Login

Proceedings

Find matching any: Reset
Choi, J
Morellas, V
Camberato, J
McClintick-Chess, J
Squires, T
Ulman, M
Van Den Wyngaert, L
Swanson, G
Strickland, E.E
Shinde, S
Le-Khac, N
Mahmood, S
Martin, R
Silva, R.P
Lejealle, S
Saberioon, M
Cranfield, G
Song, X
Owens, P
Cointault, F
Mishra, A.R
Sigel, G
Cambouris, A
Lange, A
Miele, A
Séguin, M
Sanches, G.M
Sugimoto, T
Ennadifi, E
Privette, C.V
Mueller, S
Stiehl, D
Mouazen, A.M
Schrenk, J
Tronco, M
Eberle, D
Shafii, M.S
Poulin, J
Vitali, G
Schepers, J.S
Myers, B
Porter, W
Schmer, M
Thies, S
Overs, L
Mullen, R.W
Carver, S.M
Lacerda, L
Sun, C
Trebilcock, P
Owens, P.R
Maxwell, B.D
Vigneault, P
Liu, X
Slaeem, S
Costa, C.C
Sauvageau, G
Mendez-Costabel, M
Shanwad, U.K
Lehmann, J
Trotter, M.G
Erbe, A
Patil, M.B
Lidauer, L
Sébastien, D
Thompson, A
Chim, B
Turner, R.W
Campana, M
Sugihara, T
Molin, J.P
Pradalier, C
Loewen, S
Chagas, M.F
Chassen, E
Add filter to result:
Authors
Bettiol, G.M
Inamasu, R.Y
Rabello, L.M
Bernardi, A.C
Campana, M
Oliveira, P.P
Gholizadeh , A
Mohd Soom , M
Saberioon, M
Kormann, G
Mueller, S
Werner, R
Shanwad, U.K
Patil, M.B
H, V
B.G , M
R, P
N.L. , R
S, S
Khosla, R
Patil, V.C
Sugimoto, T
Shirakawa, T
Sano, M
Ohaba, M
Shibusawa, S
Nakagawa, Y
Marine, L
Manon, M
Claire, G
Laurent, P
Mostafa, F
Zoran, C
Naima, B
Sébastien, D
Olivier, G
Sun, C
Ji, Z
Qian, J
Li, M
Zhao, L
Li, W
Zhou, C
Du, X
Xie, J
Wu, T
Qu, L
Hao, L
Yang, X
Yang, X
Sun, C
Qian, J
Ji, Z
Qiao, S
Chen, M
Zhao, C
Li, M
Betz, A
Benny, H
Jens, M
Özyurtlu, M
Pflanz, M
Rachow-Autrum, T
Schischmanow, A
Scheele, M
Schrenk, J
Schrenk, L
Zude, M
Gebbers, R
Cointault, F
Gouton, P
Billiot, B
Flores, C
Filippini A., J
Miele, A
Song, X
Zhao, C
Chen, L
Huang, W
Cui, B
Shanwad, U
H, V
N.L., R
Kanannnavar, P.S
Swamy, S
Patil, M.B
Cambouris, A
Chokmani, K
Morier, T
Ehsani, R
Salyani, M
Maja, J.M
Mishra, A.R
Larbi, P.A
Camargo Neto, J
Dutra, R
Sousa, R
Porto, A
Inamasu, R
Lopes, W
Tronco, M
Shaver, T
Schmer, M
Irmak, S
Van Donk, S
Wienhold, B
Jin, V
Bereuter, A
Francis, D
Rudnick, D
Ward, N
Hendrickson, L
Ferguson, R.B
Adamchuk, V.I
Tremblay, N
Vigneault, P
Bouroubi, M.Y
Dorais, M
Gianquinto, G.P
Tempesta, M
Slaeem, S
Zaman, Q.U
Madani, A
Schumann, A
Percival, D
Ahmad, H.N
Farooque, A.A
Khan, F
Bazzi, C.L
Souza, E.G
Stiehl, D
Goffart, J
Leonard, A
Buffet, D
Defourny, P
Van Den Wyngaert, L
Allphin, E
Kitchen, N.R
Suddeth, K.A
Thompson, A
Cointault, F
Hijazi, B
Dubois, J
Vangeyte, J
Paindavoine, M
Lejealle, S
Holland, K.H
Schepers, J.S
Cointault, F
Marin, A
Journaux, L
Miteran, J
Martin, R
Yang, X
Li, M
Sun, C
Qian, J
Ji, Z
Morris, E
Clarke, A
Sunley, S
Hill, C
Cranfield, G
Stanley, J.S
Lamb, D.W
Trotter, M.G
Rahman, M.M
Rew, L.J
Maxwell, B.D
Lawrence, P.G
Dong, Y
Wang, Y
Song, X
Gu, X
Borùvka, L
Saberioon, M
Vašát, R
Gholizadeh, A
Quaderer, J
Coonen, J
Lange, A
Pauly, K
Nakagawa, Y
Sano, M
Shirakawa, T
Yamagishi, K
Sugihara, T
Ohaba, M
Shibusawa, S
Sugimoto, T
Jacquin, A
Sigel, G
Hagolle, O
Lepoivre, B
Roumiguié, A
Poilvé, H
Thompson, A
Boardman, D.L
Kitchen, N
Allphin, E
Burnquist, H.L
Costa, C.C
Sanchez, L.A
Klein, L.J
Claassen, A
Lew, D
Mendez-Costabel, M
Sams, B
Morgan, A
Hinds, N
Hamann, H.F
Dokoozlian, N
Bishop-Hurley, G
Overs, L
Brosnan, S
Krumpholz, A
Henry, D
Castro, S.G
Kolln, O.T
Nakao, H.S
Franco, H.C
Braunbeck, O
Graziano Magalhães, P.S
Sanches, G.M
Vigneault, P
Tremblay, N
Bouroubi, M.Y
Belec, C
Fallon, E
Schepers, J.S
Holland, K.H
Schepers, J.S
Schepers, A.R
Schepers, J.S
Mclure, B
Swanson, G
Chim, B
Gholizadeh, A
Saberioon, M
Borůvka, L
Song, X
Yang, G
Ma, Y
Wang, R
Yang, C
Spekken, M
Molin, J.P
Romanelli, T.L
Ferraz, M.N
Ferraz, M.N
Molin, J.P
Anselmi, A.A
Molin, J.P
eitelwein, M.T
Trevisan, R
Colaço, A
Walsh, O.S
Belmont, K
McClintick-Chess, J
Marshall, J
Jackson, C
Thompson, C
Swoboda, K
Walsh, O.S
Belmont, K
McClintick-Chess, J
Mulla, D
Zermas, D
Kaiser, D
Bazakos, M
Papanikolopoulos, N
Stanitsas, P
Morellas, V
Maldaner, L
Molin, J.P
Canata, T.F
Colaço, A.F
Molin, J.P
Trevisan, R.G
Rosell-Polo, J.R
Escolà, A
Jarolimek, J
Stočes, M
Ulman, M
Vaněk, J
Rund, Q
Murrell, S
Erbe, A
Williams, R
Williams, E
Vellidis, G
Liakos, V
Porter, W
Liang, X
Tucker, M.A
Khalilian, A
Qiao, X
Payero, J.O
Maja, J.M
Privette, C.V
Han, Y.J
Sanches, G.M
Kolln, O.T
Franco, H.C
Magalhaes, P.S
Duft, D.G
Hunt, E
Rondon, S.I
Bruce, A.E
Turner, R.W
Brungardt, J.J
Conway, L
Yost, M
Kitchen, N
Sudduth, K
Myers, B
Sanches, G.M
Amaral, L.R
Pitrat, T
Brasco, T
Magalhaes, P.S
Duft, D.G
Franco, H.C
Sung, N
Chung, S
Kim, Y
han, K
Choi, J
Kim, J
Cho, Y
Jang, S
Eitelwein, M.T
Trevisan, R.G
Colaço, A.F
Vargas, M.R
Molin, J.P
Ortega, R.A
Trebilcock, P
Nawar, S.M
Mouazen, A.M
George, D
Manfield , A
Tremblay, N
Khun, K
Vigneault, P
Bouroubi, M.Y
Cavayas, F
Codjia, C
Mullen, R.W
Phillips, S.B
Raun, W.R
Thomason, W.E
Bauer, P.J
Stone, K.C
Bussher, W.J
Millen, J.A
Evans, D.E
Strickland, E.E
Upadhayaya, S.K
Udompetaikul, V
Shafii, M.S
Browne, G.T
Zebarth, B
Goyer, C
Neupane, S
Li, S
Mills, A
Whitney, S
Cambouris, A
Perron, I
Sanches, G.M
Cardoso, T.F
Chagas, M.F
Luciano, A.C
Duft, D.G
Magalhães, P.S
Franco, H.C
Bonomi, A
Sanches, G.M
Magalhães, P.S
Franco, H.C
Remacre, A.Z
Pradalier, C
Richard, A
Perez, V
Van Couwenberghe, R
Benbihi, A
Durand, P
Liakos, V
Vellidis, G
Lacerda, L
Porter, W
Tucker, M
Cox, C
Roland, L
Lidauer, L
Sattlecker, G
Kickinger, F
Auer, W
Sturm, V
Efrosinin, D
Drillich, M
Iwersen, M
Berger, A
Iwersen, M
Reiter, S
Schweinzer, V
Kickinger, F
Öhlschuster, M
Lidauer, L
Auer, W
Drillich, M
Berger, A
Krieger, S
Oczak, M
Lidauer, L
Kickinger, F
Öhlschuster, M
Auer, W
Drillich, M
Iwersen, M
Berger, A
Schweinzer, V
Lidauer, L
Kickinger, F
Öhlschuster, M
Auer, W
Drillich, M
Iwersen, M
Berger, A
Ngo, V.M
Le-Khac, N
Kechadi, M
Biswas, A
Ji, W
Perron, I
Cambouris, A
Zebarth, B
Adamchuk, V
Umeda, H
Muramatsu, K
Kawagoe, Y
Sugihara, T
Shibusawa, S
Iwasaki, Y
Li, Q
Sugihara, T
Kodaira, M
Shibusawa, S
Michelon, G.K
Sanches, G.M
Valente, I.Q
Bazzi, C.L
de Menezes, P.L
Amaral, L.R
Magalhaes, P.G
Hoffmann Silva Karp, F
Feritas Colaço, A
Gonçalves Trevisan, R
Molin, J.P
Xu, X
Li, Z
Yang, G
Gu, X
Song, X
Yang, X
Feng, H
Kitchen, N.R
Yost, M.A
Ransom, C.J
Bean, G
Camberato, J
Carter, P
Ferguson, R
Fernandez, F
Franzen, D
Laboski, C
Nafziger, E
Sawyer, J
Spekken, M
Molin, J.P
Laamrani, A
Berg, A
March, M
McLaren, A
Martin, R
Agili, H
Chokmani, K
Cambouris, A
Perron, I
Poulin, J
Cambouris, A
Perron, I
Zebarth, B
Vargas, F
Chokmani, K
Biswas, A
Adamchuk, V
Johnston, A
Adamchuk, V
Biswas, A
Cambouris, A
Lafond, J
Perron, I
Bouroubi, Y
Bugnet, P
Nguyen-Xuan, T
Bélec, C
Longchamps, L
Vigneault, P
Gosselin, C
Prince Czarnecki, J.M
Wasson, L.L
Irby, J.T
Scholtes, A.B
Carver, S.M
Fadul-Pacheco, L
Bisson, G
Lacroix, R
Séguin, M
Roy, R
Vasseur, E
Lefebvre, D
Maxwell, B.D
Bekkerman, A
Silverman, N
Payn, R
Sheppard, J
Izurieta, C
Davis, P
Hegedus, P.B
Khun, K
Vigneault, P
Fallon, E
Tremblay, N
Codjia, C
Cavayas, F
Li, Y
Zhang, Y
Liu, X
Liu, C
Shinde, S
Adamchuk, V
Lacroix, R
Tremblay, N
Bouroubi, Y
Luck, B
Drewry, J
Chassen, E
Steffan, S
Caron, J
Anderson, L
Sauvageau, G
Gendron, L
Thies, S
Clay, D.E
Bruggeman, S
Joshi, D
Clay, S
Miller, J
Porter, W
Daughtry, D
Harris, G
Noland, R
Snider, J
Virk, S
Sanches, G.M
Otto, R
Pereira, F.R
Tavares, T.R
Molin, J.P
da Silva , T.R
de Carvalho , H.W
Dandrifosse, S
Ennadifi, E
Carlier, A
Gosselin, B
Dumont, B
Mercatoris, B
Ameglio, L
Stettler, E
Eberle, D
Loewen, S
Maxwell, B.D
Nze Memiaghe, J.D
Cambouris, A
Maxwell, B.D
Hegedus, P.D
Loewen, S.D
Duff, H.D
Sheppard, J.W
Peerlinck, A.D
Morales, G.L
Bekkerman, A
Oliveira, M.F
Morata, G.T
Ortiz, B
Silva, R.P
Jimenez, A
Cambouris, A
Duchemin, M
Ziadi, N
Karampoiki, M
Todman, L
Mahmood, S
Murdoch, A
Paraforos, D
Hammond, J
Ranieri, E
Oliveira, L.P
Ortiz, B.V
Morata, G.T
Squires, T
Jones, J
Elvir Flores, A
Miao, Y
Sharma, V
Lacerda, L
Ashworth, A
Kharel, T
Owens, P
Canavari, M
Lattanzi, P
Vitali, G
Emmi, L
Ferreyra, R
Lehmann, J
Lowenberg-DeBoer, J
Adhikari, K
Smith, D.R
Hajda, C
Owens, P.R
Topics
Precision Dairy and Livestock Management
Sensor Application in Managing In-season Crop Variability
Guidance, Robotics, Automation, and GPS Systems
Food Security and Precision Agriculture
Engineering Technologies and Advances
Information Management and Traceability
Precision Crop Protection
Precision Horticulture
Spatial Variability in Crop, Soil and Natural Resources
Precision Nutrient Management
Proximal Sensing in Precision Agriculture
Modeling and Geo-statistics
Pros and Cons of Reflectance and Fluorescence-based Remote Sensing of Crop
Spatial Variability in Crop, Soil and Natural Resources
Engineering Technologies and Advances
Precision A-Z for Practitioners
Sensor Application in Managing In-season Crop Variability
Information Management and Traceability
Remote Sensing Applications in Precision Agriculture
Profitability, Sustainability and Adoption
Spatial Variability in Crop, Soil and Natural Resources
Proximal Sensing in Precision Agriculture
Applications of UAVs (unmanned aircraft vehicle systems) in precision agriculture
Sensor Application in Managing In-season CropVariability
Precision Horticulture
Precision Dairy and Livestock Management
Precision Nutrient Management
Emerging Issues in Precision Agriculture (Energy, Biofuels, Climate Change, Standards)
Proximal Sensing in Precision Agriculture
Spatial Variability in Crop, Soil and Natural Resources
Decision Support Systems in Precision Agriculture
Precision Nutrient Management
Sensor Application in Managing In-season Crop Variability
Unmanned Aerial Systems
Precision Horticulture
Precision Crop Protection
Big Data Mining & Statistical Issues in Precision Agriculture
Engineering Technologies and Advances
Remote Sensing Applications in Precision Agriculture
Profitability, Sustainability and Adoption
Remote Sensing for Nitrogen Management
Engineering Technologies
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Precision Agriculture and Global Food Security
Site-Specific Nutrient, Lime and Seed Management
Geospatial Data
Drainage Optimization and Variable Rate Irrigation
Precision Dairy and Livestock Management
Big Data, Data Mining and Deep Learning
Precision Horticulture
Decision Support Systems
In-Season Nitrogen Management
Robotics, Guidance and Automation
Applications of Unmanned Aerial Systems
On Farm Experimentation with Site-Specific Technologies
In-Season Nitrogen Management
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
On Farm Experimentation with Site-Specific Technologies
Site-Specific Pasture Management
Decision Support Systems
Big Data, Data Mining and Deep Learning
Drainage Optimization and Variable Rate Irrigation
Small Holders and Precision Agriculture
Factors Driving Adoption
Precision Agriculture and Global Food Security
Type
Poster
Oral
Year
2012
2010
2014
2016
2008
2018
2022
Home » Authors » Results

Authors

Filter results120 paper(s) found.

1. Smoothness Index Of Thematic Maps

A thematic map shows the spatial distribution of one or more specific data themes for standard geographic areas. The thematic maps are generated to represent the studied variables, so interpolators are used to determine their values in places not sampled. It is usually... C.L. Bazzi, E.G. Souza, D. Stiehl

2. SPOT5 Multispectral Data Potentialities To Monitor Potato Crop Nitrogen Status At Specific Field Scale

The many challenges facing European agriculture and farm of tomorrow are such that they increasingly require the setting up of Decision Support Systems (DSS) that favour integrated crop management at farm or regional level. A valuable DSS for management of split fertilizer N applications was developed in Belgium for potato crop. It combines total N recommendation based on field predictive balance-sheet method along with Crop Nitrogen Status (CNS) monitoring through hand-held chlorophyll meter... J. Goffart, A. Leonard, D. Buffet, P. Defourny, L. Van den wyngaert

3. Nitrogen Loss In Corn Production Varies As A Function Of Topsoil Depth

  Understanding availability and loss potential of nitrogen for varying topsoil depths of poorly-drained claypan soil landscapes could help producers make improve decisions when managing crops for feed grain or bio-fuels.  While it has been well documented that topsoil depth on these soils plays an important role in storing water for crop growth, it is not well known how this same soil... E. Allphin, N.R. Kitchen, K.A. Suddeth, A. Thompson

4. New Power-leds Based Illumination System For Fertilizer Granule Motion Estimation

Environmental problems have become more and more pressing in the past twenty years particularly with the fertilization operation, one main contributor to environmental imbalance. The understanding of the global centrifugal spreading process, most commonly used in Europe, can contribute to provide essential information about fertiliser granule deposition on the soil. This last one can be predicted using a ballistic flight model and several fertilizer characteristic’s determination... F. Cointault, B. Hijazi, J. Dubois, J. Vangeyte, M. Paindavoine

5. Multiplex : A New Diagnostic Tool For Management Of Nitrogen Fertilization Of Turfgrass

Multiplex is a fluorescence-based optical sensor that measures in real time and in vivo the leaf content of compounds such as chlorophyll and several families of polyphenols (anthocyanins, flavonoïds, hydroxycinnamic acids). We propose here to show that the measurement of leaf chlorophyll and flavonoïd content permits us to evaluate nitrogen status of turfgrass. Actually, experiments have shown that chlorophyll content increases whereas flavonoïd content decreases with increased... S. Lejealle

6. Real-time Calibration Of Active Crop Sensor System For Making In-season N Applications

... K.H. Holland, J.S. Schepers

7. Wheat Growth Stages Discrimination Using Generalized Fourier Descriptors In Pattern Recognition Context

... F. Cointault, A. Marin, L. Journaux, J. Miteran, R. Martin

8. Traceability And Management Information System Of Agricultural Product Quality Safety In China

Agricultural product quality safety is the hot topic in the world. From the technical view, the agricultural production management and traceability are the key measurement for insuring the quality safety. From 2005 until now, we have been investigating... X. Yang, M. Li, C. Sun, J. Qian, Z. Ji

9. Attaching Multiple Conductivity Meters To An Atv To Speed Up Precision Agriculture Soil Surveys

Ground conductivity meters are used in a number of precision agriculture applications, including the estimation of water content, nutrient levels, salinity and depth of topsoil. Typically the Geonics EM38 conductivity meter, and to a lesser extent the EM31, are used for soil surveys. Most conductivity surveys involve towing a ground conductivity meter behind an all-terrain vehicle (ATV). In some situations, such as rutted or sloping fields, it is preferable to mount the conductivity meter directly... E. Morris, A. Clarke, S. Sunley, C. Hill, G. Cranfield

10. Spatial Variability of Soil Properties in Intensively Managed Tropical Grassland in Brazil

For the intensification of tropical grass pastures systems the soil fertility building up by liming and balanced fertilization is necessary. The knowledge of spatial variability soil properties is useful in the rational use of inputs, as in the variable rate application of lime and fertilizers. PA requires methods to indicate the spatial variability of soil and plant parameters. The objective of this work was to map and evaluate the soil properties and maps the site specific liming and fertilizer... G.M. Bettiol, R.Y. Inamasu, L.M. Rabello, A.C. Bernardi, M. Campana, P.P. Oliveira

11. Estimation of Nitrogen of Rice in Different Growth Stages Using Tetracam Agriculture Digital Camera

Many methods are available to monitor nitrogen content of rice during various growth stages. However, this monitoring still requires a quick, simple, accurate and inexpensive technique that needs to be developed. In this study, Tetracam Agriculture Digital Camera (ADC) was used to acquire high spatial and temporal resolution in order to determine the status of nitrogen (N) and predict the grain yield of rice (Oriza sativa L.). In this study, 12 pots of rice with four different N treatments (0, 125,... A. Gholizadeh , M. Mohd soom , M. Saberioon

12. Path Tracking Control of Tractors and Steerable Towed Implements Based On Kinematic and Dynamic Modeling

recise path tracking control of tractors became the enabling technology for automation of field work in recent years. More and more sophisticated control systems for tractors however revealed that exact positioning of the actual implement is equally or even more important. Especially sloped and curved terrain, strip till fields, buried drip irrigation tapes and high-value crop... G. Kormann, S. Mueller, R. Werner

13. Precision Agriculture Initiative for Karnataka – A New Direction for Strengthening Farming Community

Strengthening agriculture is crucial to meet the myriad challenges of rural poverty, food security, unemployment, and sustainability of natural resources and it also needs strengthening at technical, financial and management levels. In this context... U.K. Shanwad, M.B. Patil, V. H, M. B.g , P. R, R. N.l. , S. S, R. Khosla, V.C. Patil

14. Study on Water Distribution Measurement in Sand Using Sound Vibration

... T. Sugimoto, T. Shirakawa, M. Sano, M. Ohaba, S. Shibusawa, Y. Nakagawa

15. Using Multiplex® to Manage Nitrogen Variability in Champagne Vineyard

... L. Marine, M. Manon, G. Claire, P. Laurent, F. Mostafa, C. Zoran, B. Naima, D. Sébastien, G. Olivier

16. Towards a Multi-Source Record Keeping System for Agricultural Product Traceability

Agricultural production record keeping is the basis of traceability system. To resolve the problem including single method of information acquisition, weak ability of real-time monitoring and low credibility of history information in agricultural production process, the... C. Sun, Z. Ji, J. Qian, M. Li, L. Zhao, W. Li, C. Zhou, X. Du, J. Xie, T. Wu, L. Qu, L. Hao, X. Yang

17. Modeling and Decision Support System for Precision Cucumber Protection in Greenhouses

The plant disease... X. Yang, C. Sun, J. Qian, Z. Ji, S. Qiao, M. Chen, C. Zhao, M. Li

18. OptiThin - Precision Fruiticulture by Tree-Specific Mechanical Thinning

Apple cultivars show biennial fluctuations in yields (alternate bearing). The phenomenon is induced by reduced yields in one year due to freeze damage, low pollination rate or other reasons. Consequently, trees develop many flower buds that blossom in the following year. The many flowers lead to a high number of small fruits that won’t be accepted on the market. Endogenous factors (phytohormones and carbohydrate allocation) subsequently establish the biennial cycle. The alternate bearing... A. Betz, H. Benny, M. Jens, M. Özyurtlu, M. Pflanz, T. Rachow-autrum, A. Schischmanow, M. Scheele, J. Schrenk, L. Schrenk, M. Zude, R. Gebbers

19. 3D Acquisition System Applied to Agronomic Scenes

To enable a better decision making by the farmer in order to optimize the crop management, it is essential to provide a set of information on basic parameters of the crops. These information are numerous and the image processing is increasingly used for disease detection, weed detection or yield estimation. We will focus initially on assessing the yield of a wheat crop in automatic way. This yield is directly related to the number of ears per square meter for which the counting is currently... F. Cointault, P. Gouton, B. Billiot

20. Spatial Variability of Inceptisol and Entisol Soils and Their Effect on Merlot Grape Must Composition

Technologies associated to precision agriculture are being used in some crops in Brazil, mainly soybean, wheat, corn and sugarcane. However, information on its use in viticulture is scarce. Thus, a research was carried out during the vegetative cycle of 2010/2011 in a clone 347 Merlot... C. Flores, J. Filippini a., A. Miele

21. Winter Wheat Growth Uniformity Monitoring Through Remote Sensed Images

  ... X. Song, C. Zhao, L. Chen, W. Huang, B. Cui

22. Precision Nutrient Management in Cotton- A Case Study from India

Cotton is being one of the important commercial crops in India, farmers have adopted cultivating hybrid cotton to achieve higher yield. In this context, cotton is becoming input intensive crop... U. Shanwad, V. H, R. N.l., P.S. Kanannnavar, S. Swamy, M.B. Patil

23. Temporal N Status Evaluation Using Hyperspectral Vegetation Indices in a Potato Crop

The amount and timing of nitrogen (N) fertilization represents a leading issue in precision agriculture, especially for potato (Solanum tuberosum L.) crop since N is an essential element for plant growth and tuber yield. Therefore, the ability to assess in-season crop N status from non-destructive methods such as proximal sensing is a promising alternative to optimize N fertilization... A. Cambouris, K. Chokmani, T. Morier

24. Young Leaf Detection for Spot Spray Treatment of Citrus Canopies to Control Psyllids

Huanglongbing (HLB) is an important disease of citrus that is spread mainly through a vector, psyllid (Diaphorina citri), that feeds predominantly on young leaves.  Given the selective feeding of the insect, treating only the young flush, instead of spraying the entire... R. Ehsani, M. Salyani, J.M. Maja, A.R. Mishra, P.A. Larbi, J. Camargo neto

25. Architecture and Model of Data Integration between Management Systems and Agricultural Machines for Precision Agriculture

 The development of robotic systems has challenges as the high degree of interdisciplinarity, the difficulty of integration between the various robotic control... R. Dutra, R. Sousa, A. Porto, R. Inamasu, W. Lopes, M. Tronco

26. Landscape Influences on Soil Nitrogen Supply and Water Holding Capacity for Irrigated Corn

... T. Shaver, M. Schmer, S. Irmak, S. Van donk, B. Wienhold, V. Jin, A. Bereuter, D. Francis, D. Rudnick, N. Ward, L. Hendrickson, R. Ferguson, V.I. Adamchuk

27. Remote Sensing of Nitrogen and Water Status on Boston Lettuce Transplants in a Greenhouse Environment

Remote sensing is the stand-off collection through the use of a variety of devices for gathering information on a given object or area. Applied as a warning tool in plant stock production, it is expected to help in the achievement of better, more uniform and more productive organic cropping systems. Remote sensing of vegetation targets can be achieved from the... N. Tremblay, P. Vigneault, M.Y. Bouroubi, M. Dorais, G.P. Gianquinto, M. Tempesta

28. Impact of Variable Rate Fertilization on Nutrients Losses in Surface Runoff for Wild Blueberry Fields

Wild blueberry producers apply agrochemicals uniformly without considering substantial variation in soil properties, topographic features that may affect fruit yield within field. A wild blueberry field was selected to evaluate the impact of variable rate (VR) fertilization on nutrient losses in surface runoff from steep slope to low lying areas to improve crop... S. Slaeem, Q.U. Zaman, A. Madani, A. Schumann, D. Percival, H.N. Ahmad, A.A. Farooque, F. Khan

29. NDVI 'Depression' In Pastures Following Grazing

Pasture biomass estimation from normalized difference vegetation index (NDVI) using ground, air or space borne sensors is becoming more widely used in precision agriculture. Proximal active optical sensors (AOS) have the potential to eliminate the confounding effects of path radiance and target illumination conditions typically encountered using passive sensors. Any algorithm that infers the green fraction of pasture from NDVI must factor in plant morphology and live/dead plant ratio, irrespective... J.S. Stanley, D.W. Lamb, M.G. Trotter, M.M. Rahman

30. Optimizing Site-Specific Adaptive Management Using A Probabilistic Framework: Evaluating Model Performance Using Historic Data

     Agricultural producers are tasked with managing crop yield responses to nitrogen (N) within systems that have high levels of spatial (biophysical), climatic, and price uncertainty. To date, the outcome of most variable rate application (VRA) research has focused on the spatial dimension, proposing optimal fertilizer prescription maps that can be applied year after year. However, temporally static prescriptions can result in suboptimal outcomes, particularly if they do... L.J. Rew, B.D. Maxwell, P.G. Lawrence

31. A Comprehensive Model for Farmland Quality Evaluation with Multi-source Spatial Information

Farmland quality represents various properties, including two parts of natural influencing factors and social influencing factors. The natural factors and social factors are interrelated and interaction, which determine the developing direction of farmland system. In order to overcome the limitation of subjective factors and fuzzy incompatible information, a more scientific evaluation method of farmland quality should be developed to reflect the essential characteristic of farmland.... Y. Dong, Y. Wang, X. Song, X. Gu

32. Visible And Near-Infrared Spectroscopy For Monitoring Potentially Toxic Elements In Reclaimed Dumpsite Soils Of The Czech Republic

Due to rapid economic development, high levels of potentially harmful elements and heavy metals are continuously being released into the brown coal mining dumpsites of the Czech Republic. Elevated metal contents in soils not only dramatically impact the soil quality, but also due to their persistent nature and long biological half-lives, contaminant elements can accumulate in the food chain and can eventually endanger human health. Conventional methods for investigating potentially... L. Borùvka, M. Saberioon, R. Vašát, A. Gholizadeh

33. Applying Conventional Vegetation Vigor Indices To UAS-Derived Orthomosaics: Issues And Considerations

In recent years, unmanned airborne systems (UAS) have gained a lot of interest for their potential use in precision agriculture. While the imagery from near-infrared (NIR) enabled off-the-shelf cameras included in UAS can be directly used to facilitate crop scouting, the application in quantitative analyses remains cumbersome. The ultimate goal is to calculate (nitrogen) prescription maps from vegetation indices obtained from UAS imagery, but two main issues hamper this workflow: (1) the... J. Quaderer, J. Coonen, A. Lange, K. Pauly

34. Study On Plant Health Condition Monitoring Using Acoustic Radiation Force

In recent years, irrigation method using the negative pressure difference attracts attention from the point of view of water saving. In addition, it is proved that this technique is effective in upbringing of the plant as well as saving of water. By measuring water distribution of soil, active irrigation control will be performed In our previous study, we confirmed that the resonance frequency of a leaf is influenced by the water stress to the plant. Thus the vibration measurement... Y. Nakagawa, M. Sano, T. Shirakawa, K. Yamagishi, T. Sugihara, M. Ohaba, S. Shibusawa, T. Sugimoto

35. Development Of An Index-Based Insurance Product: Validation Of A Forage Production Index Derived From Medium Spatial Resolution fCover Time Series

An index-based insurance solution is developed by Pacifica Crédit Agricole Assurances and Astrium GEO-Information to estimate and monitor the near real-time forage production in France. In this system, payouts are indexed on an indicator, called Forage Production Index (FPI), calculated using a biophysical characterization of the grassland from medium spatial resolution remote sensing time series. We used the Fraction of green Vegetation Cover (fCover) integral as... A. Jacquin, G. Sigel, O. Hagolle, B. Lepoivre, A. Roumiguié, H. Poilvé

36. Water And Nitrogen Use Efficiency Of Corn And Switchgrass On Claypan Soil Landscapes

Claypan soils cover a significant portion of Missouri and Illinois crop land, approximately 4 million ha. Claypan soils, characterized with a pronounced argilic horizon at or below the soil surface, can restrict nutrient availability and uptake, plant water storage, and water infiltration. These soil characteristics affect plant growth, with increasing depth of the topsoil above the claypan horizon having a strong positive correlation to grain crop production. In the case of low... A. Thompson, D.L. Boardman, N. Kitchen, E. Allphin

37. Conditioning Factors For Decision-Making Regarding Precision Agriculture Techniques Usage

The eventual goal of using the techniques of precision agriculture (described as inputs applied at varied rates) is to get one of the following results: (a) lowering cost by reducing inputs, (b) decreasing the pollution of water, soil and the atmosphere and (c) increasing agricultural productivity by the more efficient use of inputs. However, studies on these techniques do not reach similar conclusions. This could be expected, since the effectiveness of these techniques would depend... H.L. Burnquist, C.C. Costa

38. Effect Of A Variable Rate Irrigation Strategy On The Variability Of Crop Production In Wine Grapes In California

Pruning and irrigation are the cultural practices with the highest potential impact on yield and quality in wine grapes. In particular, irrigation start date, rates and frequency can be synchronized with crop development stages to control canopy growth and, in turn, positively influence light microclimate, berry size and fruit quality. In addition, canopy management practices can be implemented in vineyards with large canopies to ensure fruit zone microclimate... L.A. Sanchez, L.J. Klein, A. Claassen, D. Lew, M. Mendez-costabel, B. Sams, A. Morgan, N. Hinds, H.F. Hamann, N. Dokoozlian

39. Capturing, Demonstrating And Delivering Value From Integrating Real-Time On-Farm Sensing With External Information Flows

The requirement for significant productivity gains in the agricultural sector is undeniable. Sustainable, viable industries must be capable of consistently producing a margin above the base costs of production. This is particularly challenging for the extensive grazing enterprises in Australia as the operating environment has become increasingly complex, dynamic and challenging and there is a continual and increasing need to demonstrate improved efficiency to the wider community... G. Bishop-hurley, L. Overs, S. Brosnan, A. Krumpholz, D. Henry

40. The Most Sensitive Growth Stage To Quantify Nitrogen Stress In Sugarcane Using Active Crop Canopy Sensor

The use of sensors that allow the application of nitrogen fertilizer at variable rate has been widely used by researchers in many agricultural crops, but without success in sugarcane, probably due to the difficulty of diagnosing the nutritional status of the crop for nitrogen (N). Active crop canopy sensors are based on the principle that the spectral reflectance curve of the leaves are modified by N level. Researchers in USA indicated that in-season N stress in corn can be detected... S.G. Castro, O.T. Kolln, H.S. Nakao, H.C. Franco, O. Braunbeck, P.S. Graziano magalhães, G.M. Sanches

41. A Comparison Of Performance Between UAV And Satellite Imagery For N Status Assessment In Corn

A number of platforms are available for the sensing of crop conditions. They vary from proximal (tractor-mounted) to satellites orbiting the Earth. A lot of interest has recently emerged from the access to unmanned aerial vehicles (UAVs) or drones that are able to carry sensors payloads providing data at very high spatial resolution. This study aims at comparing the performance of a UAV and satellite imagery acquired over a corn nitrogen response trial set-up. The nitrogen (N) response... P. Vigneault, N. Tremblay, M.Y. Bouroubi, C. Bélec, E. Fallon

42. Hand-Held Sensor For Measuring Crop Reflectance And Assessing Crop Biophysical Characteristics

Crop vigor is difficult enough to define, let alone characterize and conveniently quantify. The human eye is particularly sensitive to green light, but quantifying subtle differences in plant greenness is subjective and therefore problematic in terms of making definitive management decisions. Plant greenness is one component of crop vigor and leaf area index or the relative ability of... J.S. Schepers, K.H. Holland

43. Using Imagery As A Proxy Yield Map And Scouting Tool

Combine yield maps represent a post-mortem quantification of the spatial variability in crop vigor that occurred during the growing season. The spatial resolution of yield maps is defined by the width of the combine header but the length of the cell depends on the ground-speed of the implement and how long it takes for the grain to... J.S. Schepers, A.R. Schepers

44. Beyond The 4-Rs Of Nutrient Management In Conjunction With A Major Reduction In Tillage

Agribusiness and government agencies have embraced the 4-R concept (right form, rate, time, and place) to improve nutrient management and environmental quality. No-tillage... J.S. Schepers, B. Mclure, G. Swanson

45. In-Season Decision Support Tools For Estimating Nitrogen Side-Dress Rates For Maize (Zea Mays L.)

Nitrogen fertilizer has been synthetically produced to nourish plants, increase yield and improve harvest quality. One of the way to increase NUE is called split application which is apply portion of N fertilizer from the beginning and apply another portion during vegetative stage (V4-V6). Improving accuracy of corn side dress N rate recommendations can improve profitability and reduce potential negative environmental impacts of over fertilization. The objective of this experiment... B. Chim

46. Memory Based Learning: A New Data Mining Approach to Model and Interpret Soil Texture Diffuse Reflectance Spectra

Successful estimation of spectrally active soil texture with Visible and Near-Infrared (VNIR, 400-1200 nm) and Short-Wave-Infrared (SWIR, 1200-2500 nm) spectroscopy depends mostly on the selection of an appropriate data mining algorithm. The aims of this paper were: to compare different data mining algorithms including Partial Least Squares Regression (PLSR), which is the most common technique in soil spectroscopy, Support Vector Machine Regression (SVMR), Boosted Regression Trees (BRT), and Memory... A. Gholizadeh, M. Saberioon, L. Borůvka

47. Spatial and Temporal Variation of Soil Nitrogen Within Winter Wheat Growth Season

This study aims to explore the spatial and temporal variation characteristics of soil ammonium nitrogen and nitrate nitrogen within winter wheat growth season. A nitrogen-rich strip fertilizer experiment with eight different treatments was conducted in 2014. Soil nitrogen samples of 20-30cm depth near wheat root were collected by in-situ Macro Rhizon soil solution collector then soil ammonium nitrogen and nitrate nitrogen content determined by SEAL AutoAnalyzer3 instrument. Classical statistics... X. Song, G. Yang, Y. Ma, R. Wang, C. Yang

48. Site Specific Costs Concerning Machine Path Orientation

Computer algorithms have been created to simulate in advance the orientation/pattern of a machine operation on a field. Undesired impacts were obtained and quantified for these simulations, like: maneuvering and overlap of inputs in headlands; servicing of secondary units; and soil loss by water erosion. While the efforts could minimize the overall costs, they disregard the fact that these costs aren’t uniformly distributed over irregular fields. The cost of a non-productive machine process... M. Spekken, J.P. Molin, T.L. Romanelli, M.N. Ferraz

49. NIR Spectroscopy to Map Quality Parameters of Sugarcane

Precision Agriculture aims to explore the potential of each crop considering the differences within the field. One information that is considered the most important is the yield or the obtained income in the field. However, in the case of sugarcane, quality will also directly influence farmer’s income. Several studies suggest harvester automation aiming to monitor yield, but few consider the quality analysis in the process. Among the existing methods for measuring sugar content the one that... M.N. Ferraz, J.P. Molin

50. Positioning Strategy of Maize Hybrids Adjusting Plant Population by Management Zones

Choice of hybrid and accurate amount of plants per area determines grain yield and consequently net incomes. Local field adjustment in plant population is a strategy to manage spatial variability and optimize environmental resources that are not under farmer control (like soil type and water availability). This study aims to evaluate the response of hybrids by levels of plant population across management zones (MZ). Six different hybrids and five rates of plant populations were analyzed starting... A.A. Anselmi, J.P. Molin, M.T. Eitelwein, R. Trevisan, A. Colaço

51. UAV-based Crop Scouting for Precision Nutrient Management

Precision agriculture – is one of the most substantial markets for the Unmanned Aerial Vehicles (UAVs). Mounted on the UAVs, sensors and cameras enable rapid screening of large numbers of experimental plots to identify crop growth habits that contribute to final yield and quality in a variety of environments. Wheat is one of the Idaho’s most important cereal crops grown in 42 of 44 Idaho counties. We are working on establishing a UAV-based methodology for in-season prediction of wheat... O.S. Walsh, K. Belmont, J. Mcclintick-chess, J. Marshall, C. Jackson, C. Thompson, K. Swoboda

52. Sensor-based Technologies for Improving Water and Nitrogen Use Efficiency

 Limited reports exist on identifying the empirical relationships between plant nitrogen and water status with hyperspectral reflectance. This project is aiming to develop effective system for nitrogen and water management in wheat. Specifically: 1) To evaluate the effects of nitrogen rates and irrigation treatments on wheat plant growth and yield; 2) To develop methods to predict yield and grain protein content in varying nitrogen and water environments, and to determine the minimum nitrogen... O.S. Walsh, K. Belmont, J. Mcclintick-chess

53. Early Detection of Nitrogen Deficiency in Corn Using High Resolution Remote Sensing and Computer Vision

The continuously growing need for increasing the production of food and reducing the degradation of water supplies, has led to the development of several precision agriculture systems over the past decade so as to meet the needs of modern societies. The present study describes a methodology for the detection and characterization of Nitrogen (N) deficiencies in corn fields. Current methods of field surveillance are either completed manually or with the assistance of satellite imaging, which offer... D. Mulla, D. Zermas, D. Kaiser, M. Bazakos, N. Papanikolopoulos, P. Stanitsas, V. Morellas

54. Processing Yield Data from Two or More Combines

Erroneous data affect the quality of yield map. Data from combines working close to each other may differ widely if one of the monitors is not properly calibrated and this difference has to be adjusted before generating the map. The objective of this work was to develop a method to correct the yield data when running two or more combines in which at least one has the monitor not properly calibrated. The passes of each combine were initially identified and three methods to correct yield data were... L. Maldaner, J.P. Molin, T.F. Canata

55. Spatial Variability of Canopy Volume in a Commercial Citrus Grove

LiDAR (light detection and ranging) sensors have shown good potential to estimate canopy volume and guide variable rate applications in different fruit crops. Oranges are a major crop in Brazil; however the spatial variability of geometrical parameters remains still unknown in large commercial groves, as well as the potential benefit of sensor guided variable rate applications. Thus, the objective of this work was to characterize the spatial variability of the canopy volume in a commercial orange... A.F. Colaço, J.P. Molin, R.G. Trevisan, J.R. Rosell-polo, A. Escolà

56. Technology Support for Game Monitoring As a Tool for Damages Reduction of Field Crops

Wild boars (Sus scrofa) are increasingly becoming the main cause of field crops damage in Czech Republic and central Europe area. There are many reasons why wild boars population is growing. The major reason is most likely change in the composition of field crops. In some areas in particular there is focus on oilseed rape and maize, for which there are also recorded the biggest losses. One of the key discussion topics is the issue of estimation of animal quantities and its traceability.... J. Jarolimek, M. Stočes, M. Ulman, J. Vaněk

57. North American Soil Test Summary

With the assistance and cooperation of numerous private and public soil testing laboratories, the International Plant Nutrition Institute (IPNI) periodically summarizes soil test levels in North America (NA). Soil tests indicate the relative capacity of soil to provide nutrients to plants. Therefore, this summary can be viewed as an indicator of the nutrient supplying capacity or fertility of soils in NA. This is the eleventh summary completed by IPNI or its predecessor, the Potash &... Q. Rund, S. Murrell, A. Erbe, R. Williams, E. Williams

58. A Dynamic Variable Rate Irrigation Control System

Currently variable rate irrigation (VRI) prescription maps used to apply water differentially to irrigation management zones (IMZs) are static.  They are developed once and used thereafter and thus do not respond to environmental variables which affect soil moisture conditions.  Our approach for creating dynamic prescription maps is to use soil moisture sensors to estimate the amount of irrigation water needed to return each IMZ to an ideal soil moisture condition.  The UGA Smart... G. Vellidis, V. Liakos, W. Porter, X. Liang, M.A. Tucker

59. Utilizing Space-based Technology for Cotton Irrigation Scheduling

Accurate soil moisture content measurements are vital to precision irrigation management. Electromagnetic sensors such as capacitance and time domain reflectometry have been widely used for measuring soil moisture content for decades. However, to estimate average soil moisture content over a large area, a number of ground-based in-situ sensors would need to be installed, which would be expensive and labor intensive. Remote sensing using the microwave spectrum (such as GPS signals) has been used... A. Khalilian, X. Qiao, J.O. Payero, J.M. Maja, C.V. Privette, Y.J. Han

60. Translating Data into Knowledge - Precision Agriculture Database in a Sugarcane Production.

The advent of Information Technology in agriculture, surveying and data collection became a simple task, starting the era of "Big Data" in agricultural production. Currently, a large volume of data and information associated with the plant, soil and climate are collected quick and easily. These factors influence productivity, operating costs, investments and environment impacts. However, a major challenge for this area is the transformation of data and information... G.M. Sanches, O.T. Kolln, H.C. Franco, P.S. Magalhaes, D.G. Duft

61. Detection of Potato Beetle Damage Using Remote Sensing from Small Unmanned Aircraft Systems

Remote sensing with small unmanned aircraft systems (sUAS) has potential applications in agriculture because low flight altitudes allow image acquisition at very high spatial resolution.  We set up experiments at the Oregon State University Hermiston Agricultural Research and Extension Center (HAREC) to assess advantages and disadvantages of sUAS for precision farming. In 2014, we conducted an experiment in irrigated potatoes with 4 levels of artificial infestation by Colorado Potato Beetles.... E. Hunt, S.I. Rondon, A.E. Bruce, R.W. Turner, J.J. Brungardt

62. Claypan Depth Effect on Soil Phosphorus and Potassium Dynamics

Understanding the effects of fertilizer addition and crop removal on long-term change in spatially-variable soil test P (STP) and soil test K (STK) is crucial for maximizing the use of grower inputs on claypan soils. Using apparent electrical conductivity (ECa) to estimate topsoil depth (or depth to claypan, DTC) within fields could help capture the variability and guide site-specific applications of P and K. The objective of this study was to determine if DTC derived from ECa... L. Conway, M. Yost, N. Kitchen, K. Sudduth, B. Myers

63. Apparent Electrical Conductivity Sensors and Their Relationship with Soil Properties in Sugarcane Fields

One important tool within the technological precision agriculture (PA) package are the apparent electrical conductivity (ECa) sensors. This kind of sensor shows the ability in mapping soil physicochemical variability quickly, with high resolution and at low cost. However, the adoption of this technology in Brazil is not usual, particularly on sugarcane fields. A major issue for farmers is the applicability of ECa, how to convert ECa data in knowledge that may assist the producer in decision-making... G.M. Sanches, L.R. Amaral, T. Pitrat, T. Brasco, P.S. Magalhaes, D.G. Duft, H.C. Franco

64. Evaluation of a Sensor and Control Interface Module for Monitoring of Greenhouse Environment

Protected horticulture in greenhouses and plant factories has been increased in many countries due to the advantages of year-round production in controlled environment for improved productivity and quality. For protected horticulture, environmental conditions are monitored and controlled through wired and wireless devices. Various devices are used for monitoring and control of spatial and temporal variability in crop growth environmental conditions. Recently, various sensors and control devices,... N. Sung, S. Chung, Y. Kim, K. Han, J. Choi, J. Kim, Y. Cho, S. Jang

65. On-the-go Measurements of pH in Tropical Soil

The objective of this study was to assess the performance of a mobile sensor platform with ion-selective antimony electrodes (ISE) to determine pH on-the-go in a Brazilian tropical soil. The field experiments were carried out in a Cambisol in Piracicaba-SP, Brazil. To create pH variability, increasing doses (0, 1, 3, 5, 7 and 9 Mg ha-1) of lime were added on the experimental plots (25 x 10 m) one year before the data acquisitions. To estimate soil pH levels we used a Mobile Sensor Platform... M.T. Eitelwein, R.G. Trevisan, A.F. Colaço, M.R. Vargas, J.P. Molin

66. AGTECH CHILE: an Outreach and Technology Transfer Platform for Closing Gaps in Emerging Chilean Precision Agriculture Companies

Precision agriculture (PA) is being developed in Chile since 1997. Today there are approximately 20 companies providing products and services in PA at different levels. Most of them are young entrepreneurships which have important knowledge gaps, particularly on technology basis and data management to transform them into useful information. In order to help closing some of the gaps, and contributing to the development of an innovation ecosystem, an extension proposal was developed, which... R.A. Ortega, P. Trebilcock

67. Comparing Predictive Performance of Near Infrared Spectroscopy at a Field, Regional, National and Continental Scales by Using Spiking and Data Mining Techniques

The development of accurate visible and near infrared (vis-NIR) spectroscopy calibration models for selected soil properties is a crucial step for variable rate application in precision agriculture. The objective of the present study was to compare the prediction performance of vis-NIR spectroscopy at local, regional, national and continental scales using data mining techniques including spiking. Fresh soil samples collected from farms in the UK, Czech Republic, Germany, Denmark and the Netherlands... S.M. Nawar, A.M. Mouazen, D. George, A. Manfield

68. Comparative Benefits of Drone Imagery for Nitrogen Status Determination in Corn

Remotely sensed vegetation data provide an effective means of measuring the spatial variability of nitrogen and therefore of managing applications by taking intrafield variations into account. Satellites, drones and sensors mounted on agricultural machinery are all technologies that can be used for this purpose. Although a drone (or unmanned aerial vehicle [UAV]) can produce very high-resolution images, the comparative advantages of this type of imagery have not been demonstrated. The goal of... N. Tremblay, K. Khun, P. Vigneault, M.Y. Bouroubi, F. Cavayas, C. Codjia

69. Developing Nitrogen Algorithms for Corn Production Using Optical Sensors

Remote sensing for nitrogen management in cereal crops has been an intensive research area due to environmental concerns and economic realities of today’s agronomic system. In the search for improved nitrogen rate decisions, what approach is most often taken and are those approaches justified through scientific investigation? The objective of this presentation is to educate decision makers on how these algorithms are developed and evaluate how well they work in the field on a small-plot... R.W. Mullen, S.B. Phillips, W.R. Raun, W.E. Thomason

70. Site-specific Irrigation of Peanuts on a Coastal Plain Field

Irrigator-Pro is an expert system that prescribes irrigation for corn (Zea mays L.), cotton (Gossypium hirsutum L.) and peanut (Arachis hypogaea). We conducted an experiment in 2007 to evaluate Irrigator-Pro as a tool for variable rate irrigation of peanut using a site-specific center pivot irrigation system. Treatments were irrigation of whole plots based on the expert system, irrigation of individual soils within plots based on the expert system, irrigation of individual...

71. A Tree Planting Site-Specific Fumigant Applicator for Orchard Crops

The goal of this research was to use recent advances in the global positioning system and computer technology to apply just the right amount of fumigant where it is most needed (i.e., in the neighborhood of each tree planting site or tree- planting-site-specific application) to decrease the incidence of replant disease, and achieve the environmental and economical benefits of reducing the application of these toxic chemicals. In the first year of this study we retrofitted a chemical applicator... S.K. Upadhayaya, V. Udompetaikul, M.S. Shafii, G.T. Browne

72. Soil Microbial Communities Have Distinct Spatial Patterns in Agricultural Fields

Soil microbial communities mediate many important soil processes in agricultural fields, however their spatial distribution at distances relevant to precision agriculture is poorly understood. This study examined the soil physico-chemical properties and topographic features controlling the spatial distribution of soil microbial communities in a commercial potato field in eastern Canada using next generation sequencing. Soil was collected from a transect (1100 m) with 83 sampling points in a landscape... B. Zebarth, C. Goyer, S. Neupane, S. Li, A. Mills, S. Whitney, A. Cambouris, I. Perron

73. Economic and Environmental Impacts in Sugarcane Production to Meet the Brazilian Ethanol Demands by 2030: The Role of Precision Agriculture

The agreement signed at COP-21 reaffirms the vital compromise of Brazil with sugarcane and ethanol production. To meet the established targets, the ethanol production should be 54 billion liters in 2030. From the agronomic standpoint, two alternatives are possible; increase the planted area and/or agricultural yield. The present study aimed to evaluate the economic and environmental impacts in sugarcane production meeting the established targets in São Paulo state. In this context, were... G.M. Sanches, T.F. Cardoso, M.F. Chagas, A.C. Luciano, D.G. Duft, P.S. Magalhães, H.C. Franco, A. Bonomi

74. Potential of Apparent Soil Electrical Conductivity to Describe Soil Spatial Variability in Brazilian Sugarcane Fields

The soil apparent electrical conductivity (ECa) has been highlighted in the literature as a tool with high potential to map the soil fertility of fields. However, sugarcane fields still lack results that show the applicability of this information to define the soil spatial variability and its fertility conditions. The objective of the present paper was to provide a comprehensive assessment of the relationship between ECa, evaluated by electromagnetic induction (EMI) sensor, and the spatial variability... G.M. Sanches, P.S. Magalhães, H.C. Franco, A.Z. Remacre

75. Automated Segmentation and Classification of Land Use from Overhead Imagery

Reliable land cover or habitat maps are an important component of any long-term landscape planning initiatives relying on current and past land use. Particularly in regions where sustainable management of natural resources is a goal, high spatial resolution habitat maps over large areas will give guidance in land-use management. We propose a computational approach to identify habitats based on the automated analysis of overhead imagery. Ultimately, this approach could be used to assist experts,... C. Pradalier, A. Richard, V. Perez, R. Van couwenberghe, A. Benbihi, P. Durand

76. Management Zone Delineation for Irrigation Based on Sentinel-2 Satellite Images and Field Properties

This paper presents a case study of the first application of the dynamic Variable Rate Irrigation (VRI) System developed by the University of Georgia to cotton. The system consists of the EZZone management zone software, the University of Georgia Smart Sensor Array (UGA SSA) and an irrigation scheduling decision support tool. An experiment was conducted in 2017 in a cotton field to evaluate the performance of the system in cotton. The field was divided into four parallel strips. All four strips... V. Liakos, G. Vellidis, L. Lacerda, W. Porter, M. Tucker, C. Cox

77. A Pilot Study on Monitoring Drinking Behavior in Bucket Fed Dairy Calves Using an Ear-Attached Tri-Axial Accelerometer

Accelerometers support the farmer with collecting information about animal behavior and thus allow a reduction in visual observation time. The milk intake of calves fed by teat-buckets has not been monitored automatically on commercial farms so far, although it is crucial for the calves’ development. This pilot study was based on bucket-fed dairy calves and intended (1) to evaluate the technical feasibility of using an ear-attached accelerometer (SMARTBOW, Smartbow GmbH, Weibern, Austria)... L. Roland, L. Lidauer, G. Sattlecker, F. Kickinger, W. Auer, V. Sturm, D. Efrosinin, M. Drillich, M. Iwersen, A. Berger

78. Evaluation of an Ear Tag Based Accelerometer for Monitoring Rumination Time, Chewing Cycles and Rumination Bouts in Dairy Cows

The objective of this study was to evaluate the ear tag based accelerometer SMARTBOW (Smartbow, Weibern, Austria) for detecting rumination time, chewing cycles and rumination bouts in dairy cows. For this, the parameters were determined by analyses of video recordings as reference and compared with the results of the accelerometer system. Additionally, the intra- and inter-observer reliability as well as the agreement of direct cow observations and video recordings was tested. Ten Simmental cows... M. Iwersen, S. Reiter, V. Schweinzer, F. Kickinger, M. Öhlschuster, L. Lidauer, W. Auer, M. Drillich, A. Berger

79. Ear-Attached Accelerometer as an On-Farm Device to Predict the Onset of Calving in Dairy Cows

The objective of this study on an ear-attached accelerometer in dairy cows was (1) to determine activity, rumination and lying time of the dams prior to calving, and include group level of measured variables (2) use the data to develop an algorithm to predict calving and (3) to test the performance of this algorithm. Video observations (24h/d) were used as reference for these events. Four weeks before expected calving, an ear-tag integrated tri-axial accelerometer (SMARTBOW system) was attached... S. Krieger, M. Oczak, L. Lidauer, F. Kickinger, M. Öhlschuster, W. Auer, M. Drillich, M. Iwersen, A. Berger

80. Evaluation of the Ear-Tag Sensor System SMARTBOW for Detecting Estrus Events in Indoor Housed Dairy Cows

Livestock farming technologies have a tremendous potential to improve and support farmers in herd management decisions, in particular in reproductive management. Nowadays, estrus detection in cows is challenging and many detection tools are available. The company Smartbow (Weibern, Austria) developed a novel ear-tag sensor, which consists of a 3D-accelerometer that records head and ear movements of cows as basis for algorithm development and further analyses. Estrus detection by the SMARTBOW system... V. Schweinzer, L. Lidauer, F. Kickinger, M. Öhlschuster, W. Auer, M. Drillich, M. Iwersen, A. Berger

81. An Efficient Data Warehouse for Crop Yield Prediction

Nowadays, precision agriculture combined with modern information and communications technologies, is becoming more common in agricultural activities such as automated irrigation systems, precision planting, variable rate applications of nutrients and pesticides, and agricultural decision support systems. In the latter, crop management data analysis, based on machine learning and data mining, focuses mainly on how to efficiently forecast and improve crop yield. In recent years, raw and semi-processed... V.M. Ngo, N. Le-khac, M. Kechadi

82. Proximal Soil Sensing-Led Management Zone Delineation for Potato Fields

A fundamental aspect of precision agriculture or site-specific crop management is the ability to recognize and address local changes in the crop production environment (e.g. soil) within the boundaries of a traditional management unit. However, the status quo approach to define local fertilizer need relies on systematic soil sampling followed by time and labour-intensive laboratory analysis. Proximal soil sensing offers numerous advantages over conventional soil characterization and has shown... A. Biswas, W. Ji, I. Perron, A. Cambouris, B. Zebarth, V. Adamchuk

83. Invasive and Non-Invasive Technology for Measuring Water Content of Crop Leaves in Greenhouse Horticulture

Moisture status in the crop is closely related to various physiological activities of the crop. If we can measure the moisture status in the crop in real time, we can understand the photosynthetic activity, which is an important physiological activity for growing crops, and the movement of the product from photosynthesis. Therefore, we verified it is possible to measure water content of crop leaves nondestructively using invasive method and non-invasive method. As a non-invasive measurement method,... H. Umeda, K. Muramatsu, Y. Kawagoe, T. Sugihara, S. Shibusawa, Y. Iwasaki

84. Water Use Efficiency of Precision Irrigation System Under Critical Water-Saving Condition

Non-transpiration water loss is often neglected when evaluating water use efficiency (WUE) of precision irrigation system, due to the difficulties in determining water loss from the root zone. The objective of this study is to investigate the feasibility of a new water saving approach by controlling soil water retention around root zone during the plant growth. We grew two tomato cultivars (Anemo, Japanese variety) in an environmental controlled growth chamber, with previously oven dried and sieved... Q. Li, T. Sugihara, M. Kodaira, S. Shibusawa

85. Optimized Soil Sampling Location in Management Zones Based on Apparent Electrical Conductivity and Landscape Attributes

One of the limiting factors to characterize the soil spatial variability is the need for a dense soil sampling, which prevents the mapping due to the high demand of time and costs. A technique that minimizes the number of samples needed is the use of maps that have prior information on the spatial variability of the soil, allowing the identification of representative sampling points in the field. Management Zones (MZs), a sub-area delineated in the field, where there is relative homogeneity in... G.K. Michelon, G.M. Sanches, I.Q. Valente, C.L. Bazzi, P.L. De menezes, L.R. Amaral, P.G. Magalhaes

86. Canopy Parameters in Coffee Orchards Obtained by a Mobile Terrestrial Laser Scanner

The application of mobile terrestrial laser scanner (MTLS) has been studied for different tree crops such as citrus, apple, olive, pears and others. Such sensing system is capable of accurately estimating relevant canopy parameters such as volume and can be used for site-specific applications and for high throughput plant phenotyping. Coffee is an important tree crop for Brazil and could benefit from MTLS applications. Therefore, the purpose of this research was to define a field protocol for... F. Hoffmann silva karp, A. Feritas colaço, R. Gonçalves trevisan, J.P. Molin

87. Using Canopy Hyperspectral Measurements to Evaluate Nitrogen Status in Different Leaf Layers of Winter Wheat

Nitrogen (N) is one of the most important nutrient matters for crop growth and has the marked influence on the ultimate formation of yield and quality in crop production. As the most mobile nutrient constituent, N always transfers from the bottom to top leaves under N stress condition. Vertical gradient changes of leaf N concentration are a general feature in canopies of crops. Hence, it is significant to effectively acquire vertical N information for optimizing N fertilization managements.... X. Xu, Z. Li, G. Yang, X. Gu, X. Song, X. Yang, H. Feng

88. Utilizing Weather, Soil, and Plant Condition for Predicting Corn Yield and Nitrogen Fertilizer Response

Improving corn (Zea mays L.) nitrogen (N) fertilizer rate recommendation tools should increase farmer’s profits and help mitigate N pollution. Weather and soil properties have repeatedly been shown to influence crop N need. The objective of this research was to improve publicly-available N recommendation tools by adjusting them with additional soil and weather information. Four N recommendation tools were evaluated across 49 N response trials conducted in eight U.S. states over three growing... N.R. Kitchen, M.A. Yost, C.J. Ransom, G. Bean, J. Camberato, P. Carter, R. Ferguson, F. Fernandez, D. Franzen, C. Laboski, E. Nafziger, J. Sawyer

89. UAV Images As a Source for Retrieval of Machine Tracks and Vegetation Gaps Along Crop Rows

The trend of acquiring equipment and obtaining high resolution remote sensed images by Unmanned Aerial Vehicles (UAV) have been followed by sugarcane producers in Brazil, given its low cost. The images taken from fields have been used for retrieval of information like Digital Terrain Models (DTMs) from stereoscopy of overlapping images and spatial variance of biomass. In sugarcane production, driving deviations occur during planting because of manual steering inaccuracy, sliding of machines sideways... M. Spekken, J.P. Molin

90. Use of UAV Acquired Imagery As a Precision Agriculture Method for Measuring Crop Residue in Southwestern Ontario, Canada

Residue management on agriculture land is a practice of great importance in southwestern Ontario, where soil management practices have an important effect on Great Lakes water quality. The ability of tillage or planting system to maintain soil residue cover is currently measured by using one or more of the common methods, line transect (e.g. knotted rope, Meter stick) and photographic (grid, script, and image analysis) methods. Each of these techniques has various advantages and disadvantages;... A. Laamrani, A. Berg, M. March, A. Mclaren, R. Martin

91. Site-Specific Management Zones Delineation Using Drone-Based Hyperspectral Imagery

Conventional techniques (e.g., intensive soil sampling) for site-specific management zones (MZ) delineation are often laborious and time-consuming. Using drones equipped with hyperspectral system can overcome some of the disadvantages of these techniques. The present work aimed to develop a drone-based hyperspectral imagery method to characterize the spatial variability of soil physical properties in order to delineate site-specific MZ. Canonical correlation analysis (CCA) was used to extract... H. Agili, K. Chokmani, A. Cambouris, I. Perron, J. Poulin

92. Delineation of Soil Management Zones: Comparison of Three Proximal Soil Sensor Systems Under Commercial Potato Field in Eastern Canada.

Precision agriculture (PA) involves optimization of seeding, fertilizer application, irrigation, and pesticide use to optimize crop production for the purpose of increasing grower revenue and protecting the environment. Potato crops (Solanum tuberosum L.) are recognized as good candidates for the adoption of PA because of the high cost of inputs. In addition, the sensitivity of potato yield and quality to crop management and environmental conditions makes precision management economically... A. Cambouris, I. Perron, B. Zebarth, F. Vargas, K. Chokmani, A. Biswas, V. Adamchuk

93. Integration of Proximal and Remote Sensing Data for Site-Specific Management of Wild Blueberry

In Saguenay-Lac-St-Jean, there are nearly 27,000 ha of wild blueberries (Vaccinium angustifolium Ait.). This production is carried out in fields with heterogeneous growing conditions due to the local changes in topography, key soil properties, and crop density. The main objective of this study was to develop a regression-based approach to site-specific management (SSM) by integrating proximally and remotely sensed data layers, namely, apparent soil electrical conductivity (ECa), field elevation,... A. Johnston, V. Adamchuk, A. Biswas, A. Cambouris, J. Lafond, I. Perron

94. Pest Detection on UAV Imagery Using a Deep Convolutional Neural Network

Presently, precision agriculture uses remote sensing for the mapping of crop biophysical parameters with vegetation indices in order to detect problematic areas, and then send a human specialist for a targeted field investigation. The same principle is applied for the use of UAVs in precision agriculture, but with finer spatial resolutions. Vegetation mapping with UAVs requires the mosaicking of several images, which results in significant geometric and radiometric problems. Furthermore, even... Y. Bouroubi, P. Bugnet, T. Nguyen-xuan, C. Bélec, L. Longchamps, P. Vigneault, C. Gosselin

95. Soybean Maturity Stage Estimation with Unmanned Aerial Systems

Many agronomic decisions in soybean production systems revolve around crop maturity. The primary objective of this research was to evaluate the ability of UAS to determine when soybeans have reached maturity stage sufficient for harvest aid application. A producer typically applies harvest aid chemicals when he or she perceives the crop has reached a critical level of maturity (R6.5) based on a subjective assessment. A convention is to apply harvest aids when 65% of soybean pods reach a mature... J.M. Prince czarnecki, L.L. Wasson, J.T. Irby, A.B. Scholtes, S.M. Carver

96. Usage of Milk Revenue Per Minute of Boxtime to Assess Cows Selection and Farm Profitability in Automatic Milking Systems

The number of farms implementing robotic milking systems, usually referred as automatic milking systems (AMS), is increasing rapidly. AMS efficiency is a priority to achieve high milk production and higher incomes from dairy herds. Recent studies suggested that milkability (i.e., amount of milk produced per total time spent in the AMS [kg milk/ minute of boxtime]) could be used for as a criteria for genetic evaluations. Therefore, an indicator of milkability was developed, which combines economical... L. Fadul-pacheco, G. Bisson, R. Lacroix, M. Séguin, R. Roy, E. Vasseur, D. Lefebvre

97. Can Optimization Associated with On-Farm Experimentation Using Site-Specific Technologies Improve Producer Management Decisions?

Crop production input decisions have become increasingly difficult due to uncertainty in global markets, input costs, commodity prices, and price premiums. We hypothesize that if producers had better knowledge of market prices, spatial variability in crop response, and weather conditions that drive crop response to inputs, they could more cost-effectively make profit-maximizing input decisions. Understanding the drivers of variability in crop response and designing accompanying management strategies... B.D. Maxwell, A. Bekkerman, N. Silverman, R. Payn, J. Sheppard, C. Izurieta, P. Davis, P.B. Hegedus

98. Estimating Corn Biomass from RGB Images Acquired with an Unmanned Aerial Vehicle

Above-ground biomass, along with chlorophyll content and leaf area index (LAI), is a key biophysical parameter for crop monitoring. Being able to estimate biomass variations within a field is critical to the deployment of precision farming approaches such as variable nitrogen applications. With unprecedented flexibility, Unmanned Aerial Vehicles (UAVs) allow image acquisition at very high spatial resolution and short revisit time. Accordingly, there has been an increasing interest in... K. Khun, P. Vigneault, E. Fallon, N. Tremblay, C. Codjia, F. Cavayas

99. High Accuracy Path Tracking for Rice Drill Seeder in Uneven Paddy Fields

High accuracy track tracing is a challenging task in paddy fields due to uneven grounds as well as wet soil conditions, thus restricting the development of autonomous rice drill seeder in China. For the purpose of overcoming the obstacles in application of autonomous rice drill seeder in paddy fields, a path tracking algorithm with high accuracy used for steering control during straight traveling in uneven mud paddy fields is introduced in this paper. Combining lateral deviation and heading angle... Y. Li, Y. Zhang, X. Liu, C. Liu

100. Development of an Online Decision-Support Infrastructure for Optimized Fertilizer Management

Determination of an optimum fertilizer application rate involves various influential factors, such as past management, soil characteristics, weather, commodity prices, cost of input materials and risk preference. Spatial and temporal variations in these factors constitute sources of uncertainties in selecting the most profitableapplication rate. Therefore, a decision support system (DSS) that could help to minimize production risks in the context of uncertain crop performance is needed. This... S. Shinde, V. Adamchuk, R. Lacroix, N. Tremblay, Y. Bouroubi

101. Unmanned Aerial Systems and Remote Sensing for Cranberry Production

Wisconsin is the largest producer of Cranberries in the United States with 5.6 million barrels produced in 2017. To date, Precision Agriculture technologies adapted to cranberry production have been limited. The objective of this research was to assess the feasibility of the use of commercial remote sensing devices and Unmanned Aerial Systems in cranberry production. Two commercially available sensors were assessed for use in cranberry production: 1) MicaSense Red Edge and 2) Zenmuse XT. Initial... B. Luck, J. Drewry, E. Chassen, S. Steffan

102. Real Time Precision Irrigation with Variable Setpoint for Strawberry to Generate Water Savings

Water is a precious resource that is becoming increasingly scarce as the population grows and water resources are depleted in some locations or under increased control elsewhere, due to local availability or groundwater contamination issues. It obviously affects strawberry (Fragaria x ananassa Duch.) production in populated areas and water cuts are being imposed to many strawberry growers to save water, with limited information on the impact on crop yield. Precision irrigation technologies are... J. Caron, L. Anderson, G. Sauvageau, L. Gendron

103. Precision Fall Urea Fertilizer Applications: Timing Impact on Carbon Dioxide, Ammonia Volatilization and Nitrous Oxide Emissions

To minimize ammonia (NH3) volatilization and nitrous oxide (N2O) emissions from fall applied fertilizer, it is generally recommended to not apply the fertilizer until the soil temperature decreases below 10 C. However, this recommendation is not based on detailed measurements of NH3and N2O emissions. The objective of this study was to determine the influence of fertilizer application timing on nitrous oxide, carbon dioxide, and ammonia volatilization emissions.  Nitrogen fertilizer was... S. Thies, D.E. Clay, S. Bruggeman, D. Joshi, S. Clay, J. Miller

104. Correlating Plant Nitrogen Status in Cotton with UAV Based Multispectral Imagery

Cotton is an indeterminate crop; therefore, fertility management has a major impact on the growth pattern and subsequent yield. Remote sensing has become a promising method of assessing in-season cotton N status in recent years with the adoption of reliable low-cost unmanned aerial vehicles (UAVs), high-resolution sensors and availability of advanced image processing software into the precision agriculture field. This study was conducted on a UGA Tifton campus farm located in Tifton, GA. The main... W. Porter, D. Daughtry, G. Harris, R. Noland, J. Snider, S. Virk

105. Soil and Crop Factors to Site-specific Nitrogen Management on Sugarcane Fields

Nitrogen (N) is one of the most widely used fertilizers in crops and the most harmful to the environment. The increase fertilizers consumption, mainly N sources (one of the most widely fertilizer used in sugarcane fields), is one of the main factors underlying the sustainability of the entire production process. Currently, N recommendations in sugarcane are based only on the expected yield. However, there is little agronomic support for nitrogen (N) recommendations based on expected yield, despite... G.M. Sanches, R. Otto, F.R. Pereira

106. Predicting Secondary Soil Fertility Attributes Using XRF Sensor with Reduced Scanning Time in Samples with Different Moisture Content

To support future in situ/on-the-go applications using X-ray fluorescence (XRF) sensors for soil mapping, this study aimed at evaluating the XRF performance for predicting organic matter (OM), base saturation (V), and exchangeable (ex-) Mg, using a reduced analysis time (e.g., 4 s) in soil samples with different moisture contents. These attributes are considered secondary for XRF prediction because they do not present emission lines in the XRF spectrum. Ninety-nine soil samples... T.R. Tavares, J.P. Molin, T.R. Da silva , H.W. De carvalho

107. Sun Effect on the Estimation of Wheat Ear Density by Deep Learning

Ear density is one of the yield components of wheat and therefore a variable of high agronomic interest. Its traditional measurement necessitates laborious human observations in the field or destructive sampling. In the recent years, deep learning based on RGB images has been identified as a low-cost, robust and high-throughput alternative to measure this variable. However, most of the studies were limited to the computer challenge of counting the ears in the images, without aiming to convert... S. Dandrifosse, E. Ennadifi, A. Carlier, B. Gosselin, B. Dumont, B. Mercatoris

108. Soil Variability Mapping with Airborne Gamma-ray Spectrometry and Magnetics

The knowledge of spatial distribution of agricultural soils physical and chemical properties is critical for profitable and sustainable crop and food production. The collection of soil data presents however obvious problems arising from sampling a dense, opaque and very heterogeneous medium. Conventional methods consisting of ground-based grid survey are laborious, expensive and lack appropriate spatial resolution to allow best farm management decision. Over the past 50 years, airborne geophysics... L. Ameglio, E. Stettler, D. Eberle

109. Precision Application of Seeding Rates for Weed and Nitrogen Management in Organic Grain Systems

In a time of increasing ecological awareness, organic agriculture offers sustainable solutions to many of the polluting aspects of conventional agriculture. However, without synthetic inputs, organic agriculture faces unique challenges such as weed control and fertility management. Precision Agriculture (PA) has been used to successfully increase input use efficiency in conventional systems and now offers itself as a potential tool for organic farmers as well. PA enables on farm experimentation... S. Loewen, B.D. Maxwell

110. Grassland System Impacts on Spatial Variability of Soil Phosphorus in Eastern Canada

Phosphorus (P) is an essential nutrient for plants, including grasslands. However, continuous applications of P fertilizer result in P accumulations in the soil, increasing the risk of P losses through runoff and erosion. Since 2008, more than 31 million tonnes of organic fertilizers, representing more than 95,000 tonnes of P2O5, were applied to agricultural fields in Eastern Canada. Thus, grassland systems were fertilized intensively using organic fertilizers with high P... J.D. Nze memiaghe, A. Cambouris

111. Decision Support from On-field Precision Experiments

Empirically driven adaptive management in large-scale commodity crop production has become possible with spatially controlled application and sub-field scale crop monitoring technology. Site-specific experimentation is fundamental to an agroecosystem adaptive management (AAM) framework that results in information for growers to make informed decisions about their practices. Crop production and quality response data from combine harvester mounted sensors and internet available remote sensing data... B.D. Maxwell, P.D. Hegedus, S.D. Loewen, H.D. Duff, J.W. Sheppard, A.D. Peerlinck, G.L. Morales, A. Bekkerman

112. Coupling Machine Learning Algorithms and GIS for Crop Yield Predictions Based on Remote Sensing Imagery and Topographic Indices

In-season yield prediction can support crop management decisions helping farmers achieve their yield goals. The use of remote sensing to predict yield it is an alternative for non-destructive yield assessment but coupling auxiliary data such as topography features could help increase the accuracy of yield estimation. Predictive algorithms that can effectively identify, process and predict yield at field scale base on remote sensing and topography still needed. Machine learning could be an alternative... M.F. Oliveira, G.T. Morata, B. Ortiz, R.P. Silva, A. Jimenez

113. Nitrogen Fertilization of Potato Using Management Zone in Prince Edward Island, Canada

Potato is sensible to nitrogen (N) and optimal N fertilization improve the tuber yield and its quality. Potato crop N response varies widely within fields. It is also well recognized that significant spatial and temporal variation in soil N availability occurs within crop fields. However, uniform application of N fertilizer is still the most common practice under potato production. Management zone (MZ) approach can help growers to achieve a part of this. The goal of the project is to compare the... A. Cambouris, M. Duchemin, N. Ziadi

114. A Bayesian Network Approach to Wheat Yield Prediction Using Topographic, Soil and Historical Data

Bayesian Network (BN) is the most popular approach for modeling in the agricultural domain. Many successful applications have been reported for crop yield prediction, weed infestation, and crop diseases. BN uses probabilistic relationships between variables of interest and in combination with statistical techniques the data modeling has many advantages. The main advantages are that the relationships between variables can be learned using the model as well as the potential to deal with missing... M. Karampoiki, L. Todman, S. Mahmood, A. Murdoch, D. Paraforos, J. Hammond, E. Ranieri

115. Is Row-unit Vibration Affected by Planter Speeds and Downforce?

Row-unit vibration is an issue created mainly by planter`s opening disks and gauge-wheels contact with the ground. Variability on row-unit vibration could interfere on seed metering and delivery process, affecting crop emergence and final stand. With the amount of embedded technology present on planters, producers are being encouraged to increase planting speeds, which is also one of the main factors for row-unit vibration increasement. In this way, knowing the proper speeds, and using other instruments... L.P. Oliveira, B.V. Ortiz, G.T. Morata, T. Squires, J. Jones

116. Evaluating the Potential of Integrated Precision Irrigation and Nitrogen Management for Corn in Minnesota

The environmental impact of irrigated agriculture on ground and surface water resources in Minnesota is of major concern. Previous studies have focused on either precision irrigation or precision nitrogen (N) management, with very limited studies on the integrated precision management of irrigation and N fertilizers, especially in Minnesota. The Dualex Scientific sensor is a leaf fluorescence sensor that has been used to diagnose crop N... A. Elvir flores, Y. Miao, V. Sharma, L. Lacerda

117. Evaluating How Operator Experience Level Affects Efficiency Gains for Precision Agricultural Tools

Tractor guidance (TG) improve environmental gains relative to non-precision technologies; however, studies evaluating how tractor operator experience for non-guidance comparisons impact gains are nonexistent. This study explores spatial relationships of overlaps and gaps with operator experience level (0-1; 2-3; 6+ years) during fertilizer and herbicide applications based on terrain attributes.  Tractor paths recorded by global navigation satellite systems were used to create overlap polygons.... A. Ashworth, T. Kharel, P. Owens

118. Robot Safety Issues in Field Crops - EU Regulatory Issues and Technical Aspects

The use of robots in Precision Agriculture is becoming of great interest, but they introduce a new kind of risk in the field due to their self-acting and self-driving capability. Safety issues appear with respect to people working in the same field in human-robot collaboration (HRC) framework or to the accidental presence of humans or animals. A robot out of control may also invade other areas causing unpredictable harm and damage. Currently, the safety of highly automated agricultural... M. Canavari, P. Lattanzi, G. Vitali, L. Emmi

119. The ISO Strategic Advisory Group for Smart Farming: a Multi-pronged Opportunity for Greater Global Interoperability

Agriculture is becoming increasingly complex and producers must secure their profitability, sustainability, and freedom to operate under a progressively more challenging set of constraints such as climate change, regulatory pressure, changes in consumer preferences, increasing cost of inputs, and commodity price volatility. We have not, however, yet reached the level of data interoperability required for a truly "smart" farming that can tackle the aforementioned problems... R. Ferreyra, J. Lehmann

120. Mapping Soil Health and Grain Quality Variations Across a Corn Field in Texas

Soil health is a key property of soils influencing grain yield and quality. Within-field mapping of soil health index and grain quality can help farmers and managers to adjust site-specific farm management decisions for economic benefits. A study was conducted to map within-field soil health and grain protein and oil content variations using apparent electrical conductivity (ECa) and terrain attributes as their predictors. Two hundred and two topsoil samples were analyzed to determine soil health... K. Adhikari, D.R. Smith, C. Hajda, P.R. Owens