Login

Proceedings

Find matching any: Reset
Jermy, M
Kristensen, A.R
Zydenbos, S
Zhang, J
Kamphuis, C
Zillmann, E
Jørgensen, R.N
Jasse, E.P
Kitcken, N
Zhijun, M
Kaur, R
Jackson, C
Krienke, B
Keller, M
Kechadi, M
Zuniga-Ramirez, G
Jasper, J
Jeon, C
Knight, C.W
KANDA, R
Koch, G
Zhang, Z
Kunnas, A
Jha, S
Kremer, R.J
Ji, W
Add filter to result:
Authors
Sekhon, B.S
Mukherjee, J
Sharma, A
Thind, S.K
Kaur, R
Makkar, M.S
Suokannas, A
Backman, J
Visala, A
Kunnas, A
Jago, J
Burke, J
Kamphuis, C
Dela Rue, B.T
Dela Rue, B.T
Jago, J
Kamphuis, C
Dela Rue, B.T
Kamphuis, C
Jago, J.G
Burke, C.R
Guangwei, W
Zhijun, M
Liping, C
Weiqiang, F
Jianjun, D
Kremer, R.J
Kitchen, N.R
Sudduth, K.A
Myers, D.B
Kodaira, M
NAGAMI, Y
Shibusawa, S
KANDA, R
Gnyp, M.L
Panitzki, M
Reusch, S
Jasper, J
Bolten, A
Bareth, G
Walsh, O.S
Belmont, K
McClintick-Chess, J
Marshall, J
Jackson, C
Thompson, C
Swoboda, K
Frotscher, K.J
Schacht, R
Smith, L
Zillmann, E
Jeon, C
Kim, H
Han, X
Moon, H
Luck, J
Parrish, J
Thompson, L
Krienke, B
Glewen, K
Ferguson, R.B
Liu, X
Cao, Q
Tian, Y
Zhu, Y
Zhang, Z
Cao, W
Ngo, V.M
Le-Khac, N
Kechadi, M
Biswas, A
Ji, W
Perron, I
Cambouris, A
Zebarth, B
Adamchuk, V
Knight, C.W
Cosby, A
Trotter, M
Post, S
Jermy, M
Gaynor, P
Kabaliuk, N
Werner, A
Bazzi, C.L
Jasse, E.P
Souza, E.G
Magalhães, P.S
Michelon, G.K
Schenatto, K
Gavioli, A
Skovsen, S
Dyrmann, M
Eriksen, J
Gislum, R
Karstoft, H
Jørgensen, R.N
Dyrmann, M
Skovsen, S
Jørgensen, R.N
Laursen, M.S
Larsen, D
Skovsen, S
Steen, K.A
Grooters, K
Green, O
Jørgensen, R.N
Eriksen, J
Christiansen, M.P
Laursen, M.S
Jørgensen, R.N
Skovsen, S
Gislum, R
Stewart, S
Kitcken, N
Yost, M
Conway, L
Saifuzzaman, M
Adamchuk, V.I
Huang, H
Ji, W
Rabe, N
Biswas, A
Hauschild, L
Kristensen, A.R
Andretta, I
Pomar, C
Remus, A
King, W
Dynes, R
Laurenson, S
Zydenbos, S
MacAuliffe, R
Taylor, A
Manning, M
Roberts, A
White, M
Leksono, E
Adamchuk, V
Ji, W
Leclerc, M
Huang, H
Adamchuk, V
Biswas, A
Ji, W
Lauzon, S
Jha, S
Saraswat, D
Ward, M.D
Fleming, K
Schottle, N
Nagel, P
Koch, G
Wakahara, S
Miao, Y
Gupta, S
Rosen, C
Mizuta, K
Zhang, J
Li, D
Zhou, C
Lee, W
Pourreza, A
Schueller, J.K
Liburd, O.E
Ampatzidis, Y
Zuniga-Ramirez, G
Kang, C
Karkee, M
Zhang, Q
Shcherbatyuk, N
Davadant, P
Keller, M
Topics
Remote Sensing Applications in Precision Agriculture
Engineering Technologies and Advances
Precision Dairy and Livestock Management
Spatial Variability in Crop, Soil and Natural Resources
Proximal Sensing in Precision Agriculture
Spatial Variability in Crop, Soil and Natural Resources
Remote Sensing Applications in Precision Agriculture
Precision Nutrient Management
Engineering Technologies and Advances
Sensor Application in Managing In-season Crop Variability
Applications of Unmanned Aerial Systems
Big Data, Data Mining and Deep Learning
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Education and Outreach in Precision Agriculture
Precision Crop Protection
Site-Specific Nutrient, Lime and Seed Management
Precision Dairy and Livestock Management
Site-Specific Pasture Management
Geospatial Data
Profitability and Success Stories in Precision Agriculture
In-Season Nitrogen Management
Big Data, Data Mining and Deep Learning
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Type
Poster
Oral
Year
2012
2010
2016
2018
2022
Home » Authors » Results

Authors

Filter results34 paper(s) found.

1. The Soil P2O5 Mapping Using The Real Time Soil Sensor

    Many researches related to P­2O5 measurement using Vis-NIR spectroscopy have been performed in laboratory. There are not so many researches to perform on-the-go measurement of P­2O5. One of the researches which performed... M. Kodaira, Y. Nagami, S. Shibusawa, R. Kanda

2. Spectral Models for Estimation of Chlorophyll Content, Nitrogen, Moisture Stress and Growth of Wheat Crop

  Field  experiments  were  conducted  during  2009-10  and  2010-11 at  research  farm  of the department of Farm Machinery and Power Engineering, Punjab Agricultural university, Ludhiana.  Three wheat ... B.S. Sekhon, J. Mukherjee, A. Sharma, S.K. Thind, R. Kaur, M.S. Makkar

3. Optimization of Forage Harvesting By Automatic Speed Control and Additive Application

Efficient use of machines is especially important in forage harvesting due to the short harvesting period and expensive machinery. To achieve the best efficiency, a harvesting machine, such as a loader wagon, should be used with optimal loading. Whereas overloading the machine can cause blockages in the cut-and-feed unit, underloading consumes more time and reduces the quality of the resulting silage. In addition, the quality can be improved by optimizing the dosage of the additive. Since the... A. Suokannas, J. Backman, A. Visala, A. Kunnas

4. Remote Collection of Behavioral and Physiological Data to Detect Lame Cows

Authors of abstract: C. Kamphuis, J. Burke, J. Jago ... J. Jago, J. Burke, C. Kamphuis, B. Dela rue

5. Two On-Farm Tests to Evaluate In-Line Sensors for Mastitis Detection

To date, there is no independent and uniformly presented information available regarding detection performance of automated in-line mastitis detection systems. This lack of information makes it hard for farmers or... B. Dela rue, J. Jago, C. Kamphuis

6. Field Evaluation of Automated Estrus Detection Systems - Meeting Farmers' Expectation

Automated systems for oestrus detection are commonly marketed as a suitable, or in some cases, a higher performing alternative to visual observation. Farmers, particularly those with larger herds relying on less experienced staff, view the perceived benefits of automated systems as both economic and physical, with expectations of improved oestrus detection efficiency with lower labour input. There is little evidence-based information available on the field performance of these systems to... B.T. Dela rue, C. Kamphuis, J.G. Jago, C.R. Burke

7. Evaluation of Application Effect of the Laser Land Leveling Technology in Typical Areas of China

The technology of laser land leveling can improve the accuracy of land leveling and it is the important measure of improving irrigation efficiency and facilitating more uniform distribution of irrigation water. The technology is more widely used in China in... W. Guangwei, M. Zhijun, C. Liping, F. Weiqiang, D. Jianjun

8. Estimating Soil Quality Indicators with Diffuse Reflectance Spectroscopy

Knowledge of within-field spatial variability in soil quality indicators is important to assess the impact of site-specific management on the soil. Standard methods for measuring these properties require considerable time and expense, so sensor-based approaches would be... R.J. Kremer, N.R. Kitchen, K.A. Sudduth, D.B. Myers

9. Comparison Between Tractor-based and UAV-based Spectrometer Measurements in Winter Wheat

In-season variable rate nitrogen fertilizer application needs a fast and efficient determination of nitrogen status in crops. Common sensor-based monitoring of nitrogen status mainly relies on tractor mounted active or passive sensors. Over the last few years, researchers tested different sensors and indicated the potential of in-season monitoring of nitrogen status by unmanned aerial vehicles (UAVs) in various crops. However, the UAV-platforms and the available sensors are not yet accepted to... M. Gnyp, M. Panitzki, S. Reusch, J. Jasper, A. Bolten, G. Bareth

10. UAV-based Crop Scouting for Precision Nutrient Management

Precision agriculture – is one of the most substantial markets for the Unmanned Aerial Vehicles (UAVs). Mounted on the UAVs, sensors and cameras enable rapid screening of large numbers of experimental plots to identify crop growth habits that contribute to final yield and quality in a variety of environments. Wheat is one of the Idaho’s most important cereal crops grown in 42 of 44 Idaho counties. We are working on establishing a UAV-based methodology for in-season prediction of wheat... O.S. Walsh, K. Belmont, J. Mcclintick-chess, J. Marshall, C. Jackson, C. Thompson, K. Swoboda

11. Planet Labs' Monitoring Solution in Support of Precision Agriculture Practices

Satellite imagery is particularly useful for efficiently monitoring very large areas and providing regular feedback on the status and productivity of agricultural fields. These data are now widely used in precision farming; however, many challenges to making optimal use of this technology remain, such as easy access to data, management and exploitation of large datasets with deep time series, and sharing of the data and derived analytics with users. Providing satellite imagery through a cloud... K.J. Frotscher, R. Schacht, L. Smith, E. Zillmann

12. Development of a Crop Edge Line Detection Algorithm Using a Laser Scanner for an Autonomous Combine Harvester

The high cost of real-time kinematic (RTK) differential GPS units required for autonomous guidance of agricultural machinery has limited their use in practical auto-guided systems especially applicable to small-sized farming conditions. A laser range finder (LRF) scanner system with a pan-tilt unit (PTU) has the ability to create a 3D profile of objects with a high level of accuracy by scanning their surroundings in a fan shape based on the time-of-flight measurement principle. This paper describes... C. Jeon, H. Kim, X. Han, H. Moon

13. Liquid Flow Control Requirements for Crop Canopy Sensor-Based N Management in Corn: A Project SENSE Case Study

While on-farm adoption of crop canopy sensors for directing in-season nitrogen (N) application has been slow, research focused on these systems has been significant for decades. Much emphasis has been placed on developing and testing algorithms based on sensor output to predict N needs, but little information has been published regarding liquid flow control requirements on equipment used in conjunction with these sensing systems. Addition of a sensor-based system to a standard spray rate controller... J. Luck, J. Parrish, L. Thompson, B. Krienke, K. Glewen, R.B. Ferguson

14. Using Unmanned Aerial Vehicle and Active-Optical Sensor to Monitor Growth Indices and Nitrogen Nutrition of Winter Wheat

Using unmanned aerial vehicle (UAV) remote sensing monitoring system can rapidly and cost-effectively provide crop canopy information for growth diagnosis and precision fertilizer regulation. RapidScan CS-45 (Holland, Lincoln, NE, USA) is a portable active-optical sensor designed for timely, non-destructive obtaining plant canopy information without being affected by weather condition. UAV equipped with RapidScan, is of great significant for rapidly monitoring crop growth and nitrogen (N) status.... X. Liu, Q. Cao, Y. Tian, Y. Zhu, Z. Zhang, W. Cao

15. An Efficient Data Warehouse for Crop Yield Prediction

Nowadays, precision agriculture combined with modern information and communications technologies, is becoming more common in agricultural activities such as automated irrigation systems, precision planting, variable rate applications of nutrients and pesticides, and agricultural decision support systems. In the latter, crop management data analysis, based on machine learning and data mining, focuses mainly on how to efficiently forecast and improve crop yield. In recent years, raw and semi-processed... V.M. Ngo, N. Le-khac, M. Kechadi

16. Proximal Soil Sensing-Led Management Zone Delineation for Potato Fields

A fundamental aspect of precision agriculture or site-specific crop management is the ability to recognize and address local changes in the crop production environment (e.g. soil) within the boundaries of a traditional management unit. However, the status quo approach to define local fertilizer need relies on systematic soil sampling followed by time and labour-intensive laboratory analysis. Proximal soil sensing offers numerous advantages over conventional soil characterization and has shown... A. Biswas, W. Ji, I. Perron, A. Cambouris, B. Zebarth, V. Adamchuk

17. Utilizing GPS Technology and Science to Improve Digital Literacy Among Students in Australia and the United States of America

A key issue facing regional, rural and remote communities, in both Australia and the United States of America (USA), is the low level of digital literacy among some cohorts of students. This is particularly the case for students involved in agricultural studies where it is commonly perceived that digital literacy is not relevant to their future occupation. However, this perception is far from the truth, as the reality of farming today means students who intend on entering the agricultural workforce... C.W. Knight, A. Cosby, M. Trotter

18. Real-Time Control of Spray Drop Application

Electrostatic application of spray drops provides unique opportunities to precisely control the application of pesticides due to the additional electrostatic force on the spray drops, in addition to the normally seen forces of aerodynamic drag, gravity, and inertia. In this work, we develop a computational model to predict the spray drop trajectories. The model is validated through experiments with high speed photography of spray drop trajectories, and quantification of which trajectories lead... S. Post, M. Jermy, P. Gaynor, N. Kabaliuk, A. Werner

19. AgDataBox – API (Application Programming Interface)

E-agricultural is an emerging field focusing in the enhancement of agriculture and rural development through improve in information and data processing. The data-intensive characteristic of these domains is evidenced by the great variety of data to be processed and analyzed. Countrywide estimates rely on maps, spectral images from satellites, and tables with rows for states, regions, municipalities, or farmers. Precision agriculture (PA) relies on maps of within field variability of soil and plant... C.L. Bazzi, E.P. Jasse, E.G. Souza, P.S. Magalhães, G.K. Michelon, K. Schenatto, A. Gavioli

20. Predicting Dry Matter Composition of Grass Clover Leys Using Data Simulation and Camera-Based Segmentation of Field Canopies into White Clover, Red Clover, Grass and Weeds

Targeted fertilization of grass clover leys shows high financial and environmental potentials leading to higher yields of increased quality, while reducing nitrate leaching. To realize the gains, an accurate fertilization map is required, which is closely related to the local composition of plant species in the biomass. In our setup, we utilize a top-down canopy view of the grass clover ley to estimate the composition of the vegetation, and predict the composition of the dry matter of the forage.... S. Skovsen, M. Dyrmann, J. Eriksen, R. Gislum, H. Karstoft, R.N. Jørgensen

21. Using a Fully Convolutional Neural Network for Detecting Locations of Weeds in Images from Cereal Fields

Information about the presence of weeds in fields is important to decide on a weed control strategy. This is especially crucial in precision weed management, where the position of each plant is essential for conducting mechanical weed control or patch spraying. For detecting weeds, this study proposes a fully convolutional neural network, which detects weeds in images and classifies each one as either a monocot or dicot. The network has been trained on over 13 000 weed annotations... M. Dyrmann, S. Skovsen, R.N. Jørgensen, M.S. Laursen

22. Autonomous Mapping of Grass-Clover Ratio Based on Unmanned Aerial Vehicles and Convolutional Neural Networks

This paper presents a method which can provide support in determining the grass-clover ratio, in grass-clover fields, based on images from an unmanned aerial vehicle. Automated estimation of the grass-clover ratio can serve as a tool for optimizing fertilization of grass-clover fields. A higher clover content gives a higher performance of the cows, when the harvested material is used for fodder, and thereby this has a direct impact on the dairy industry. An android application... D. Larsen, S. Skovsen, K.A. Steen, K. Grooters, O. Green, R.N. Jørgensen, J. Eriksen

23. Ground Vehicle Mapping of Fields Using LiDAR to Enable Prediction of Crop Biomass

Mapping field environments into point clouds using a 3D LIDAR has the ability to become a new approach for online estimation of crop biomass in the field. The estimation of crop biomass in agriculture is expected to be closely correlated to canopy heights. The work presented in this paper contributes to the mapping and textual analysis of agricultural fields. Crop and environmental state information can be used to tailor treatments to the specific site. This paper presents the current results... M.P. Christiansen, M.S. Laursen, R.N. Jørgensen, S. Skovsen, R. Gislum

24. Optimizing Corn Seeding Depth by Soil Texture to Achieve Uniform Stand

Corn (Zea mays L.) yield potential can be affected by uneven emergence. Corn emergence is influenced by both management and environmental conditions. Varying planting depth and rate as determined by soil characteristics could help improve emergence uniformity and grain yield. This study was conducted to assess varying corn seeding depths on plant emergence uniformity and yield on fine- and coarse-textured soils. Research was conducted on alluvial soil adjacent to the Missouri river with contrasting... S. Stewart, N. Kitcken, M. Yost, L. Conway

25. Data Clustering Tools for Understanding Spatial Heterogeneity in Crop Production by Integrating Proximal Soil Sensing and Remote Sensing Data

Remote sensing (RS) and proximal soil sensing (PSS) technologies offer an advanced array of methods for obtaining soil property information and determining soil variability for precision agriculture. A large amount of data collected using these sensors may provide essential information for precision or site-specific management in a production field. In this paper, we introduced a new clustering technique was introduced and compared with existing clustering tools for determining relatively homogeneous... M. Saifuzzaman, V.I. Adamchuk, H. Huang, W. Ji, N. Rabe, A. Biswas

26. Dynamic Feeding Intake Monitoring in Growing-Finishing Pigs Reared Under Precision Feeding Strategies

Pigs exposed to challenges with no prior experience change their daily feeding intake pattern. A method identifying deviations from normal feeding patterns could be used to develop a model framework to estimate individual nutrient requirements of challenged pigs fed with precision feeding systems. The objective of this study was to develop a tool for early identification of feed intake deviations in precision fed growing-finishing pigs. Feed intake measurements collected during 84 d in 126 growing–finishing... L. Hauschild, A.R. Kristensen, I. Andretta, C. Pomar, A. Remus

27. Through the Grass Ceiling: Using Multiple Data Sources on Intra-Field Variability to Reset Expectations of Pasture Production and Farm Profitability

Intra-field variability has received much attention in arable and horticultural contexts. It has resulted in increased profitability as well as reduced environmental footprint. However, in a pastoral context, the value of understanding intra-field variability has not been widely appreciated. In this programme, we used available technologies to develop multiple data layers on multiple fields within a dairy farm. This farm was selected as it was already performing at a high level, with well-developed... W. King, R. Dynes, S. Laurenson, S. Zydenbos, R. Macauliffe, A. Taylor, M. Manning, A. Roberts, M. White

28. Development of a Soil ECa Inversion Algorithm for Topsoil Depth Characterization

Electromagnetic induction (EMI) proximal soil sensor systems can deliver rapid information about soil. One such example is the DUALEM-21S (Dualem, Inc. Milton, Ontario, Canada). EMI sensors measure soil apparent electrical conductivity (ECa) corresponding to different depth of investigation depending on the instrument configuration. The interpretation of the ECa measurements is not straightforward and it is often site-specific. Inversion is required to explore specific depths. This inversion process... E. Leksono, V. Adamchuk, W. Ji, M. Leclerc

29. Analysis of Soil Properties Predictability Using Different On-the-Go Soil Mapping Systems

Understanding the spatial variability of soil chemical and physical attributes allows for the optimization of the profitability of nutrient and water management for crop development. Considering the advantages and accessibility of various types of multi-sensor platforms capable of acquiring large sensing data pertaining to soil information across a landscape, this study compares data obtained using four common soil mapping systems: 1) topography obtained using a real-time kinematic (RTK) global... H. Huang, V. Adamchuk, A. Biswas, W. Ji, S. Lauzon

30. Analyzing Trends for Agricultural Decision Support System Using Twitter Data

The trends and reactions of the general public towards global events can be analyzed using data from social platforms, including Twitter. The number of tweets has been reported to help detect variations in communication traffic within subsets like countries, age groups and industries. Similarly, publicly accessible data and (in particular) data from social media about agricultural issues provide a great opportunity for obtaining instantaneous snapshots of farmers’ opinions and a method to... S. Jha, D. Saraswat, M.D. Ward

31. You Can Not Manage What You Dont Measure

The problem of variability in soil nutrient analysis has been studied for years by a number of industry experts; unable to decipher and commercialize hyperspectral soil sensing. Many studies have taken years of testing to account for variability thathas a dramatic impacts on precision of recommendations. The main tradeoff we have identified is between accuracy and precision. Large quantities of raw data are required... K. Fleming, N. Schottle, P. Nagel, G. Koch

32. Evaluating the Potential of Improving In-season Nitrogen Status Diagnosis of Potato Using Leaf Fluorescence Sensors and Machine Learning

Precision nitrogen (N) management is particularly important for potato crops due to their high N fertilizer demand and high N leaching potential caused by their shallow root systems and preference for coarse-textured soils. Potato farmers have been using a standard lab analysis called petiole nitrate-N (PNN) test as a tool to diagnose potato N status and guide in-season N management. However, the PNN test suffers from many disadvantages including time constraints, labor, and cost of analysis.... S. Wakahara, Y. Miao, S. Gupta, C. Rosen, K. Mizuta, J. Zhang, D. Li

33. Strawberry Pest Detection Using Deep Learning and Automatic Imaging System

Strawberry growers need to monitor pests to determine the options for pest management to reduce damage to yield and quality.  However, manually counting strawberry pests using a hand lens is time-consuming and biased by the observer. Therefore, an automated rapid pest scouting method in the strawberry field can save time and improve counting consistency. This study utilized six cameras to take images of the strawberry leaf. Due to the relatively small size of the strawberry pest, six cameras... C. Zhou, W. Lee, A. Pourreza, J.K. Schueller, O.E. Liburd, Y. Ampatzidis, G. Zuniga-ramirez

34. Diagnosis of Grapevine Nutrient Content Using Proximal Hyperspectral Imaging

Nutrient deficiencies on grapevines could affect the fruit yield and quality, which is a major concern in vineyards. Nutrient deficiencies may be recognizable by foliar symptoms that vary by mineral nutrient and stress severity, but it is too late to manage when visible deficiency symptoms become apparent. The nutrient analysis in the laboratory is the way to get an accurate result, but it is time and cost-intensive. The differences in leaf nutrient levels also alter spectral characteristics outside... C. Kang, M. Karkee, Q. Zhang, N. Shcherbatyuk, P. Davadant, M. Keller