Proceedings
Authors
| Filter results58 paper(s) found. |
|---|
1. Quantifying Spatial Variability Of Indigenous Nitrogen Supply For Precision Nitrogen Management In North China Plain... Y. Miao, Q. Cao, Z. Cui, F. Li, T.H. Dao, R. Khosla, X. Chen |
2. Interest Of 3D Modeling For Lai Retrieval From Canopy Transmittance Measurements: The Cases Of Wheat And VineyardRemote sensing techniques are now widely used in agriculture, for cultivar screening as well as for decision making tools. Empirical methods relate directly the remote sensing measured values to crop characteristics. These methods are limited by the important amount of ground data necessary for their calibration. Their validity domain is generally not very well defined as well as the associated uncertainties. Conversely, radiative transfer models allow simulating a wide range of conditions, and... B. De solan, R. Lopez lozano, K. Ma, F. Baret, B. Tisseyre |
3. Comparison Of Different Vegetation Indices And Their Suitability To Describe N-uptake In Winter Wheat For Precision FarmingTo avoid environment pollution and to minimize the costs of using mineral fertilizers an efficient fertilization system, tailored to the plant needs becomes more and more important. For that, the essential information can be determined by detecting certain crop parameters, like dry matter of the plant biomass above ground, N-content and N-uptake. By using fluorescence and reflectance measurements of the canopy and the mathematical analysis these parameters are appreciable. In three years,... M. Strenner, F. Maidl |
4. A Comparison Of Spectral Reflectance And Laser-induced Cholorphyll Fluorescence Measurements To Detect Differences In Aerial Dry Weight And Nitrogen Update Of WheatChlorophyll fluorescence and spectral reflectance analysis are both powerful tools to study the spatial and temporal heterogeneity of plants` biomass and nitrogen status. Whereas reflectance techniques have intensively been tested for their use in precision fertilizer application, laser-induced chlorophyll fluorescence has been tested to a lesser degree, and there are hardly any... B. Mistele, U. Schmidhalter |
5. Cotton Precision Farming Adoption In The Southern United States: Findings From A 2009 SurveyThe objectives of this study were 1) to determine the status of precision farming technology adoption by cotton producers in 12 states and 2) to evaluate changes in cotton precision farming technology adoption between 2000 and 2008. A mail survey of cotton producers located in Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, Missouri, North Carolina, South Carolina, Tennessee, Texas and Virginia was conducted in February and March of 2009 to establish the use of precision farming technologies... M. Velandia, D.F. Mooney, R.K. Roberts, B.C. English, J.A. Larson, D.M. Lambert, S.L. Larkin, M.C. Marra, R. Rejesus, S.W. Martin, K.W. Paxton, A. Mishra, C. Wang, E. Segarra, J.M. Reeves |
6. Exploiting the Dmc Satellite Constellation for Applications in Precision AgricultureThis paper presents the unique capabilities of the DMC constellation of optical sensors, and examples of how a number of organisations around the world are exploiting this powerful data source for applications in precision farming. The DMC consists of five satellites built in the UK by Surrey Satellite Technology Ltd, each carrying a wide swath (650km) optical sensor. It is an international programme of satellite ownership and groundstations, with joint campaigns being coordinated centrally... P. Stephens, S. Mackin, G. Holmes |
7. Active Sensor Performance Dependence to Measuring Height, Light Intensity and Device TemperatureFor land use management, agriculture, and crop management spectral remote sensing is widely used. Ground-based sensing is particularly advantageous allowing to directly link on-site spectral information with agronomic algorithms. Sensors are nowadays most frequently used in site-specific oriented applications of fertilizers, but similarly site-specific applications of growth regulators, herbicides and pesticides become more often adopted. Generally little is known about the effects of... B. Mistele, U. Schmidhalter, S. Kipp |
8. Estimation of Nitrogen of Rice in Different Growth Stages Using Tetracam Agriculture Digital CameraMany methods are available to monitor nitrogen content of rice during various growth stages. However, this monitoring still requires a quick, simple, accurate and inexpensive technique that needs to be developed. In this study, Tetracam Agriculture Digital Camera (ADC) was used to acquire high spatial and temporal resolution in order to determine the status of nitrogen (N) and predict the grain yield of rice (Oriza sativa L.). In this study, 12 pots of rice with four different N treatments (0, 125,... A. Gholizadeh , M. Mohd soom , M. Saberioon |
9. Potential of Visible and Near Infrared Spectroscopy for Prediction of Paddy Soil Physical PropertiesA fast and convenient soil analytical technique is needed for soil quality assessment and precision soil management. The main objective of this study was to evaluate the ability of Visible (Vis) and Near-infrared Reflectance Spectroscopy (NIRS) to predict paddy soil physical properties in a typical Malaysian paddy field. To assess the utility of spectroscopy for soil physical characteristics prediction, we used 118 soil samples for laboratory analysis and optical measurement in the Vis-NIR region... A. Gholizadeh, M. Saberioon, M. Mohd soom |
10. Comparison of Active and Passive Spectral Sensors in Discriminating Biomass Parameters and Nitrogen Status in Wheat CultivarsSeveral sensor systems are available for ground-based remote sensing in crops. Vegetation indices of multiple active and passive sensors have seldom been compared in determining plant health. This study was aimed to compare active and passive sensing systems in terms of their ability to recognize agronomic parameters. One bi-directional passive radiometer (BDR) and three active sensors (Crop Circle, GreenSeeker, and an active flash sensor (AFS)) were tested for their ability to assess six destructively... B. Mistele, U. Schmidhalter, K. Erdle |
11. Cloud Computing and Web 2.0 Mapping Technologies for Disseminating Land Use Planning InformationOpen source software and cloud computing techniques could substantially improve the performance and reduce the cost of disseminating land-use planning information for the USDA-NRCS and other organizations. This is a major upgrade of our previously work (Hamilton,2009; Neelakantan et al., 2011). The purpose of this study is to develop a prototype cloud-based Web 2.0 mapping system for MLRA-121 which is primarily in Kentucky... T. Mueller |
12. A Comparison of Plant Temperatures as Measured By Thermal Imaging and Infrared Thermometry... P. Baresel, B. Mistele, H. Yuncai, U. Schmidhalter, H. Hackl |
13. Enhancing Farmers' Indigenous Knowledge Management in Cassava Varietal Trial Using Agro Ecosystem Analysis, Farmers' Drama Group and Animations in Eastern part of Nigeria.Researchers continue to come up with new varieties but farmer perspectives and preferences are very important factors for new varieties to spread in farmers’ communities. Researcher priorities alone are not enough. A variety may be ‘scientifically perfect... C.C. Asiabaka, M.O. Adesope, C.C. Ifeanyi- obi, R.N. Nwakwasi, F. Nnadi, E.C. Matthews- njoku, J. Chikaire |
14. Performance of Two Active Canopy Sensors for Estimating Winter Wheat Nitrogen Status in North China Plain... Q. Cao, Y. Miao, G. Feng, X. Gao, B. Liu, R. Khosla |
15. Assessing Water Status in Wheat under Field Conditions Using Laser-Induced Chlorophyll Fluorescence and Hyperspectral MeasurementsClassical measurements for estimating water status in plants using oven drying or pressure chambers are tedious and time-consuming. In the field, changes in radiation conditions may further influence the measurements and thus require... S. El-sayed, U. Schmidhalter, B. Mistele |
16. Spatial and Temporal Variability of Corn Grain Yield as a Function of Soil Parameters, and Climate FactorsEffective site-specific management requires an understanding the influence of soil and weather on yield variability. Our objective was to examine the influence of soil, precipitation, and temperature on spatial and temporal corn grain yield variability. The study site (10 by 250 -m in size) was located in Jaboticabal, São Paulo State, on a Rhodic Hapludox. Corn yield (planted with 0.9-m spacing) was measured... T. Mueller, J. Corá, A. Castrignanò, M. Rodrigues, E. Rienzi |
17. On-The-Go pH Sensor: An Evaluation in a Kentucky FieldA commercially available on-the-go soil pH sensor measures and maps subsurface soil pH at high spatial intensities across managed landscapes. The overall purpose of this project was to evaluate the potential for this sensor to be used in agricultural fields. The specific goals were to determine and evaluate 1) the accuracy with which this instrument can be calibrated, 2) the geospatial structure of soil pH measurements,... T. Mueller, E. Gianello, B. Mijatovic, E. Rienzi, M. Rodrigues |
18. Soil Organic Carbon Multivariate Predictions Based on Diffuse Spectral Reflectance: Impact of Soil MoistureSpatial predictions of soil organic carbon (OC) developed with proximal and remotely sensed diffuse reflectance spectra are complicated by field soil moisture variation. Our objective was to determine how moisture impacted spectral reflectance and Walkley-Black OC predictions. Soil reflectance from the North American Proficiency Testing... T. Mueller, C. Matocha, F. Sikora, B. Mijatovic, E. Rienzi |
19. Cloud Computing, Web-Based GIS, Terrain Analysis, Data Fusion, and Multivariate Statistics for Precision Conservation in the 21st Century... T. Mueller |
20. Precision Design Of Vegetative BuffersPrecision agriculture techniques can be applied at field margins to improve performance of water quality protection practices. Effectiveness of vegetative buffers, conventionally designed to have uniform width along field margins, is limited by spatially non-uniform runoff from fields. Effectiveness can be improved by placing relatively wider buffer at locations where loads are greater. A GIS tool was developed that accounts for non-uniform flow and produces more-effective, variable-width,... T. Mueller, S. Neelakantan, M. Helmers, M. Dosskey |
21. Evaluating Different Nitrogen Management Strategies For The Intensive Wheat-Maize System In North China PlainThe sustainable agricultural development involves both environmental challenges and production goals to meet growing food demand. However, excessive nitrogen (N) applications are threatening the sustainability of intensive agriculture in the North China Plain (NCP). Improved N management should result in greater N use efficiency (NUE) and producer profit while reducing the risk of environmental contamination. Therefore, developing and disseminating feasible N management strategies... Q. Cao, Y. Miao, G. Feng, F. Li, B. Liu, X. Gao, Y. Liu |
22. Crop Circle Sensor-Based Precision Nitrogen Management Strategy For Rice In Northeast ChinaGreenSeeker (GS) sensor-based precision N management strategy for rice has been developed, significantly improved N fertilizer use efficiency. Crop Circle ACS-470 (CC) active sensor is a new user configurable sensor, with a choice of 6 possible bands. The objectives of this study were to identify important vegetation indices obtained from CC sensor for estimating rice yield potential and rice responsiveness to topdressing N application and evaluate their potential improvements over GS normalized... Q. Cao, Y. Miao, J. Shen, S. Cheng, R. Khosla, F. Liu |
23. The Most Sensitive Growth Stage To Quantify Nitrogen Stress In Sugarcane Using Active Crop Canopy SensorThe use of sensors that allow the application of nitrogen fertilizer at variable rate has been widely used by researchers in many agricultural crops, but without success in sugarcane, probably due to the difficulty of diagnosing the nutritional status of the crop for nitrogen (N). Active crop canopy sensors are based on the principle that the spectral reflectance curve of the leaves are modified by N level. Researchers in USA indicated that in-season N stress in corn can be detected... S.G. Castro, O.T. Kolln, H.S. Nakao, H.C. Franco, O. Braunbeck, P.S. Graziano magalhães, G.M. Sanches |
24. Detection of Nitrogen Stress on Winter Wheat by Multispectral Machine VisionHand-held sensors (SPAD meter, N-Tester, …) used for detecting the leaves nitrogen concentration (Nc) present several drawbacks. The nitrogen concentration is gained by an indirect way through the chlorophyll concentration and the leaves have to be fixed in a defined position for the measurements. These drawbacks could be overcome by an imaging device that measures the canopy reflectance. Hence, the objective of the paper is to analyse the potential of multispectral imaging for detecting... M. Destain, V. Leemans, G. Marlier, J. Goffart, B. Bodson, B. Mercatoris, F. Gritten |
25. Rectification of Management Zones Considering Moda and Median As a Criterion for Reclassification of PixelsManagement zones (MZ) make economically viable the application of precision agriculture techniques by dividing the production areas according to the homogeneity of its productive characteristics. The divisions are conducted through empirical techniques or cluster analysis, and, in some cases, the MZ are difficult to be delimited due to isolated cells or patches within sub-regions. The objective of this study was to apply computational techniques that provide smoothing of MZ, so as to become viable... N.M. Betzek, E.G. Souza, C.L. Bazzi, K. Schenatto, A. Gavioli, M.F. Maggi |
26. Mapping Spatial Production Stability in Integrated Crop and Pasture Systems: Towards Zonal Management That Accounts for Both Yield and Livestock-landscape Interactions.Precision farming technologies are now widely applied within Australian cropping systems. However, the use of spatial monitoring technologies to investigate livestock and pasture interactions in mixed farming systems remains largely unexplored. Spatio-temporal patterns of grain yield and pasture biomass production were monitored over a four-year period on two Australian mixed farms, one in the south-west of Western Australia and the other in south-east Australia. A production stability index was... P. Mcentee, S. Bennett, M. Trotter, R. Belford, J. Harper |
27. Accuracy of Differential Rate Application Technology for Aerial Spreading of Granular Fertiliser Within New ZealandAerial topdressing of granular fertilizer is common practice on New Zealand hill country farms because of the challenging topography. Ravensdown Limited is a New Zealand fertilizer manufacturer, supplier and applicator, who are funding research and development of differential rate application from aircraft. The motivation for utilising this technology is to improve the accuracy of fertilizer application and fulfil the variable nutrient requirements of hill country farms. The capability of... I.J. Yule, S.E. Chok, M.C. Grafton, M. White |
28. Measuring Pasture Mass and Quality Indices Over Time Using Proximal and Remote SensorsTraditionally pasture has been measured or evaluated in terms of a dry matter yield estimate, which has no reference to other important quality factors. The work in this paper measures pasture growth rates on different slopes and aspects and pasture quality through nitrogen N% and metabolizable energy and ME concentration. It is known that permanent pasture species vary greatly in terms of quality and nutritional value through different stages of maturity. Pasture quality decreases as grass tillers... I.J. Yule, M.C. Grafton, L.A. Willis, P.J. Mcveagh |
29. Potential Improvement in Rice Nitrogen Status Monitoring Using Rapideye and Worldview-2 Satellite Remote SensingFor in-season site-specific nitrogen (N) management of rice to be successful, it is crucially important to diagnose rice N status efficiently across large area in a timely fashion. Satellite remote sensing provides a promising technology for crop growth monitoring and precision management over large areas. The FORMOSAT-2 satellite remote sensing imageries with 4 wavebands have been used to estimate rice N status. The objective of this study was to evaluate the potential of using high spatial resolution... S. Huang, Y. Miao, F. Yuan, M.L. Gnyp, Y. Yao, Q. Cao, V. Lenz-wiedemann, G. Bareth |
30. Hyperspectral Imaging to Measure Pasture Nutrient Concentration and Other Quality ParametersManaging pasture nutrient requirements on large hill country sheep and beef properties based on information from soil sampling is expensive because of the time and labor involved. High levels of error are also expected as these properties are often greatly variable and it is therefore extremely difficult to sample intensively enough to capture this variation. Extensive sampling was also not considered viable as there was no effective means of spreading fertilizer with a variable rate capability... I.J. Yule, R.R. Pullanagari, G. Kereszturi, M.E. Irwin, P.J. Mcveagh, T. Cushnahan, M. White |
31. Agronomic Characteristics of Green Corn and Correlations with Productivity for the Establishment of Management Zones in Vale Do Ribeira, SP, BrazilIn Brazil, the progressive development in the cultivation of the corn for consumption in the green stadium stands by the relevant socio-economic role that this related to multiple applications, the attractive market price and continuous demand for the product in nature. Therefore, this study was to analyze the correlations and spatial variability of the productivity of the culture of the green corn in winter, in alluvial soil of the type Cambisols eutrophic in the amount areas and Hydromorphic... W.J. Souza, V.S. Akune, S.H. Benez, L.C. Citon, P.H. Nakazawa, A.J. Santana neto |
32. Spatial Variability and Correlations Between Soil Attributes and Productivity of Green Corn CropIn Brazil, the progressive development in the cultivation of the corn for consumption in the green stadium stands by the relevant socio-economic role that this related to multiple applications, the attractive market price and continuous demand for the product in nature. Therefore, this study was to analyze the correlations and spatial variability of the productivity of the culture of the green corn in winter, in alluvial soil of the type Cambisols eutrophic in the amount areas and Hydromorphic... W.J. Souza, S.H. Benez, P.H. Nakazawa, A.J. Santana neto, L.C. Citon, V.S. Akune |
33. In-field Variability of Terrain and Soils in Southeast Kansas: Challenges for Effective ConservationA particular challenge for crop production in southeast Kansas is the shallow topsoil, underlain with a dense, unproductive clay layer. Concerns for topsoil loss have shifted production systems to reduced tillage or conservation management practices. However, historical erosion events and continued nutrient and sediment loss still limit the productive capacity of fields. To improve crop production and further adoption of conservation practices, identification of vulnerable areas of fields was... G.F. Sassenrath, T. Mueller, V.J. Alarcon, S.E. Kulesza, D. Shoup |
34. Climate Sensitivity Analysis on Maize Yield on the Basis of Precision Crop ProductionIn this paper by prediction we have defined maize yield in precision plant production technologies according to five different climate change scenarios (Ensembles Project) until 2100 and in one scenario until 2075 using DSSAT v. 4.5.0. CERES-Maize decision support model. Sensitivity analyses were carried out. The novelty of the method presented here is that precision, variable rate technologies from relatively small areas (in our case 2500 m2) enable a large amount of data to be collected... A. Nyeki, G. Milics, A.J. Kovacs, M. Neményi, J. Kalmar |
35. Using Unmanned Aerial Vehicle and Active-Optical Sensor to Monitor Growth Indices and Nitrogen Nutrition of Winter WheatUsing unmanned aerial vehicle (UAV) remote sensing monitoring system can rapidly and cost-effectively provide crop canopy information for growth diagnosis and precision fertilizer regulation. RapidScan CS-45 (Holland, Lincoln, NE, USA) is a portable active-optical sensor designed for timely, non-destructive obtaining plant canopy information without being affected by weather condition. UAV equipped with RapidScan, is of great significant for rapidly monitoring crop growth and nitrogen (N) status.... X. Liu, Q. Cao, Y. Tian, Y. Zhu, Z. Zhang, W. Cao |
36. Nitrogen Sensing by Using Spectral Reflectance Measurements in Cereal Rye CanopyCereal rye (cereale secale L.) is a winter crop well suited for cultivation especially besides high yield areas because of its relatively low demands on the soil and on the climate as well. In 2016 about 4.9% of arable land in Germany was cultivated with cereal rye (Statistisches Bundesamt, 2017). Unlike other crops such as wheat, there is little research on cereal rye for site specific farming. Furthermore, also in a cereal rye cultivation it is necessary to minimize nitrogen loss.... M. Strenner, F.X. Maidl, K.J. Hülsbergen |
37. Using a UAV-Based Active Canopy Sensor to Estimate Rice Nitrogen StatusActive canopy sensors have been widely used in the studies of crop nitrogen (N) estimation as its suitability for different environmental conditions. Unmanned aerial vehicle (UAV) is a low-cost remote sensing platform for its great flexibility compared to traditional ways of remote sensing. UAV-based active canopy sensor is expected to take the advantages of both sides. The objective of this study is to determine whether UAV-based active canopy sensor has potential for monitoring rice N status,... S. Li, Q. Cao, X. Liu, Y. Tian, Y. Zhu |
38. Economics of Swarm Bot Profitability for Cotton HarvestImproved equipment management is one way which producers can increase profits. For cotton, this is especially true due to specialized equipment used for the sole purpose of harvest. Questions are raised regarding a way to either reduce or replace traditional cotton pickers. The main alternative being discussed is an investment in autonomous “swarm bots” to replace traditional equipment. Swarm bots are fully automated robots tasked with the responsibility of picking cotton one row at... J. Cullop, T.W. Griffin, G. Ibendahl, E. Barnes, J. Shockley, J. Devine |
39. Shared Protocols and Data Template in Agronomic TrialsDue to the overlap of many disciplines and the availability of novel technologies, modern agriculture has become a wide, interdisciplinary endeavor, especially in Precision Agriculture. The adoption of a standard format for reporting field experiments can help researchers to focus on the data rather than on re-formatting and understanding the structure of the data. This paper describes how a European consortium plans to: i) create a “handbook” of protocols for reporting definitions,... D. Cammarano, D. Drexler, P. Hinsinger, P. Martre, X. Draye, A. Sessitsch, N. Pecchioni, J. Cooper, W. Helga, A. Voicu |
40. Feasibility of Estimating the Leaf Area Index of Maize Traits with Hemispherical Images Captured from Unmanned Aerial VehiclesFeeding a global population of 9.1 billion in 2050 will require food production to be increased by approximately 60%. In this context, plant breeders are demanding more effective and efficient field-based phenotyping methods to accelerate the development of more productive cultivars under contrasting environmental constraints. The leaf area index (LAI) is a dimensionless biophysical parameter of great interest to maize breeders since it is directly related to crop productivity. The LAI is defined... M. Perez-ruiz, E. Apolo-apolo, G. Egea, J. Martinez-guanter, C. Marin-barrero |
41. AgDataBox: Web Platform of Data Integration, Software, and Methodologies for Digital AgricultureAgriculture is challenging to produce more profitably, with the world population expected to reach some 10 billion people by 2050. Such a challenge can be achieved by adopting precision agriculture and digital agriculture (Agriculture 4.0). Digital agriculture has become a reality with the availability of cheaper and more powerful sensors, actuators and microprocessors, high-bandwidth cellular communication, cloud communication, and Big Data. Digital agriculture enables the flow of information... E.G. Souza, C. Bazzi, A. Hachisuca, R. Sobjak, A. Gavioli, N. Betzek, K. Schenatto, E. Mercante, M. Rodrigues, W. Moreira |
42. Web Application for Automatic Creation of Thematic Maps and Management Zones - AgDataBox-Fast TrackAgriculture is challenging to produce more profitably, with the world population expected to reach some 10 billion people by 2050. Such a challenge can be achieved by adopting precision agriculture and digital agriculture (Agriculture 4.0). Digital agriculture (DA) has become a reality with the availability of cheaper and more powerful sensors, actuators and microprocessors, high-bandwidth cellular communication, cloud communication, and Big Data. DA enables information to flow from used agricultural... J. Aikes junior, E.G. Souza, C. Bazzi, R. Sobjak, A. Hachisuca, A. Gavioli, N. Betzek, K. Schenatto, W. Moreira, E. Mercante, M. Rodrigues |
43. Sun Effect on the Estimation of Wheat Ear Density by Deep LearningEar density is one of the yield components of wheat and therefore a variable of high agronomic interest. Its traditional measurement necessitates laborious human observations in the field or destructive sampling. In the recent years, deep learning based on RGB images has been identified as a low-cost, robust and high-throughput alternative to measure this variable. However, most of the studies were limited to the computer challenge of counting the ears in the images, without aiming to convert... S. Dandrifosse, E. Ennadifi, A. Carlier, B. Gosselin, B. Dumont, B. Mercatoris |
44. Spotweeds: a Multiclass UASs Acquired Weed Image Dataset to Facilitate Site-specific Aerial Spraying Application Using Deep LearningUnmanned aerial systems (UASs)-based spot spraying application is considered a boon in Precision Agriculture (PA). Because of spot spraying, the amount of herbicide usage has reduced significantly resulting in less water contamination or crop plant injury. In the last demi-decade, Deep Learning (DL) has displayed tremendous potential to accomplish the task of identifying weeds for spot spraying application. Also, most of the ground-based weed management technologies have relied on DL techniques... N. Rai, Y. Zhang, J. Quanbeck, A. Christensen, X. Sun |
45. Investigating the Potential of Visible and Near-infrared Spectroscopy (VNIR) for Detecting Phosphorus Status of Winter Wheat Leaves Grown in Long-term TrialThe determination of plant nutrient content is crucial for evaluating crop nutrient removal, enhancing nutrient use efficiency, and optimizing yields. Nutrient conventional monitoring involves colorimetric analyses in the laboratory; however, this approach is labor-intensive, costly, and time-consuming. The visible and near-infrared spectroscopy (VNIR) or hyperspectral non-imaging sensors have been an emerging technology that has been proved its potential for rapid detection of plant nutrient... Y. El-mejjaouy, B. Dumont, A. Oukarroum, B. Mercatoris , P. Vermeulen |
46. AgDataBox-IoT Application Development for Agrometeorogical Stations in Smart FarmCurrently, Brazil is one of the world’s largest grain producers and exporters. Brazil produced 125 million tons of soybean in the 2019/2020 growing season, becoming the world’s largest soybean producer in 2020. Brazil’s economic dependence on agribusiness makes investments and research necessary to increase yield and profitability. Agriculture has already entered its 4.0 version, also known as digital agriculture, when the industry has entered the 4.0 era. This new paradigm uses... A. Hachisuca, E.G. Souza, E. Mercante, R. Sobjak, D. Ganascini, M. Abdala, I. Mendes, C. Bazzi, M. Rodrigues |
47. Soybean Variable Rate Planting Simulator Using Economic ScenariosSoybean seed costs have increased considerably over the past 15 years, causing a growing interest in variable rate planting (VRP) to optimize seeding rates within soybean fields. We developed a publicly available online Soybean Variable Rate Planting Simulator (http://analytics.iasoybeans.com/cool-apps/SoybeanVRPsimulator/) tool to help farmers, agronomists, and other agriculturalists to understand the essential prerequisite agronomic or economic conditions necessary for profitable VRP implementation.... B. Mcarthor , A. Prestholt, P. Kyveryga |
48. Developing a Wheat Precision Nitrogen Management Strategy by Combining Satellite Remote Sensing Data and WheatGrow ModelPrecision nitrogen (N) management (PNM) is becoming increasingly popular due to its ability to synchronize crop N demand with soil N supply spatiotemporally. The previous evidence has demonstrated that variable rate fertilization contributes to achieving high yields and high efficiencies. However, PNM at the regional level remains unclear and challenging. This study aims to develop a novel management zone (MZ)-based PNM strategy (MZ-PNM) to optimize the basal and topdressing N rates at the regional... Y. Miao, X. Liu, Y. Tian, Y. Zhu, W. Cao, Q. Cao, X. Chen, Y. Li |
49. Potential Benefits of Variable Rate Nitrogen Topdressing Strategy Coupled with Zoning Technique: a Case Study in a Town-scale Rice Production SystemIntegrating remote sensing (RS)-based variable rate nitrogen (N) recommendation (VRNR) algorithms and management zones (MZs) may improve the accuracy and efficiency of site-specific N management. However, its potential benefits for application in commercial rice production systems can hardly be assessed, since it requires to intervene in common agricultural practices and causes certain economic and environmental consequences. Through a machine learning approach, this study aims to comprehensively... J. Zhang, W. Wang, Z. Fu, Q. Cao, Y. Tian, Y. Zhu, W. Cao, X. Liu |
50. Global Adoption of Precision Agriculture: an Update on Trends and Emerging TechnologiesThe adoption of precision agriculture (PA) has been mixed. Some technologies (e.g., Global Navigation Satellite System (GNSS) guidance) have been adopted rapidly worldwide wherever there is mechanized agriculture. Adoption of some of the original PA technologies introduced in the 1990s has been modest almost everywhere (e.g., variable rate fertilizer). New and more advanced technologies based on robotics, uncrewed aerial vehicles (UAVs), machine vision, co-robotic automation, and artificial intelligence... J. Mcfadden, B. Erickson, J. Lowenberg-deboer, G. Milics |
51. A Flexible Software Architecture for General Precision Agriculture Decision Support SystemsAgricultural data management is a complex problem. Both the data and the needs of the users are diverse. Given the complexity of the problem, it's easy to ascertain that a single solution will not be able to meet the needs of all users. This paper presents a software architecture designed to be extensible as well as flexible enough to provide agricultural management tools for a wide variety of users. The solution is based on a microservice architecture, which allows for the creation of new... W. Neils, D. Mommen |
52. Optimizing Nitrogen Application in Global Wheat Production by an Integrated Bayesian and Machine Learning ApproachWheat production plays a pivotal role in global food security, with nitrogen fertilizer application serving as a critical factor. The precise application of nitrogen fertilizer is imperative to maximize wheat yield while avoiding environmental degradation and economic losses resulting from excess or inadequate usage. The integration of Bayesian and machine learning methodologies has gained prominence in the realm of agricultural research. Bayesian and machine learning based methods have great... Z. Liu, X. Liu, Y. Tian, Y. Zhu, W. Cao, Q. Cao |
53. Improving Site-specific Nutrient Management in the Southeastern US: Variable-rate Fertilization Based on Yield Goal by Management ZoneSite-specific nutrient management is a critical aspect of row crop production, especially when aiming to achieve improved yields in the highly variable fields in the Southeastern United States. Variable-rate (VR) fertilizer application is a common practice to implement site-specific nutrient management and relies heavily on the use of precision soil sampling methods (grid or zone) to obtain accurate information on spatial nutrient variability within the fields. Most fields in the southeastern... S. Virk, T. Colley, C. Kamerer, G. Harris, D. Beasley |
54. Comparison of NDVI Values at Different Phenological Stages of Winter Wheat (Triticum Aestivum L.)The main objective of this study is to monitor, detect and quantify the presence of live green vegetation with the MicaSense RedEdge-MX Dual Camera System (MS) mounted on a DJI Matrice 210 V2 and GreenSeeker HCS 250 (GS) in winter wheat (Triticum aestivum L.) by using Normalized Difference Vegetation Index (NDVI). Surveys were conducted in the North-Western part of Hungary, in Mosonmagyaróvár on six different dates. A small-scale field trial in winter wheat was constructed as a randomized... S. Zsebő, G. Kukorelli, V. Vona, L. Bede, D. Stencinger, A. Kovacs, G. Milics, I.M. Kulmany, B. Horváth, G. Hegedűs, J.A. Abdinoor |
55. Comparative Analysis of Spray Nozzles on Drones: Volumetric Distribution at Different HeightsAgricultural drones are emerging as a revolutionary tool in modern agriculture, aiming to enhance precision and efficiency in crop management. One of their main advantages is the ability to operate in adverse soil and canopy height conditions, making them a valuable instrument for the application of agrochemicals. In this context, the optimization of spraying systems plays a critical role, with the goal of ensuring the effective application of agrochemicals, aiming to maximize productivity and... A. Felipe dos santos, J.E. Silva, O.P. Costa, F.D. Inácio , R. Oliveira, W. Silva, L. Lacerda, T. Orlando costa barboza |
56. Harnessing Farmers’, Researchers’ and Other Stakeholders’ Knowledge and Experiences to Create Shared Value from On-farm Experimentation: Lessons from KenyaAchieving greater sustainability in farm productivity is a major challenge facing smallholder farmers in Kenya. Existing technologies have not solved the challenges around declining productivity because they are one-size-fits-all that doesn’t account for the diverse smallholder contexts. A study was carried out in Kenya by a multi-disciplinary team to assess the value of On-Farm Experimentation (OFE) to tailor technologies to local conditions. The OFE process begun with identification of... J. Muthamia, I. Adolwa, J. Mutegi, S. Zingore, S. Phillips |
57. Simultaneously Estimating Crop Biomass and Nutrient Parameters Using UAS Remote Sensing and Multitask LearningRapid and accurate estimation of crop growth status and nutrient levels such as aboveground biomass, nitrogen, phosphorus, and potassium concentrations and uptake is critical with respect to precision agriculture and field-based crop monitoring. Recent developments in Uncrewed Aircraft Systems (UAS) and sensor technologies have enabled the collection of high spatial, spectral, and temporal remote sensing data over large areas at a lower cost. Coupled deep learning-based modeling approaches with... P. Kovacs, M. Maimaitijiang, B. Millett, L. Dorissant, I. Acharya, U.U. Janjua, K. Dilmurat |
58. Response of Canola and Wheat to Application of Enhanced Efficiency Nitrogen Fertilizers on Contrasting Management ZonesInvestment on nitrogen (N) fertilizers is a major cost of growers, and variable rate (VR) application of N fertilizers could help optimize its usage. In the growing season of 2023, field experiments were conducted at four sites (i.e., Watrous – Saskatchewan SK and two fields in the vicinity of Strathmore, Alberta AB, Canada). The main objectives were to (i) determine performance of Enhanced Efficiency N Fertilizers - EENF (i.e., Coated urea, urea with double inhibitors - DI, urea mixed with... H. Asgedom, G. Hehar, C. Willness, W. Anderson, H. Duddu, P. Mooleki, J. Schoenau, M. Khakbazan, R. Lemke, E. derdall, J. Shang, K. Liu, J. Sulik, E. Karppinen, I. Mbakwe |