Proceedings
Authors
| Filter results6 paper(s) found. |
|---|
1. A Computer Decision Aid For The Cotton Precision Agriculture Investment DecisionThis article introduces the Cotton Precision Agriculture Investment Decision Aid (CPAIDA), a software decision tool for analyzing the precision agriculture investment decision. CPAIDA was developed to provide improved educational information about precision farming equipment ownership costs, and the required returns to pay for their investment. The partial budgeting and breakeven analysis framework is documented along with use of the decision aid. With care in specifying values, program users... J.A. Larson, D.F. Mooney, R.K. Roberts, B.C. English |
2. Cotton Precision Farming Adoption In The Southern United States: Findings From A 2009 SurveyThe objectives of this study were 1) to determine the status of precision farming technology adoption by cotton producers in 12 states and 2) to evaluate changes in cotton precision farming technology adoption between 2000 and 2008. A mail survey of cotton producers located in Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, Missouri, North Carolina, South Carolina, Tennessee, Texas and Virginia was conducted in February and March of 2009 to establish the use of precision farming technologies... M. Velandia, D.F. Mooney, R.K. Roberts, B.C. English, J.A. Larson, D.M. Lambert, S.L. Larkin, M.C. Marra, R. Rejesus, S.W. Martin, K.W. Paxton, A. Mishra, C. Wang, E. Segarra, J.M. Reeves |
3. Adoption And Perceived Usefulness Of Precision Soil Sampling Information In Cotton ProductionSoil testing assists farmers in identifying nutrient variability to optimize input placement and timing. Anecdotal evidence suggests that soil test information has a useful life of 3–4 years. However, perceived usefulness may depend on a variety of factors, including field variability, farmer experience and education, farm size, Extension, and factors indirectly related to farming. In 2009, a survey of cotton farmers in 12 Southeastern states collected information... D.C. Harper, D.M. Lambert, B.C. English, J.A. Larson, R.K. Roberts, M. Velandia, D.F. Mooney, S.L. Larkin |
4. The Adoption of Information Technologies and Subsequent Changes in Input Use in Cotton ProductionThe use of precision farming has become increasingly important in cotton production. It allows farmers to take advantage of knowledge about infield variability by applying expensive inputs at levels appropriate to crop needs. Essential to the success of the precision... N.M. Thompson, J.A. Larson, B.C. English, D.M. Lambert, R.K. Roberts, M. Velandia, C. Wang |
5. Winter Wheat Genotype Effect on Canopy Reflectance: Implications for Using NDVI for In-season Nitrogen Topdressing RecommendationsActive optical sensors (AOSs) measure crop reflectance at specific wavelengths and calculate vegetation indices (VIs) that are used to prescribe variable N fertilization. Visual observations of winter wheat (Triticum aestivum L.) plant greenness and density suggest that VI values may be genotype specific. Some sensor systems use correction coefficients to eliminate the effect of genotype on VI values. This study was conducted to assess the effects of winter wheat cultivars and growing conditions... O.S. Walsh, S.M. Samborski, M. Stępień, D. Gozdowski, D.W. Lamb, E.S. gacek, T. Drzazga |
6. Feasibility of Estimating the Leaf Area Index of Maize Traits with Hemispherical Images Captured from Unmanned Aerial VehiclesFeeding a global population of 9.1 billion in 2050 will require food production to be increased by approximately 60%. In this context, plant breeders are demanding more effective and efficient field-based phenotyping methods to accelerate the development of more productive cultivars under contrasting environmental constraints. The leaf area index (LAI) is a dimensionless biophysical parameter of great interest to maize breeders since it is directly related to crop productivity. The LAI is defined... M. Perez-ruiz, E. Apolo-apolo, G. Egea, J. Martinez-guanter, C. Marin-barrero |