Proceedings
Authors
| Filter results6 paper(s) found. |
|---|
1. Cotton Precision Farming Adoption In The Southern United States: Findings From A 2009 SurveyThe objectives of this study were 1) to determine the status of precision farming technology adoption by cotton producers in 12 states and 2) to evaluate changes in cotton precision farming technology adoption between 2000 and 2008. A mail survey of cotton producers located in Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, Missouri, North Carolina, South Carolina, Tennessee, Texas and Virginia was conducted in February and March of 2009 to establish the use of precision farming technologies... M. Velandia, D.F. Mooney, R.K. Roberts, B.C. English, J.A. Larson, D.M. Lambert, S.L. Larkin, M.C. Marra, R. Rejesus, S.W. Martin, K.W. Paxton, A. Mishra, C. Wang, E. Segarra, J.M. Reeves |
2. Adoption And Perceived Usefulness Of Precision Soil Sampling Information In Cotton ProductionSoil testing assists farmers in identifying nutrient variability to optimize input placement and timing. Anecdotal evidence suggests that soil test information has a useful life of 3–4 years. However, perceived usefulness may depend on a variety of factors, including field variability, farmer experience and education, farm size, Extension, and factors indirectly related to farming. In 2009, a survey of cotton farmers in 12 Southeastern states collected information... D.C. Harper, D.M. Lambert, B.C. English, J.A. Larson, R.K. Roberts, M. Velandia, D.F. Mooney, S.L. Larkin |
3. The Adoption of Information Technologies and Subsequent Changes in Input Use in Cotton ProductionThe use of precision farming has become increasingly important in cotton production. It allows farmers to take advantage of knowledge about infield variability by applying expensive inputs at levels appropriate to crop needs. Essential to the success of the precision... N.M. Thompson, J.A. Larson, B.C. English, D.M. Lambert, R.K. Roberts, M. Velandia, C. Wang |
4. Reverse Modelling of Yield-Influencing Soil Variables in Case of Few Soil DataOur hypothesis was that simple models can be applied to predict yield by using only those yield data which spatially coincide with the soil data and the remaining yield data and the models can be used to test different sampling and interpolation approaches commonly applied in precision agriculture and to better predict soil variables at not observed locations. Three strategies for composite sample collection were compared in our study. Point samples were taken 1.) along lines within homogenous... I. Sisák, A. Benő, K. Szabó, M. Kocsis, J. Abonyi |
5. An On-farm Experimental Philosophy for Farmer-centric Digital InnovationIn this paper, we review learnings gained from early On-Farm Experiments (OFE) conducted in the broadacre Australian grain industry from the 1990s to the present day. Although the initiative was originally centered around the possibilities of new data and analytics in precision agriculture, we discovered that OFEs could represent a platform for engaging farmers around digital technologies and innovation. Insight from interacting closely with farmers and advisors leads us to argue for a change... S. Cook, M. Lacoste, F. Evans, M. Ridout, M. Gibberd, T. Oberthur |
6. Wheat Biomass Estimation Using Visible Aerial Images and Artificial Neural NetworkIn this study, visible RGB-based vegetation indices (VIs) from UAV high spatial resolution (1.9 cm) remote sensing images were used for modeling shoot biomass of two Brazilian wheat varieties (TBIO Toruk and BRS Parrudo). The approach consists of a combination of Artificial Neural Network (ANN) with several Vegetation Indices to model the measured crop biomass at different growth stages. Several vegetation indices were implemented: NGRDI (Normalized Green-Red Difference Index), CIVE (Color Index... M.R. De souza, T.D. Bertani, A. Parraga, C. Bredemeier, C. Trentin, D. Doering, A. Susin, M. Negreiros |