of the crop p... L.R. Amaral, J.P. Molin, J. Jasper, G. Portz

33. Evaluation of Differences in Corn Biomass and Nitrogen Uptake at Various Growth Stages Using Spectral Vegetation Indices

Application of canopy sensors for nitrogen (N) fertilizer management for corn grain production in the Southeast US r... M.S. Torino, B.V. Ortiz, J. Fulton, K. Balkcom

34. Challenges and Opportunities for Precision Dairy Farming in New Zealand.

A study was commissioned by DairyNZ, a dairy industry good organisation in New Zealand, to identify some of the key challenges and opportunities in the precision dairy space. In New Zealand there has been an increasing research focus on the use of information and communication technologies (ICT) ... I. Yule , C. Eastwood

35. The Use of Sensing Technologies to Monitor and Track the Behavior of Cows on a Commercial Dairy Farm

New Zealand farmers are facing rapidly increasing pressure to reduce nutrient losses from their farming enterprises to the environment caused by grazing ruminants. ... I. Draganova, I. Yule, M. Stevenson

36. In-season Diagnosis of Rice Nitrogen Status Using an Active Canopy Sensor

... Y. Yao, Y. Miao, S. Huang, M. Gnyp, R. Khosla, R. Jiang, G. Bareth

37. A New Sensing System for Immediate and Direct Measurements of Soil Nitrate

In-season management of nitrogen is a critical component in the drive to increase the nitrogen use efficiency of commercial crop production. Increasing nitrogen use efficiency itself has become a prominent issue due to both economic and environmental/regulatory drivers over the last decade.   Solum, Inc (Mountain View, CA) has developed a new sensing technology to enable the immediate and direct measurement of soil nitrate. This allows rapid and economical so... M. Preiner

38. Determinants of Ex-ante Adoption of Precision Agriculture Technologies by Cocoa Farmers in Ghana

The study was to identify the best predictors of cocoa Farmers willingness to adopt future Precision Agriculture Technology (PAT) Development in Ghana. Correlational research design was used. The target population was all cocoa farmers who benefited from Cocoa High Technology Programme (an initiative of distributing free fertilizer by government to cocoa farmers) in Ghana. Multistage sampling technique was used to select 422 out of 400,000 cocoa farmers in the six (6) out of the seven (7) coc... M. Bosompem, J.A. Kwarteng, H.D. Acquah

39. Site-specific Scale Efficiency Determined by Data Envelopment Analysis of Precision Agriculture Field Data

Since its inception and acceptance as a benchmarking tool within the economics literature, data envelopment analysis (DEA) has been used primarily as a means of calculating and ranking whole-farm entities marked as decision making units (DMU) against one another.  Within this study, instead of ranking the entire farm operation against similar peers that encompass the study, individual data points from within the field are evaluated to analyze the site-specific technical efficiencies esti... J.L. Maurer, T.W. Griffin, A. Sharda

40. Yield, Residual Nitrogen and Economic Benefit of Precision Seeding and Laser Land Leveling for Winter Wheat

Rapid socio-economic changes in China, such as land conversion and urbanization etc., are creating new scopes for application of precision agriculture (PA). It remains unclear the application effective and economic benefits of precision agriculture technologies in China. In this study, our specific goal was to analyze the impact of precision seeding and laser land leveling on winter wheat yield,... J. Chen , P.L. Chen, J.C. Zhao, S.Y. Wang, J.C. Li, Q. Zhang, T.H. Hu, G.L. Shi

41. Studies on Soil Spatial Variability and Its Impact on Cane Yield Under Precision Nutrient Management System

In present investigation an attempt was made to quantify the soil variability of 30 grids of 10 m x 10 m dimension at research farm of Nandi Sahakari Sakkare Karkhane (NSSK), Krishna Nagar, District. Bijapur. Each grid (10 m x 10 m) showed variation with available nitrogen as low as 140 kg ha-1 to as high as 245 kg/ha with a range of 105 kg/ha, phosphorus as low as 53 kg P2O5 ha-1 and as high as 89.3 kg P2O5 ha-1 wit... M. Kumar r, M. Kumar r, D. Nadagouda

42. A Precise Fruit Inspection System for Huanglongbing and Other Common Citrus Defects Using GPU and Deep Learning Technologies

World climate change and extreme weather conditions can generate uncertainties in crop production by increasing plant diseases and having significant impacts on crop yield loss. To enable precision agriculture technology in Florida’s citrus industry, a machine vision system was developed to identify common citrus production problems such as Huanglongbing (HLB), rust mite and wind scar. Objectives of this article were 1) to develop a simultaneous image acquisition system using multiple c... D. Choi, W. Lee, J.K. Schueller, R. Ehsani, F.M. Roka, M.A. Ritenour

43. Modifying the University of Missouri Corn Canopy Sensor Algorithm Using Soil and Weather Information

Corn production across the U.S. Corn belt can be often limited by the loss of nitrogen (N) due to leaching, volatilization and denitrification. The use of canopy sensors for making in-season N fertilizer applications has been proven effective in matching plant N requirements with periods of rapid N uptake (V7-V11), reducing the amount of N lost to these processes. However, N recommendation algorithms used in conjunction with canopy sensor measurements have not proven accurate in making N reco... G. Bean, N.R. Kitchen, D.W. Franzen, R.J. Miles, C. Ransom, P. Scharf, J. Camberato, P. Carter, R.B. Ferguson, F. Fernandez, C. Laboski, E. Nafziger, J. Sawyer, J. Shanahan

44. Winter Wheat Genotype Effect on Canopy Reflectance: Implications for Using NDVI for In-season Nitrogen Topdressing Recommendations

Active optical sensors (AOSs) measure crop reflectance at specific wavelengths and calculate vegetation indices (VIs) that are used to prescribe variable N fertilization. Visual observations of winter wheat (Triticum aestivum L.) plant greenness and density suggest that VI values may be genotype specific. Some sensor systems use correction coefficients to eliminate the effect of genotype on VI values. This study was conducted to assess the effects of winter wheat cultivars and growing conditi... O.S. Walsh, S.M. Samborski, M. Stępień, D. Gozdowski, D.W. Lamb, E.S. gacek, T. Drzazga

45. On-Farm Evaluation of an Active Optical Sensor Performance for Variable Nitrogen Application in Winter Wheat

Winter wheat (Triticum aestivum L.) represents almost 50% of total cereal production in the European Union, accounting for approximately 25% of total mineral nitrogen (N) fertilizer applied to all crops. Currently, several active optical sensor (AOS) based systems for optimizing variable N fertilization are commercially available for a variety of crops, including wheat. To ensure successful adoption of these systems, definitive measurable benefits must be demonstrated. Nitrogen management str... O.S. Walsh, S.M. Samborski, D. Gozdowski, M. Stępień, E. Leszczyńska

46. 'Spatial Discontinuity Analysis' a Novel Geostatistical Algorithm for On-farm Experimentation

Traditional agronomic experimentation is restricted to small plots. Under appropriate experimental designs the effects of uncontrolled environmental variables are minimized and the measured responses (e.g. in yields) are compared to controllable inputs (seed, tillage, fertilizer, pesticides) using well-trusted design-based statistical methods. However, the implementation of such experiments can be complex and the application, management, and harvesting of treated areas might have to... S. Rudolph, B.P. Marchant, V. Gillingham, D. Kindred, R. Sylvester-bradley

47. Development of a Multiband Sensor for Citrus Black Spot Disease Detection

Citrus black spot (CBS), or Guignardia citricarpa, is known as the most destroying citrus fungal disease worldwide. CBS causes yield loss as a result of early fruit drop, and it leaves severely blemished and unmarketable fruit. While leaves usually remain symptomless, CBS generates various forms of lesions on citrus fruits including hard spot, cracked spot, and virulent spot. CBS lesions often appear on maturing fruit, starting two months before maturity. Warm temperature and sunlight exposur... A. Pourreza, W. Lee, J. Lu, P. Roberts

48. UAV-based Crop Scouting for Precision Nutrient Management

Precision agriculture – is one of the most substantial markets for the Unmanned Aerial Vehicles (UAVs). Mounted on the UAVs, sensors and cameras enable rapid screening of large numbers of experimental plots to identify crop growth habits that contribute to final yield and quality in a variety of environments. Wheat is one of the Idaho’s most important cereal crops grown in 42 of 44 Idaho counties. We are working on establishing a UAV-based methodology for in-season prediction of w... O.S. Walsh, K. Belmont, J. Mcclintick-chess, J. Marshall, C. Jackson, C. Thompson, K. Swoboda

49. Sensor-based Technologies for Improving Water and Nitrogen Use Efficiency

 Limited reports exist on identifying the empirical relationships between plant nitrogen and water status with hyperspectral reflectance. This project is aiming to develop effective system for nitrogen and water management in wheat. Specifically: 1) To evaluate the effects of nitrogen rates and irrigation treatments on wheat plant growth and yield; 2) To develop methods to predict yield and grain protein content in varying nitrogen and water environments, and to determine the minimum nit... O.S. Walsh, K. Belmont, J. Mcclintick-chess

50. Development of a Multispectral Sensor for Crop Canopy Temperature Measurement

Quantifying spatial and temporal variability in plant stress has precision agriculture applications in controlling variable rate irrigation and variable rate nutrient application. One approach to plant stress detection is crop canopy temperature measurement by the use of thermographic or radiometric methods, generally in the long wave infrared (LWIR) wavelength range. A confounding factor in LWIR canopy temperature estimation is eliminating the effect of the soil background in the image. One ... P. Drew, K.A. Sudduth, E. Sadler

51. Surplus Science and a Non-linear Model for the Development of Precision Agriculture Technology

The advent of ‘big data technologies’ such as hyperspectral imaging means that Precision Agriculture (PA) developers now have access to superabundant and highly  heterogeneous data.  The authors explore the limitations of the classic science model in this situation and propose a new non-linear process that is not based on the premise of controlled data scarcity. The study followed a science team tasked with developing highly advanced hyperspectral techniques for a &lsquo... M.Z. Cushnahan, I.J. Yule, B.A. Wood, R. Wilson

52. Accuracy of Differential Rate Application Technology for Aerial Spreading of Granular Fertiliser Within New Zealand

Aerial topdressing of granular fertilizer is common practice on New Zealand hill country farms because of the challenging topography. Ravensdown Limited is a New Zealand fertilizer manufacturer, supplier and applicator, who are funding research and development of differential rate application from aircraft. The motivation for utilising this technology is to improve the accuracy of fertilizer application and fulfil the variable nutrient requirements of hill country farms.  The capability ... I.J. Yule, S.E. Chok, M.C. Grafton, M. White

53. Delineation of Site-specific Management Zones Using Spatial Principal Components and Cluster Analysis

The delineation of site-specific management zones (MZs) can enable economic use of precision agriculture for more producers. In this process, many variables, including chemical and physical (besides yield data) variables, can be used. After selecting variables, a cluster algorithm like fuzzy c-means is usually applied to define the classes. Selection of variables comprise a difficult issue in cluster analysis because these will often influence cluster determination. The goal of this study was... A. Gavioli, E.G. Souza, C.L. Bazzi, N.M. Betzek, K. Schenatto, H. Beneduzzi

54. Using the Adapt-N Model to Inform Policies Promoting the Sustainability of US Maize Production

Maize (Zea mays L.) production accounts for the largest share of crop land area in the U.S. It is the largest consumer of nitrogen (N) fertilizers but has low N Recovery Efficiency (NRE, the proportion of applied N taken up by the crop). This has resulted in well-documented environmental problems and social costs associated with high reactive N losses associated with maize production. There is a potential to reduce these costs through precision management, i.e., better application timing, use... S. Sela, H. Van-es, E. Mclellan, J. Melkonian, R. Marjerison , K. Constas

55. Maize Seeding Rate Optimization in Iowa Using Soil and Topographic Characteristics.

The ability to collect soil, topography, and productivity information at spatial scales has become more feasible and more reliable with many advancement in precision technologies. This ability, combined with precision services and the accessibility farmers have to equipment capable implementing precision practices, has led to continued interest in making site-specific crop management decisions. The objective of this research was to utilize soil and topographic parameters to optimize seeding r... M.A. Licht, A. Lenssen, R. Elmore

56. Spatial Variability of Soil Nutrients and Precision Nutrient Management for Targeted Yield Levels of Groundnut (Arachis Hypogaea L.)

A field study was conducted during rabi / summer 2014-15 to know the spatial variability and precision nutrient management practices on targeted yield levels of groundnut. The experimental field has been delineated into 36 grids of 9 m x 9 m using geospatial technology. Soil samples from 0-15 cm were collected and analysed. Spatial variability exists for available nitrogen, phosphorous and potassium and they varied from 99 to 197 kg N, 12.1 to 64.0 kg P2O5 and 1... H. D.c, S. Dr., N. Dr., M. Giriyappa, S. T

57. Analysis of High Yield Condition Using a Rice Yield Predictive Model

Rice production in Japan is facing problems of yield and quality instability owing to recent climate changes and a decline in rice prices, and possible competition with foreign inexpensive rice. Thus, it is becoming more important to stably achieve high yield and quality, while reducing production costs. Various data, including crop growth, farmer’s management styles, yield and quality, has recently become accessible in actual fields using advanced information and communication technolo... Y. Hirai, T. Yamakawa, E. Inoue, T. Okayasu, M. Mitsuoka

58. Precision Nutrient Management System Based on Ion and Crop Growth Sensing

Automated sensing and variable-rate supply of nutrients in hydroponic solutions according to the status of crop growth would allow more efficient nutrient management for crop growth in closed systems. The Structure from Motion (SfM) method has risen as a new image sensing method to obtain 3D images of plants that can be used to estimate their growth, such as leaf cover area (LCA), plant height, and fresh weight. In this sense, sensor fusion technology combining ion-selective electrodes (ISEs)... W. Cho, D. Kim, C. Kang, H. Kim, J. Son, S. Chung, J. Jiang, H. Yun

59. Precision Nutrient Management Through Drip Irrigation in Aerobic Rice

A field experiment was conducted during kharif 2015 to asses the spatial variability and precision nutrient management through drip irrigation in aerobic rice at ZARS, GKVK, Bangalore. The experimental field has been delineated into 48 grids of 4.5 m x 4.5 m using geospatial technology. Soil samples from 0-15 cm depth were collected and analysed. There was spatial variability for available nitrogen (154 to 277 kg ha-1), phosphorous (45 to 152 kg ha-1) and potass... N. Dr., S. T, M. Giriyappa, H. D.c, B. Patil, D. Prabhudeva, G. Kombali, S. Noorasma, M. Thimmegowda

60. North American Soil Test Summary

With the assistance and cooperation of numerous private and public soil testing laboratories, the International Plant Nutrition Institute (IPNI) periodically summarizes soil test levels in North America (NA). Soil tests indicate the relative capacity of soil to provide nutrients to plants. Therefore, this summary can be viewed as an indicator of the nutrient supplying capacity or fertility of soils in NA. This is the eleventh summary completed by IPNI or its predecessor, the Potash ... Q. Rund, S. Murrell, A. Erbe, R. Williams, E. Williams

61. Prediction of Sugarcane Yields in Commercial Fields by Early Measurements with an Optical Crop Canopy Sensor

As a grass (Poaceae), sugarcane needs supplemental mineral nitrogen (N) to achieve high yields on commercial production areas. In Brazil, N recommendations for sugarcane ratoons are based on expected yield and the results of N response trials, as soil N analyses are not a suitable basis for decisions on optimum N fertilizer rates under tropical conditions. Since the vegetative parts in sugarcane are harvested, yield components such as the number of stalks and stalk height are directly correla... G. Portz, J. Jasper, J.P. Molin

62. Net Returns and Production Use Efficiency for Optical Sensing and Variable Rate Nitrogen Technologies in Cotton Production

This research evaluated the profitability and N use efficiency of real time on-the-go optical sensing measurements (OPM) and variable-rate technologies (VRT) to manage spatial variability in cotton production in the Mississippi River Basin states of Louisiana, Mississippi, Missouri, and Tennessee. Two forms of OPM and VRT and the existing farmer practice (FP) were used to determine N fertilizer rates applied to cotton on farm fields in the four states. Changes in yields and N rates due to OPM... J.A. Larson, M. Stefanini, D.M. Lambert, X. Yin, C.N. Boyer, J.J. Varco, P.C. Scharf , B.S. Tubaña, D. Dunn, H.J. Savoy, M.J. Buschermohle, D.D. Tyler

63. Integrated Approach to Site-specific Soil Fertility Management

In precision agriculture the lack of affordable methods for mapping relevant soil attributes is a funda­mental problem. It restricts the development and application of advanced models and algorithms for decision making. The project “I4S - Integrated System for Site-Specific Soil Fertility Management” combines new sensing technologies with dynamic soil-crop models and decision support systems. Using sensors with different measurement principles improves the estimation of soil f... R. Gebbers, V. Dworak, B. Mahns, C. Weltzien, D. Büchele, I. Gornushkin, M. Mailwald, M. Ostermann, M. Rühlmann, T. Schmid, M. Maiwald, B. Sumpf, J. Rühlmann, M. Bourouah, H. Scheithauer, K. Heil, T. Heggemann, M. Leenen, S. Pätzold, G. Welp, T. Chudy, A. Mizgirev, P. Wagner, T. Beitz, M. Kumke, D. Riebe, C. Kersebaum, E. Wallor

64. Use of Crop Canopy Reflectance Sensor in Management of Nitrogen Fertilization in Sugarcane in Brazil

Given the difficulty to determine N status in soil testing and lack of crop parameters to recommend N for sugarcane in Brazil raise the necessity of identify new methods to find crop requirement to improve the N use efficiency. Crop canopy sensor, such as those used to measure indirectly chlorophyll content as N status indicator, can be used to monitor crop nutritional demand. The objective of this experiment was to assess the nutritional status of the sugarcane fertilized with different nitr... S.G. Castro, G.M. Sanches, G.M. Cardoso, A.E. Silva, H.C. Franco, P.S. Magalhães

65. Adjustment of Corn Population and Nitrogen Fertilization Based on Management Zones

The main objective of this study was to adjust the corn population and nitrogen fertilization according to management zones, based on past grain yield maps (seven of soybean and three of corn) and soil electrical conductivity. The study was carried out in Não-Me-Toque, Rio Grande do Sul, Brazil, and it was conducted in a factorial strip blocks with 3 repetitions in each management zone, being the treatments: corn populations (56000, 64000, 72000, 80000 and 88000 plants ha-1)... R. Schwalbert, T.J. Carneiro amado, T. Horbe, G.M. Corassa, F.H. Gebert

66. Translating Data into Knowledge - Precision Agriculture Database in a Sugarcane Production.

The advent of Information Technology in agriculture, surveying and data collection became a simple task, starting the era of "Big Data" in agricultural production. Currently, a large volume of data and information associated with the plant, soil and climate are collected quick and easily. These factors influence productivity, operating costs, investments and environment impacts. However, a major challenge for this area is the transformation of data and in... G.M. Sanches, O.T. Kolln, H.C. Franco, P.S. Magalhaes, D.G. Duft

67. Integrated Analysis of Multilayer Proximal Soil Sensing Data

Data revealing spatial soil heterogeneity can be obtained in an economically feasible manner using on-the-go proximal soil sensing (PSS) platforms. Gathered georeferenced measurements demonstrate changes related to physical and chemical soil attributes across an agricultural field. However, since many PSS measurements are affected by multiple soil properties to different degrees, it is important to assess soil heterogeneity using a multilayer approach. Thus, analysis of multiple layers of geo... V.I. Adamchuk, N. Dhawale, A. Biswas, S. Lauzon‎, P. Dutilleul

68. Within-field Profitability Assessment: Impact of Weather, Field Management and Soils

Profitability in crop production is largely driven by crop yield, production costs and commodity prices. The objective of this study was to quantify the often substantial yet somewhat illusive impact of weather, management, and soil spatial variability on within-field profitability in corn and soybean crop production using profitability indices for profit (net return) and return-on-investment (ROI) to produce estimates. We analyzed yield and cropping system data provided by 42 farmers within ... P.M. Kyveryga, S. Fey, J. Connor, A. Kiel, D. Muth

69. Field-scale Nitrogen Recommendation Tools for Improving a Canopy Reflectance Sensor Algorithm

Nitrogen (N) rate recommendation tools are utilized to help producers maximize grain yield production. Many of these tools provide recommendations at field scales but often fail when corn N requirements are variable across the field. This may result in excess N being lost to the environment or producers receiving decreased economic returns on yield. Canopy reflectance sensors are capable of capturing within-field variability, although the sensor algorithm recommendations may not always be as ... C.J. Ransom, M. Bean, N. Kitchen, J. Camberato, P. Carter, R. Ferguson, F. Fernandez, D. Franzen, C. Laboski, E. Nafziger, J. Sawyer, J. Shanahan

70. Active and Passive Crop Canopy Sensors As Tools for Nitrogen Management in Corn

The objectives of this research were to (i) assess the correlation between active and passive crop canopy sensors’ vegetation indices at different corn growth stages and (ii) assess sidedress variable rate nitrogen (N) recommendation accuracy of active and passive sensors compared to the agronomic optimum N rate (AONR). The experiment was conducted near Central City, Nebraska on a Novina sandy loam planted to corn on 15 April 2015. The experiment was a randomized complete-block design w... L. Bastos, R. Ferguson

71. AGTECH CHILE: an Outreach and Technology Transfer Platform for Closing Gaps in Emerging Chilean Precision Agriculture Companies

Precision agriculture (PA) is being developed in Chile since 1997. Today there are approximately 20 companies providing products and services in PA at different levels. Most of them are young entrepreneurships which have important knowledge gaps, particularly on technology basis and data management to transform them into useful information. In order to help closing some of the gaps, and contributing to the development of an innovation ecosystem, an extension proposal was developed, ... R.A. Ortega, P. Trebilcock

72. A Context Changing with Precision Agriculture in Japan

A new context is emerging under introducing of precision agriculture, impacted by top-down ICT policies and bottom-up collaborative activities. Food chain is changing by a holistic technology policy of integration in the fields of breeding, farm production, processing, transportation, and market in consumers. A new ICT strategy was issued by the government for precision agriculture to enhance the interoperability and portability of data/information sets collected from the field. The administr... S. Shibusawa

73. Sensor-based Nitrogen Applications Out-performed Producer-chosen Rates for Corn in On-farm Demonstrations

Optimal nitrogen fertilizer rate for corn can vary substantially within and among fields.  Current N management practices do not address this variability.  Crop reflectance sensors offer the potential to diagnose crop N need and control N application rates at a fine spatial scale.  Our objective was to evaluate the performance of sensor-based variable-rate N applications to corn, relative to constant N rates chosen by the producer.  Fifty-five replicated on-farm demonstrat... P. Scharf, K. Shannon, K. Sudduth, N. Kitchen

74. Liquid Flow Control Requirements for Crop Canopy Sensor-Based N Management in Corn: A Project SENSE Case Study

While on-farm adoption of crop canopy sensors for directing in-season nitrogen (N) application has been slow, research focused on these systems has been significant for decades. Much emphasis has been placed on developing and testing algorithms based on sensor output to predict N needs, but little information has been published regarding liquid flow control requirements on equipment used in conjunction with these sensing systems. Addition of a sensor-based system to a standard spray rate cont... J. Luck, J. Parrish, L. Thompson, B. Krienke, K. Glewen, R.B. Ferguson

75. Towards Precision Microbiology

In the recent years, the use of organic matter (OM) and microorganisms is increasing beyond organic agriculture, into conventional horticultural systems, in order to achieve high yields and quality through a more sustainable soil management. Thus, Integrated Nutrient Management (INM), that includes the use of diagnostic tools, high quality OM, microbial inoculants, highly-efficient fertilizer, and site-specific management in gaining space in intensive production systems. Precision m... V. Gutiérrez, R. Ortega

76. Using Deep Learning - Convolutional Naural Networks (CNNS) for Real-Time Fruit Detection in the Tree

Image/video processing for fruit detection in the tree using hard-coded feature extraction algorithms have shown high accuracy on fruit detection during recent years. While accurate, these approaches even with high-end hardware are still computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks architecture based on single-stage detectors. Using deep-learning techniques eliminates the need for hard-code specific features for s... K. Bresilla, L. Manfrini, A. Boini, G. Perulli, B. Morandi, L.C. Grappadelli

77. Digital Transformation of Canadian Agri-Food

Agriculture in Canada is on the cusp of a dramatic revolution as a result of the digital transformation of the industry driven by the emergence of tools such as Precision Agri-Food Technologies and the Internet of Things (IoT, a network of interconnected physical devices capable of connecting to the internet). With the expected exponential growth of data from the application of innovative technologies such as IoT by the Canadian Agri-Food industry, Canada has the potential to gain valuable in... K.J. Hand

78. Optimal Sensor Placement for Field-Wide Estimation of Soil Moisture

Soil moisture is one of the most important parameters in precision agriculture. While techniques such as remote sensing seems appropriate for moisture monitoring over large areas, they generally do not offer sufficiently fine resolution for precision work, and there are time restrictions on when the data is available. Moreover, while it is possible to get high resolution-on demand data, but the costs are often prohibitive for most developing countries. Direct ground level measuremen... H. Pourshamsaei, A. Nobakhti

79. A Case Study Comparing Machine Learning and Vegetation Indices for Assessing Corn Nitrogen Status in an Agricultural Field in Minnesota

Compact hyperspectral sensors compatible with UAV platforms are becoming more readily available. These sensors provide reflectance in narrow spectral bands while covering a wide range of the electromagnetic spectrum. However, because of the narrow spectral bands and wide spectral range, hyperspectral data analysis can benefit greatly from data mining and machine learning techniques to leverage its power. In this study, rainfed corn was grown during the 2017 growing season using four nitrogen ... A. Laacouri, T. Nigon, D. Mulla, C. Yang

80. Weed Detection Among Crops by Convolutional Neural Networks with Sliding Windows

One of the primary objectives in the field of precision agriculture is weed detection. Detecting and expunging weeds in the initial stages of crop growth with deep learning technique can minimize the usage of herbicides and maximize the crop yield for the farmers. This paper proposes a sliding window approach for the detection of weed regions using convolutional neural networks. The proposed approach involves two processes: (1) Image extraction and labelling, (2) building and training our neu... K. Kantipudi, C. Lai, C. Min, R.C. Chiang

81. Changing the Cost of Farming: New Tools for Precision Farming

Accurate prescription maps are essential for effective variable rate fertilizer application.  Grid soil sampling has most frequently been used to develop these prescription maps.  Past research has indicated several technical and economic limitations associated with this approach.  There is a need to keep the number of samples to a minimum while still allowing a reasonable level of map quality.  As can be seen, precision agriculture managemen... P. Nagel, K. Fleming

82. On-Farm Digital Solutions and Their Associated Value to North American Farmers

Digital tools and data collection have become standard in a wide variety of present day agricultural operations. An array of digital tools, such as high resolution operational mapping, remote sensing, and farm management software offer solutions to many of the problems in modern agriculture. These technologies and services can, if implemented correctly, provide both immediate and long term agronomic value. A growing number of producers in Ohio and around North America question the proper meth... R. Colley iii, J. Fulton, N. Douridas, K. Port

83. An Efficient Data Warehouse for Crop Yield Prediction

Nowadays, precision agriculture combined with modern information and communications technologies, is becoming more common in agricultural activities such as automated irrigation systems, precision planting, variable rate applications of nutrients and pesticides, and agricultural decision support systems. In the latter, crop management data analysis, based on machine learning and data mining, focuses mainly on how to efficiently forecast and improve crop yield. In recent years, raw and semi-pr... V.M. Ngo, N. Le-khac, M. Kechadi

84. AgDataBox – API (Application Programming Interface)

E-agricultural is an emerging field focusing in the enhancement of agriculture and rural development through improve in information and data processing. The data-intensive characteristic of these domains is evidenced by the great variety of data to be processed and analyzed. Countrywide estimates rely on maps, spectral images from satellites, and tables with rows for states, regions, municipalities, or farmers. Precision agriculture (PA) relies on maps of within field variability of soil and ... C.L. Bazzi, E.P. Jasse, E.G. Souza, P.S. Magalhães, G.K. Michelon, K. Schenatto, A. Gavioli

85. Accelerating Precision Agriculture to Decision Agriculture: Enabling Digital Agriculture in Australia

For more than two decades, the success of Australia’s agricultural and rural sectors has been supported by the work of the Rural Research and Development Corporations (RDCs). The RDCs are funded by industry and government. For the first time, all fifteen of Australia’s RDC’s have joined forces with the Australian government to design a solution for the use of big data in Australian agriculture. This is the first known example of a nationwide approach for the digital transfor... J. Trindall, R. Rainbow

86. Pest Detection on UAV Imagery Using a Deep Convolutional Neural Network

Presently, precision agriculture uses remote sensing for the mapping of crop biophysical parameters with vegetation indices in order to detect problematic areas, and then send a human specialist for a targeted field investigation. The same principle is applied for the use of UAVs in precision agriculture, but with finer spatial resolutions. Vegetation mapping with UAVs requires the mosaicking of several images, which results in significant geometric and radiometric problems. Furthermore, even... Y. Bouroubi, P. Bugnet, T. Nguyen-xuan, C. Bélec, L. Longchamps, P. Vigneault, C. Gosselin

87. Forecasting Crop Yield Using Multi-Layered, Whole-Farm Data Sets and Machine Learning

The ultimate goal of Precision Agriculture is to improve decision making in the business of farming. Many broadacre farmers now have a number of years of crop yield data for their fields which are often augmented with additional spatial data, such as apparent soil electrical conductivity (ECa), soil gamma radiometrics, terrain attributes and soil sample information. In addition there are now freely available public datasets, such as rainfall, digital soil maps and archives of satellite remote... P. Filippi, E.J. Jones, M. Fajardo, B.M. Whelan, T.F. Bishop

88. Shared Protocols and Data Template in Agronomic Trials

Due to the overlap of many disciplines and the availability of novel technologies, modern agriculture has become a wide, interdisciplinary endeavor, especially in Precision Agriculture. The adoption of a standard format for reporting field experiments can help researchers to focus on the data rather than on re-formatting and understanding the structure of the data. This paper describes how a European consortium plans to: i) create a “handbook” of protocols for reporting definition... D. Cammarano, D. Drexler, P. Hinsinger, P. Martre, X. Draye, A. Sessitsch, N. Pecchioni, J. Cooper, W. Helga, A. Voicu

89. Improving the Use of Artificial Neural Networks for 
Site-Specific Nitrogen Fertilization

For the planning of site-specific nitrogen fertilization, adequate decision rules are needed. Prerequisite for site specific nitrogen fertilization is the site specific forecast of yield. For this the use of artificial neural networks (ANN) has proven particularly interesting. Therefore, ANN based small-scale yield forecasts are realized in order to deviate the economic optimum of fertilization. The basis of yield forecasts with ANN are different site-specific input variables that have presum... J.S. Hauser, P. Wagner

90. Data Clustering Tools for Understanding Spatial Heterogeneity in Crop Production by Integrating Proximal Soil Sensing and Remote Sensing Data

Remote sensing (RS) and proximal soil sensing (PSS) technologies offer an advanced array of methods for obtaining soil property information and determining soil variability for precision agriculture. A large amount of data collected using these sensors may provide essential information for precision or site-specific management in a production field. In this paper, we introduced a new clustering technique was introduced and compared with existing clustering tools for determining relatively hom... M. Saifuzzaman, V.I. Adamchuk, H. Huang, W. Ji, N. Rabe, A. Biswas

91. Data-Driven Agricultural Machinery Activity Anomaly Detection and Classification

In modern agriculture, machinery has become the one of the necessities in providing safe, effective and economical farming operations and logistics. In a typical farming operation, different machines perform different tasks, and sometimes are used together for collaborative work. In such cases, different machines are associated with representative activity patterns, for example, in a harvest scenario, combines move through a field following regular swaths while grain carts follow irregular pa... Y. Wang, A. Balmos, J. Krogmeier, D. Buckmaster

92. ADAPT: A Rosetta Stone for Agricultural Data

Modern farming requires increasing amounts of data exchange among hardware and software systems. Precision agriculture technologies were meant to enable growers to have information at their fingertips to keep accurate farm records (and calculate production costs), improve decision-making and promote effi­cien­cies in crop management, enable greater traceability, and so forth. The attainment of these goals has been limited by the plethora of proprietary, incompatible data formats among... D.D. Danford, K.J. Nelson, S.T. Rhea, M.W. Stelford, R. Ferreyra, J.A. Wilson, B.E. Craker

93. Analyzing Trends for Agricultural Decision Support System Using Twitter Data

The trends and reactions of the general public towards global events can be analyzed using data from social platforms, including Twitter. The number of tweets has been reported to help detect variations in communication traffic within subsets like countries, age groups and industries. Similarly, publicly accessible data and (in particular) data from social media about agricultural issues provide a great opportunity for obtaining instantaneous snapshots of farmers’ opinions and a method ... S. Jha, D. Saraswat, M.D. Ward

94. Determining the Marginal Value of Extra Precision in Precision Grazing Systems – an Ex Ante Analysis of Impacts on System Productivity, Sustainability and Economics

The development of precision livestock farming (PLF) technologies for application in grazing systems is rapidly evolving. PLF technologies that facilitate the spatial and temporal management of variability in landscapes, pastures and animals promise to improve the efficiency, profitability and sustainability of livestock farming. However, such technologies as a complete package do not yet exist in grazing systems and the question of impacts at the farm system level remains unresolved. Other p... K. Behrendt, T. Takahashi, M.S. Rutter