Proceedings

Find matching any: Reset
Prabhudeva, D
Baumbauer, C
Hama Rash, S
Hu, J
Drury, C
Add filter to result:
Authors
Pattey, E
Jego, G
Tremblay, N
Drury, C
Ma, B
Sansoulet, J
Beaudoin, N
Hama Rash, S
Murdoch, A.J
Dr., N
T, S
giriyappa, M
D.C, H
PATIL, B
Prabhudeva, D
Kombali, G
Noorasma, S
Thimmegowda, M
Goodrich, P.J
Baumbauer, C
Arias, A.C
Baumbauer, C
Goodrich, P
Arias, A
Czarnecki, J
Brooks, J.P
Reeks, M.C
Hu, J
Topics
Precision Nutrient Management
Spatial Variability in Crop, Soil and Natural Resources
Precision Nutrient Management
Wireless Sensor Networks
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Land Improvement and Conservation Practices
Type
Poster
Oral
Year
2012
2016
2022
2024
Home » Authors » Results

Authors

Filter results6 paper(s) found.

1. Performance Evaluation of STICS Crop Model to Simulate Corn Growth Attributes in Response to N Rate and Climate Variations

Improving nitrogen use efficiency in crop plants contributes to increase the sustainability of agriculture. Crop models could be used as a tool to test the impact of climatic conditions on crop growth under several N management practices and to refine N application recommendation and strategy. STICS, a crop growth simulator developed by INRA (France), has the capability to assimilate leaf area index (LAI) from remote sensing to re-initialize input parameters, such as seeding date and seeding... E. Pattey, G. Jego, N. Tremblay, C. Drury, B. Ma, J. Sansoulet, N. Beaudoin

2. Consequences of Spatial Variability in the Field on the Uniformity of Seed Quality in Barley Seed Crops

Spatial variation is known to affect cereal growth and yield but consequences for seed quality are less well-known. Intra-field spatial variation occurs in soil and environmental variables and these are expected to affect the crop. The objective of this paper was to identify the spatial variation in barley seed quality and to investigate its association with environmental factors and the spatial scale over which this correlation occurs. Two uniformly-managed, commercial fields of winter... S. Hama rash, A.J. Murdoch

3. Precision Nutrient Management Through Drip Irrigation in Aerobic Rice

A field experiment was conducted during kharif 2015 to asses the spatial variability and precision nutrient management through drip irrigation in aerobic rice at ZARS, GKVK, Bangalore. The experimental field has been delineated into 48 grids of 4.5 m x 4.5 m using geospatial technology. Soil samples from 0-15 cm depth were collected and analysed. There was spatial variability for available nitrogen (154 to 277 kg ha-1), phosphorous (45 to 152 kg ha-1) and potassium... N. Dr., S. T, M. Giriyappa, H. D.c, B. Patil, D. Prabhudeva, G. Kombali, S. Noorasma, M. Thimmegowda

4. A Passive-RFID Wireless Sensor Node for Precision Agriculture

Accurate soil data is crucial for precision agriculture.  While existing optical methods can correlate soil health to the gasses emitted from the field, in-soil electronic sensors enable real-time measurements of soil conditions at the effective root zone of a crop. Unfortunately, modern soil sensor systems are limited in what signals they can measure and are generally too expensive to reasonably distribute the sensors in the density required for spatially accurate feedback.  In this... P.J. Goodrich, C. Baumbauer, A.C. Arias

5. Printed Nitrate Sensors for In-soil Measurements

Managing nitrate is a central concert for precision agriculture, from delineating management zones, to optimizing nitrogen use efficiency through in-season applications, to minimizing leaching and greenhouse gas emissions. However, measurement methods for in-soil nitrate are limiting. State-of-the-art soil nitrate analysis requires taking soil or liquid samples to laboratories for chemical or spectrographic analysis. These methods are accurate, but costly, labor intensive, and cover limited geographic... C. Baumbauer, P. Goodrich, A. Arias

6. Spatial and Temporal Variability of Soil Biological and Chemical Parameters Following the Introduction of Cover Crops into a Conventional Corn-cotton Rotational System

Methods to characterize soil microbial diversity and abundance are labor intensive and require destructive sampling that incurs a per unit cost. There are advantages to replacing current methods with remote sensing approaches; the most obvious of which is spatially explicit representation of microbes on agricultural landscapes. Such a method will ultimately address open questions related to (1) the spatial scale of variability in soil microbial activity, and (2) the behavior of microbes in cover... J. Czarnecki, J.P. Brooks, M.C. Reeks, J. Hu