Proceedings

Find matching any: Reset
Sharma, D.B
Perron, I
Canal Filho, R
Stavness, I
Kieffer, D
Butts, C
Stamm, M.J
Raun, W.R
Fernandez-Novales, J
Sikora, F
Kulhandjian, M
Attanayake, A
Gray, G.R
Borůvka, L
Krishna, D
Rühlmann, M
Groulx, D
Rutter, M.S
Shrestha, S
Kim, K
Pauly, K
Palla, S
Saberioon, M
Perulli, G
Schueller, J.K
Gutteridge, M
Rahman, .M
Saxena, A
Kashetri, S
Kross, A
Rossi Neto, J
Paglia, C
Phillips, R
Jansen, M
Dela Rue, B.T
Add filter to result:
Authors
Shinde, G.U
Salokhe, D.M
Badgujar, P.D
Sharma, D.B
Gholizadeh, A
Saberioon, M
Mohd Soom, M
Soaud, A.A
Rahman, .M
Al Darwish, F.H
Krishna, D
Chung, S
Kim, K
Kim, H
Choi, J
Zhang, Y
Kang, S
Han, K
Hur, S
Jago, J
Burke, J
Kamphuis, C
Dela Rue, B.T
Dela Rue, B.T
Jago, J
Kamphuis, C
Dela Rue, B.T
Kamphuis, C
Jago, J.G
Burke, C.R
Chung, S
Huh, Y
Choi, J
Ryu, D
Kim, K
Kim, H
Kim, H
Chung, S
Kim, K
Huh, Y
Hur, S
Ha, S
Ryu, M
Kim, H
Han, K
Farooque, A.A
Zaman, Q.U
Groulx, D
Schumann, A.W
Esau, T.J
Chang, Y.K
Mueller, T
Matocha, C
Sikora, F
Mijatovic, B
Rienzi, E
Kieffer, D
Raun, W.R
Quaderer, J
Coonen, J
Lange, A
Pauly, K
Kolln, O.T
Sanches, G.M
Rossi Neto, J
Castro, S.G
Mariano, E
Otto, R
Inamasu, R
Magalhães, P.S
Braunbeck, O.A
Franco, H.C
Ciampitti, I.A
Shroyer, K
Prasad, V
Sharda, A
Stamm, M.J
Wang, H
Price, K
Mangus, D
Gholizadeh, A
Saberioon, M
Borůvka, L
Paulus, S
Dornbusch, T
Jansen, M
Pauly, K
Gebbers, R
Dworak, V
Mahns, B
Weltzien, C
Büchele, D
Gornushkin, I
Mailwald, M
Ostermann, M
Rühlmann, M
Schmid, T
Maiwald, M
Sumpf, B
Rühlmann, J
Bourouah, M
Scheithauer, H
Heil, K
Heggemann, T
Leenen, M
Pätzold, S
Welp, G
Chudy, T
Mizgirev, A
Wagner, P
Beitz, T
Kumke, M
Riebe, D
Kersebaum, C
Wallor, E
Cerri, D.G
Gray, G.R
Magalhães, P.S
Bresilla, K
Manfrini, L
Boini, A
Perulli, G
Morandi, B
Grappadelli, L.C
Tardaguila, J
Diago, M
Gutierrez, S
Fernandez-Novales, J
Moreda, E.A
Agili, H
Chokmani, K
Cambouris, A
Perron, I
Poulin, J
Kross, A
Kaur, G
Callegari, D
Lapen, D
Sunohara, M
McNairn, H
Rudy, H
van Vliet, L
Kross, A
Kaur, G
Znoj, E
Callegari, D
Sunohara, M
McNairn, H
Lapen, D
Rudy, H
van Vliet, L
Ward, J
Roberson, G
Phillips, R
Behrendt, K
Takahashi, T
Rutter, M.S
Krys, K
Shirtliffe, S
Duddu, H
Ha, T
Attanayake, A
Johnson, E
Andvaag, E
Stavness, I
Zhou, C
Lee, W
Pourreza, A
Schueller, J.K
Liburd, O.E
Ampatzidis, Y
Zuniga-Ramirez, G
Upadhyaya, P
Karkee, M
Zhang, X
Kashetri, S
Saxena, A
Dash, M
Verma, A.P
Gutteridge, M
Gallios, I
Vellidis, G
Butts, C
Kulhandjian, H
Kulhandjian, M
Rocha, D
Bennett, B
Kulhandjian, H
Kulhandjian, M
Rocha, D
Bennett , B
Kulhandjian, H
Amely, N
Kulhandjian, M
Maritan, E
Behrendt, K
Lowenberg-DeBoer, J
Morgan, S
Rutter, M.S
Rozenstein, O
Cohen, Y
Alchanatis , V
Behrendt, K
Bonfil, D.J
Eshel, G
Harari, A
Harris, W.E
Klapp, I
Laor, Y
Linker, R
Paz-Kagan, T
Peets, S
Rutter, M.S
Salzer, Y
Lowenberg-DeBoer, J
Gilson, A
Meyer, L
Killer, A
Keil, F
Scholz, O
Kittemann, D
Noack, P
Pietrzyk, P
Paglia, C
Shrestha, S
Lacerda, L
Vellidis, G
Pilcon, C
Maktabi, S
Sysskind, M
Nazrul, F
Kim, J
Dey, S
Palla, S
Sihi, D
Whitaker, B
Jha, G
Balboa, G
Masnello, J.C
De Oliveira Moreira, F
Canal Filho, R
Da Silva, E.R
Molin, J.P
Topics
Engineering Technologies and Advances
Remote Sensing Applications in Precision Agriculture
Precision Nutrient Management
Precision Horticulture
Precision Dairy and Livestock Management
Spatial Variability in Crop, Soil and Natural Resources
Precision Conservation and Carbon Management
Precision A-Z for Practitioners
Applications of UAVs (unmanned aircraft vehicle systems) in precision agriculture
Precision Nutrient Management
Proximal Sensing in Precision Agriculture
Remote Sensing Applications in Precision Agriculture
Unmanned Aerial Systems
Precision Nutrient Management
Engineering Technologies
Big Data, Data Mining and Deep Learning
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Applications of Unmanned Aerial Systems
Decision Support Systems
ISPA Community: Economics
Applications of Unmanned Aerial Systems
Big Data, Data Mining and Deep Learning
Geospatial Data
Robotics, Guidance and Automation
Decision Support Systems
Robotics and Automation with Row and Horticultural Crops
Artificial Intelligence (AI) in Agriculture
Site-Specific Pasture Management
Drivers and Barriers to Adoption of Precision Ag Technologies or Digital Agriculture
Precision Horticulture
Proximal and Remote Sensing of Soils and Crops (including Phenotyping)
Weather and Models for Precision Agriculture
Demonstration
Type
Poster
Oral
Year
2012
2010
2014
2016
2008
2018
2022
2024
Home » Authors » Results

Authors

Filter results44 paper(s) found.

1. Effect Of Sub-surface Drip Irrigation And Shade On Soil Moisture Uniformity In Residential Turf

Sub-surface irrigation in turf has advantages over traditional sprinkler systems. Evapotranspiration is reduced and water applied below the root zone promotes deeper root growth. Auditing such applications requires measurement of root-zone soil moisture. Data was taken in 2008 and 2009 on a private lawn in northern California that had just been rebuilt to include both sub-surface drip and overhead spray irrigation systems. A portable wave reflectometer was used to take geo-referenced soil moisture... D. Kieffer

2. Application of Indirect Measures for Improved Nitrogen Fertilization Algorithms

blank... W.R. Raun

3. Computer Aided Engineering Analysis and Design Optimization for Precision Manufacturing of Tillage Tool: Sweep Cultivator

The process optimization in advance tillage tool system conceptually designed and fabricated by computer aided engineering analysis techniques. The Software testing a field performance is taken in the soil bed preparation as well as in the various crop patterns. It was found most use full in obtaining high weed removal efficiency. The precision geometry, optimum energy utilization, multi-operational design, easy transport and flexible attachments are some of the features which results in achieving... G.U. Shinde, D.M. Salokhe, P.D. Badgujar, D.B. Sharma

4. Potential of Visible and Near Infrared Spectroscopy for Prediction of Paddy Soil Physical Properties

A fast and convenient soil analytical technique is needed for soil quality assessment and precision soil management. The main objective of this study was to evaluate the ability of Visible (Vis) and Near-infrared Reflectance Spectroscopy (NIRS) to predict paddy soil physical properties in a typical Malaysian paddy field. To assess the utility of spectroscopy for soil physical characteristics prediction, we used 118 soil samples for laboratory analysis and optical measurement in the Vis-NIR region... A. Gholizadeh, M. Saberioon, M. Mohd soom

5. Stable Isotope N-15 as Precision Technique to Investigate Elemental Sulfur Effects on Fertilizer Nitrogen Use Efficiency of Corn Grown in Calcareous Sandy Soils

... A.A. Soaud, .M. Rahman, F.H. Al darwish

6. The Effect of Scheduling Irrigation on Yield, Concentration and Uptake of Nutrient in Zero Tilled Wheat (Triticum Aestivum L.)

Abstract: The rice–wheat rotation... D. Krishna

7. Remote Control System for Greenhouse Environment Using Mobile Devices

Protected crop production facilities such as greenhouse and plant factory have drawn interest and the area is increasing in Korea as well as in other countries in the world. Remote... S. Chung, K. Kim, H. Kim, J. Choi, Y. Zhang, S. Kang, K. han, S. Hur

8. Remote Collection of Behavioral and Physiological Data to Detect Lame Cows

Authors of abstract: C. Kamphuis, J. Burke, J. Jago ... J. Jago, J. Burke, C. Kamphuis, B. Dela rue

9. Two On-Farm Tests to Evaluate In-Line Sensors for Mastitis Detection

To date, there is no independent and uniformly presented information available regarding detection performance of automated in-line mastitis detection systems. This lack of information makes it hard for farmers or... B. Dela rue, J. Jago, C. Kamphuis

10. Field Evaluation of Automated Estrus Detection Systems - Meeting Farmers' Expectation

Automated systems for oestrus detection are commonly marketed as a suitable, or in some cases, a higher performing alternative to visual observation. Farmers, particularly those with larger herds relying on less experienced staff, view the perceived benefits of automated systems as both economic and physical, with expectations of improved oestrus detection efficiency with lower labour input. There is little evidence-based information available on the field performance of these systems to... B.T. Dela rue, C. Kamphuis, J.G. Jago, C.R. Burke

11. Determination of Sensor Locations for Monitoring of Soil Water Content in Greenhouse

 Monitoring and control of environmental condition is highly important for optimum control of the conditions, especially in greenhouse and plant factor, and the condition... S. Chung, Y. Huh, J. Choi, D. Ryu, K. Kim, H. Kim, H. Kim

12. Determination of Sensor Locations for Monitoring of Greenhouse Ambient Environment

In protected crop production facilities such as greenhouse and plant factory, f... S. Chung, K. Kim, Y. Huh, S. Hur, S. Ha, M. Ryu, H. kim, K. han

13. Sensor Fusion on a Wild Blueberry Harvester for Fruit Yield, Plant Height and Topographic Features Mapping to Improve Crop Productivity

  Site-specific crop management can improve profitability and environmental risks of wild blueberry crop having large spatial variation in soil/plant characteristics, topographic features which may affect fruit yield. An integrated automated sensor fusion system including an ultrasonic sensor, a digital color camera, a slope sensor,... A.A. Farooque, Q.U. Zaman, D. Groulx, A.W. Schumann, T.J. Esau, Y.K. Chang

14. Soil Organic Carbon Multivariate Predictions Based on Diffuse Spectral Reflectance: Impact of Soil Moisture

Spatial predictions of soil organic carbon (OC) developed with proximal and remotely sensed diffuse reflectance spectra are complicated by field soil moisture variation. Our objective was to determine how moisture impacted spectral reflectance and Walkley-Black OC predictions. Soil reflectance from the North American Proficiency Testing... T. Mueller, C. Matocha, F. Sikora, B. Mijatovic, E. Rienzi

15. Applying Conventional Vegetation Vigor Indices To UAS-Derived Orthomosaics: Issues And Considerations

In recent years, unmanned airborne systems (UAS) have gained a lot of interest for their potential use in precision agriculture. While the imagery from near-infrared (NIR) enabled off-the-shelf cameras included in UAS can be directly used to facilitate crop scouting, the application in quantitative analyses remains cumbersome. The ultimate goal is to calculate (nitrogen) prescription maps from vegetation indices obtained from UAS imagery, but two main issues hamper this workflow: (1) the... J. Quaderer, J. Coonen, A. Lange, K. Pauly

16. Optical Sensors To Predict Nitrogen Demand By Sugarcane

The low effectiveness of nitrogen (N) from fertilizer is a substantial concern in worldwide which has been threatening the sustainability of sugarcane production. The increment of nitrogen use efficiency (NUE) by sugarcane genotypes associated to the best practices of fertilizer management and nutritional diagnosis methods have higher potential to reduce environment impacts of nitrogen fertilization. Due to the difficult to determine N status in soil test as well as there is not... O.T. Kolln, G.M. Sanches, J. Rossi neto, S.G. Castro, E. Mariano, R. Otto, R. Inamasu, P.S. Magalhães, O.A. Braunbeck, H.C. Franco

17. sUAVS Technology For Better Monitoring Crop Status For Winter Canola

The small-unmanned aircraft vehicles (sUAVS) are currently gaining more popularity in agriculture with uses including identification of weeds and crop production issues, diagnosing nutrient deficiencies, detection of chemical drift, scouting for pests, identification of biotic or abiotic stresses, and prediction of biomass and yield. Research information on the use of sUAVS have been published and conducted in crops such as rice, wheat, and corn, but the development of... I.A. Ciampitti, K. Shroyer, V. Prasad, A. Sharda, M.J. Stamm, H. Wang, K. Price, D. Mangus

18. Memory Based Learning: A New Data Mining Approach to Model and Interpret Soil Texture Diffuse Reflectance Spectra

Successful estimation of spectrally active soil texture with Visible and Near-Infrared (VNIR, 400-1200 nm) and Short-Wave-Infrared (SWIR, 1200-2500 nm) spectroscopy depends mostly on the selection of an appropriate data mining algorithm. The aims of this paper were: to compare different data mining algorithms including Partial Least Squares Regression (PLSR), which is the most common technique in soil spectroscopy, Support Vector Machine Regression (SVMR), Boosted Regression Trees (BRT), and Memory... A. Gholizadeh, M. Saberioon, L. Borůvka

19. Intuitive Image Analysing on Plant Data - High Throughput Plant Analysis with Lemnatec Image Processing

For digital plant phenotyping huge amounts of 2D images are acquired. This is known as one part of the phenotyping bottleneck. This bottleneck can be addressed by well-educated plant analysts, huge experience and an adapted analysis software. Automated tools that only cover specific parts of this analysis pipeline are provided. During the last years this could be changed by the image processing toolbox of LemnaTec GmbH. An automated and intuitive tool for the automated analysis of huge amounts... S. Paulus, T. Dornbusch, M. Jansen

20. Towards Calibrated Vegetation Indices from UAS-derived Orthomosaics

Crop advisors and farmers increasingly use drone data as part of their decision making. However, the vast majority of UAS-based vegetation mapping services support only the calculation of a relative NDVI derived from compressed JPEG pixel values and do not include the possibility to include more complex aspects like soil correction. In our ICPA12 contribution, we demonstrated the effects and consequences of the above shortcomings. Here, we present the stepwise development of a solution to ensure... K. Pauly

21. Integrated Approach to Site-specific Soil Fertility Management

In precision agriculture the lack of affordable methods for mapping relevant soil attributes is a funda­mental problem. It restricts the development and application of advanced models and algorithms for decision making. The project “I4S - Integrated System for Site-Specific Soil Fertility Management” combines new sensing technologies with dynamic soil-crop models and decision support systems. Using sensors with different measurement principles improves the estimation of soil fertility... R. Gebbers, V. Dworak, B. Mahns, C. Weltzien, D. Büchele, I. Gornushkin, M. Mailwald, M. Ostermann, M. Rühlmann, T. Schmid, M. Maiwald, B. Sumpf, J. Rühlmann, M. Bourouah, H. Scheithauer, K. Heil, T. Heggemann, M. Leenen, S. Pätzold, G. Welp, T. Chudy, A. Mizgirev, P. Wagner, T. Beitz, M. Kumke, D. Riebe, C. Kersebaum, E. Wallor

22. Technological Improvement on Sugar Cane Yield Monitor

This paper presents the technological improvement on sugar cane yield monitor. The system designed employs load cells as an instrument for weighing billets, set up on the side conveyor of the harvester before the sugar cane billets are dropped into a field transport wagon. This data, along with the information gathered by GPS installed on the harvester, enabled the elaboration of a digital yield map using GIS. In order to improve the yield monitor a re-design of the first prototype was accomplished.... D.G. Cerri, G.R. Gray, P.S. Magalhães

23. Using Deep Learning - Convolutional Naural Networks (CNNS) for Real-Time Fruit Detection in the Tree

Image/video processing for fruit detection in the tree using hard-coded feature extraction algorithms have shown high accuracy on fruit detection during recent years. While accurate, these approaches even with high-end hardware are still computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks architecture based on single-stage detectors. Using deep-learning techniques eliminates the need for hard-code specific features for specific... K. Bresilla, L. Manfrini, A. Boini, G. Perulli, B. Morandi, L.C. Grappadelli

24. On-the-Go Nir Spectroscopy and Thermal Imaging for Assessing and Mapping Vineyard Water Status in Precision Viticulture

New proximal sensing technologies are desirable in viticulture to assess and map vineyard spatial variability. Towards this end, high-spatial resolution information can be obtained using novel, non-invasive sensors on-the-go. In order to improve yield, grape quality and water management, the vineyard water status should be determined. The goal of this work was to assess and map vineyard water status using two different proximal sensing technologies on-the-go: near infrared (NIR) reflectance spectroscopy... J. Tardaguila, M. Diago, S. Gutierrez, J. Fernandez-novales, E.A. Moreda

25. Site-Specific Management Zones Delineation Using Drone-Based Hyperspectral Imagery

Conventional techniques (e.g., intensive soil sampling) for site-specific management zones (MZ) delineation are often laborious and time-consuming. Using drones equipped with hyperspectral system can overcome some of the disadvantages of these techniques. The present work aimed to develop a drone-based hyperspectral imagery method to characterize the spatial variability of soil physical properties in order to delineate site-specific MZ. Canonical correlation analysis (CCA) was used to extract... H. Agili, K. Chokmani, A. Cambouris, I. Perron, J. Poulin

26. Spatial Decision Support System: Controlled Tile Drainage – Calculate Your Benefits

Climate projection studies suggest that extreme heat waves and floods will become more frequent, affecting future crop yields by 20%-30%, globally. Managing vulnerability and risk begins at the farm level where best management practices can reduce the impacts associated with extreme weather events. A practice that can assist in mitigating the impact of some extreme events is controlled tile drainage (CTD). With CTD, producers use water flow control structures to manage the drainage of water from... A. Kross, G. Kaur, D. Callegari, D. Lapen, M. Sunohara, H. Mcnairn, H. Rudy, L. Van vliet

27. Evaluation of an Artificial Neural Network Approach for Prediction of Corn and Soybean Yield

The ability to predict crop yield during the growing season is important for crop income, insurance projections and for evaluating food security. Yet, modeling crop yield is challenging because of the complexity of the relationships between crop growth and the interrelated predictor variables. Artificial neural networks (ANNs) are useful for such complex systems as they can capture non-linear relationships of data without explicitly knowing the underlying processes. In this study, an ANN-based... A. Kross, G. Kaur, E. Znoj, D. Callegari, M. Sunohara, H. Mcnairn, D. Lapen, H. Rudy, L. Van vliet

28. Late Season Imagery for Harvest Management

The overall objective of this project was to preliminarily assess the use of UAV-based thermal imagery to sense harvest-related factors.  Results suggested that thermal imagery can be used to detect areas of high grain moisture content late in the harvest season.  Time periods closer to physiological maturity were less likely to show significant differences in thermal imagery data.  Additional research is needed to determine if moisture content trends with other measurable quantities... J. Ward, G. Roberson, R. Phillips

29. Determining the Marginal Value of Extra Precision in Precision Grazing Systems – an Ex Ante Analysis of Impacts on System Productivity, Sustainability and Economics

The development of precision livestock farming (PLF) technologies for application in grazing systems is rapidly evolving. PLF technologies that facilitate the spatial and temporal management of variability in landscapes, pastures and animals promise to improve the efficiency, profitability and sustainability of livestock farming. However, such technologies as a complete package do not yet exist in grazing systems and the question of impacts at the farm system level remains unresolved. Other potential... K. Behrendt, T. Takahashi, M.S. Rutter

30. Establishment of a Canola Emergence Assessment Methodology Using Image-based Plant Count and Ground Cover Analysis

Manual assessment of emergence is a time-consuming practice that must occur within a short time-frame of the emergence stage in canola (Brassica napus). Unmanned aerial vehicles (UAV) may allow for a more thorough assessment of canola emergence by covering a wider scope of the field and in a more timely manner than in-person evaluations. This research aims to calibrate the relationship between emerging plant population count and the ground cover. The field trial took place at the University... K. Krys, S. Shirtliffe, H. Duddu, T. Ha, A. Attanayake, E. Johnson, E. Andvaag, I. Stavness

31. Strawberry Pest Detection Using Deep Learning and Automatic Imaging System

Strawberry growers need to monitor pests to determine the options for pest management to reduce damage to yield and quality.  However, manually counting strawberry pests using a hand lens is time-consuming and biased by the observer. Therefore, an automated rapid pest scouting method in the strawberry field can save time and improve counting consistency. This study utilized six cameras to take images of the strawberry leaf. Due to the relatively small size of the strawberry pest, six cameras... C. Zhou, W. Lee, A. Pourreza, J.K. Schueller, O.E. Liburd, Y. Ampatzidis, G. Zuniga-ramirez

32. Automated Lag Phase Detection in Wine Grapes

Crop yield estimation, an important managerial tool for vineyard managers, plays a crucial role in planning pre/post-harvest operations to achieve desired yield and improve efficiency of various field operations. Although various technological approaches have been developed in the past for automated yield estimation in wine grapes, challenges such as cost and complexity of the technology, need of higher technical expertise for their operation and insufficient accuracy have caused major concerns... P. Upadhyaya, M. Karkee, X. Zhang, S. Kashetri

33. Cloud Correction of Sentinel-2 NDVI Using S2cloudless Package

Optical satellite-derived Normalized Difference Vegetation Index (NDVI) is by far the most commonly used vegetation index value for crop monitoring. However, it is quite sensitive to the cloud, and cloud shadows and significantly decreases its usability, especially in agricultural applications. Therefore, an accurate and reliable cloud correction method is mandatory for its effective application. To address this issue, we have developed an approach to correct the NDVI values of each and every... A. Saxena, M. Dash, A.P. Verma

34. Possibilities for Improved Decision Making and Operating Efficiency Derived from the Predictability of Autonomous Farming Operations

For the last 6 years, small autonomous agricultural vehicles have been operating on Harper Adams University’s fields in Shropshire.  Starting with a single tractor on a single rectangular hectare (2.5 acres) and moving on to three tractors on 5 irregularly shaped fields covering over 30 hectares (75 acres).  Multiple crops have been grown; planting, tending, and harvesting with autonomous tractors and harvesters.  The fields are worked using a Controlled Traffic Farming system,... M. Gutteridge

35. Making Irrigator Pro an Adaptive Irrigation Decision Support System

Irrigator Pro is a public domain irrigation scheduling model developed by the USDA-ARS National Peanut Research Laboratory. The latest version of the model uses either matric potential sensors to estimate the plant’s available soil water or manual data input. In this project, a new algorithm is developed, which will provide growers and consultants with much more flexibility in how they can feed data to the model. The new version will also run with Volumetric Water Content sensors, giving... I. Gallios, G. Vellidis, C. Butts

36. AI-based Pollinator Using CoreXY Robot

The declining populations of natural pollinators pose a significant ecological challenge, often attributed to the adverse effects of pesticides and intensive farming practices. To address the critical issue of pollination in the face of diminishing natural pollinators, we are pioneering an AI-based pollinator that utilizes a CoreXY pollination system. This solution aims to augment pollination efforts in agriculture, increasing yields and crop quality while mitigating the adverse impacts of pesticide... H. Kulhandjian, M. Kulhandjian, D. Rocha, B. Bennett

37. AI-based Precision Weed Detection and Elimination

Weeds are a significant challenge in agriculture, competing with crops for resources and reducing yields. Addressing this issue requires efficient and sustainable weed elimination systems. This paper presents a comprehensive overview of recent advancements in weed elimination system development, focusing on innovative technologies and methodologies. Specifically, it details the development and integration of a weed detection and elimination system based on the CoreXY architecture, implemented... H. Kulhandjian, M. Kulhandjian, D. Rocha, B. Bennett

38. AI-based Fruit Harvesting Using a Robotic Arm

Fruit harvesting stands as a pivotal and delicate process within the agricultural industry, demanding precision and efficiency to ensure both crop quality and overall productivity. Historically reliant on manual labor, this labor-intensive endeavor has taken a significant leap forward with the advent of autonomous jointed robots and Artificial Intelligence (AI). Our project aims to usher in a new era in fruit harvesting, leveraging advanced technology to perform this essential task autonomously... H. Kulhandjian, N. Amely, M. Kulhandjian

39. A Multi-objective Optimisation Analysis of Virtual Fencing in Precision Grazing

Virtual fencing is a precision livestock farming tool consisting of invisible boundaries created via Global Navigation Satellite Systems (GNSS) and managed remotely and in real time by app-based technology. Grazing livestock are equipped with battery-powered collars capable of delivering audio or vibration cues and possibly electric shocks when approaching or crossing an invisible boundary. Virtual fencing makes precision grazing possible without the need for physical fences. This technology originated... E. Maritan, K. Behrendt, J. Lowenberg-deboer, S. Morgan, M.S. Rutter

40. Data-driven Agriculture and Sustainable Farming: Friends or Foes?

Sustainability in our food and fiber agriculture systems is inherently knowledge intensive.  It is more likely to be achieved by using all the knowledge, technology, and resources available, including data-driven agricultural technology and precision agriculture methods, than by relying entirely on human powers of observation, analysis, and memory following practical experience.  Data collected by sensors and digested by artificial intelligence (AI) can help farmers learn about synergies... O. Rozenstein, Y. Cohen, V. Alchanatis , K. Behrendt, D.J. Bonfil, G. Eshel, A. Harari, W.E. Harris, I. Klapp, Y. Laor, R. Linker, T. Paz-kagan, S. Peets, M.S. Rutter, Y. Salzer, J. Lowenberg-deboer

41. Cherry Yield Forecast: Harvest Prediction for Individual Sweet Cherry Trees

Digitalization continues to transform the agricultural sector as a whole and also affects specific niches like horticulture. Particularly in fruit and wine production, the focus is on the application of sensor systems and data analysis aiming at automated detection of drought stress or pests in vineyards or orchards.  As part of the  “For5G” project, we are developing an end-to-end methodology for the creation of digital twins of fruit trees, with a strong focus... A. Gilson, L. Meyer, A. Killer, F. Keil, O. Scholz, D. Kittemann, P. Noack, P. Pietrzyk, C. Paglia

42. Field Mapping for Aflatoxin Assessment in Peanut Crops Using Thermal Imagery

Aflatoxin is a toxic carcinogenic compound produced by certain species of Aspergillus fungi, which has a significant impact on peanut production. Aflatoxin levels above a certain threshold (20 ppb in the USA and 4 ppb in Europe) make peanuts unsuitable for export, resulting in significant financial losses for farmers and traders. Unmanned Aerial Vehicles (UAVs) are becoming increasingly popular for remote sensing applications in agriculture. Leveraging this advancement, UAV-based thermal imaging... S. Shrestha, L. Lacerda, G. Vellidis, C. Pilcon, S. Maktabi, M. Sysskind

43. Machine Learning Algorithms in Detecting Long-term Effect of Climatic Factors for Alfalfa Production in Kansas

The water levels of the Ogallala Aquifer are depleting so much that agricultural land returns in Kansas are expected to drop by $34.1 million by 2050. It is imperative to understand how frequent droughts and the contrasting rates of groundwater withdrawal and recharge are affected by climate shifts in Kansas. Alfalfa, the ‘Queen of Forages’, is a water demanding crop which supplies high nutritional feed for beef industry that offered Kansas producers a $500 million production value... F. Nazrul, J. Kim, S. Dey, S. Palla, D. Sihi, B. Whitaker, G. Jha

44. Sugarcane Yield Mapping Using an On-board Volumetric Sensor

Few alternatives are available to the sugarcane sector for monitoring crop productivity. However, in recent years, research has been dedicated to developing methods ranging from estimation based on engine parameters to using sensors and artificial intelligence. This study aims to present a new tool for monitoring productivity applied to sugarcane cultivation, which utilizes a volumetric optical sensor, in contrast to other methods already used for this measurement, and is recently being introduced... G. Balboa, J.C. Masnello, F. De oliveira moreira, R. Canal filho, E.R. Da silva, J.P. Molin