Proceedings

Find matching any: Reset
Bastos, L
Cousins, A
Dhillon, R
Add filter to result:
Authors
Dhillon, R
Udompetaikul, V
Rojo, F
Upadhyaya, S
Slaughter, D
Lampinen, B
Shackel, K
Rojo, F
Roach, J
Coates, R
Upadhyaya, S
Delwiche, M
Han, C
Dhillon, R
Dhillon, R
Upadhyaya, S
Roach, J
Crawford, K
Lampinen, B
Metcalf, S
Rojo, F
Crawford, K
Upadhyaya, S
Dhillon, R
Rojo, F
Roach, J
Sankaran, S
Wang, M
Ellsworth, P
Cousins, A
Bastos, L
Ferguson, R.B
Bastos, L
Ferguson, R.B
Dhillon, R
Takoo, G
Sharma, V
Nagle, M
Topics
Proximal Sensing in Precision Agriculture
Proximal Sensing in Precision Agriculture
Sensor Application in Managing In-season CropVariability
Remote Sensing Applications in Precision Agriculture
Sensor Application in Managing In-season Crop Variability
In-Season Nitrogen Management
Data Analytics for Production Ag
Type
Poster
Oral
Year
2012
2014
2016
2018
2024
Home » Authors » Results

Authors

Filter results8 paper(s) found.

1. Evaluation of the Sensor Suite for Detection of Plant Water Stress in Orchard and Vineyard Crops

A mobile sensor suite was developed and evaluated to predict plant water status by measuring the leaf temperature of nut trees and grapevines. It consists of an infrared thermometer to measure leaf temperature along with relevant ambient condition sensors to measure microclimatic variables in the vicinity of the leaf. Sensor suite was successfully evaluated in three crops (almonds, walnuts and grapevines) for both sunlit and shaded leaves. Stepwise linear regression models developed for shaded... R. Dhillon, V. Udompetaikul, F. Rojo, S. Upadhyaya, D. Slaughter, B. lampinen, K. Shackel

2. Development And Evaluation Of A Leaf Monitoring System For Continuous Measurement Of Plant Water Status In Almond And Walnut Crops

Abstract: Leaf temperature measurements using handheld infrared thermometers have been used to predict plant water stress by calculating crop water stress index (CWSI). However, for CWSI calculations it is recommended to measure canopy temperature of trees under saturated, stressed and current conditions simultaneously, which is not very practical while using handheld units. An inexpensive, easy to use sensing system was developed to predict plant water status for tree crops by measuring... F. Rojo, J. Roach, R. Coates, S. Upadhyaya, M. Delwiche, C. Han, R. Dhillon

3. Modeling Canopy Light Interception For Estimating Yield In Almond And Walnut Trees

A knowledge of spatio-temporal variability in potential yield is essential for site-specific nutrient management in crop production. The objectives of this project were to develop a model for photosynthetically active radiation (PAR) intercepted by almond and walnut trees based on data obtained from respective tree(s) and estimate potential crop yield in individual trees or in blocks of five trees. This project uses proximally sensed PAR interception data measured using a lightbar... R. Dhillon, S. Upadhyaya, J. Roach, K. Crawford, B. lampinen, S. Metcalf, F. Rojo

4. An Inexpensive Aerial Platform For Precise Remote Sensing Of Almond And Walnut Canopy Temperature

Current irrigation practices depend largely on imprecise applications of water over fields with varying degrees of heterogeneity. In most cases, the amount of water applied over a given field is determined by the amount the most water-stressed part of the field needs. This equates to over-watering most of the field in order to satisfy the needs of one part of the field. This approach not only wastes resources, but can have a detrimental effect on the value of that crop. A system to... K. Crawford, S. Upadhyaya, R. Dhillon, F. Rojo, J. Roach

5. Rapid Sensing For Water Stress Detection In Foxtail Millet (Setaria Italica)

In recent years, the drought conditions due to changing climate patterns have adversely affected the U.S. agriculture. The 2012 drought that damaged major crops in Midwest was one of the most severe in last 25 years. It has resulted in losses of production, revenue, livestock and jobs, and has increased food prices. Under these circumstances, farmers are focused to use the water resources carefully. The researchers are working together to develop new crop varieties resistant to water... S. Sankaran, M. Wang, P. Ellsworth, A. Cousins

6. Active and Passive Crop Canopy Sensors As Tools for Nitrogen Management in Corn

The objectives of this research were to (i) assess the correlation between active and passive crop canopy sensors’ vegetation indices at different corn growth stages and (ii) assess sidedress variable rate nitrogen (N) recommendation accuracy of active and passive sensors compared to the agronomic optimum N rate (AONR). The experiment was conducted near Central City, Nebraska on a Novina sandy loam planted to corn on 15 April 2015. The experiment was a randomized complete-block design with... L. Bastos, R. Ferguson

7. Active and Passive Sensor Comparison for Variable Rate Nitrogen Determination and Accuracy in Irrigated Corn

The objectives of this research were to (i) compare active and passive crop canopy sensors’ sidedress variable rate nitrogen (VRN) derived from different vegetation indices (VI) and (ii) assess VRN recommendation accuracy of active and passive sensors as compared to the agronomic optimum N rate (AONR) in irrigated corn. This study is comprised of six site-years (SY), conducted in 2015, 2016 and 2017 on different soil types (silt loam, loam and sandy loam) and with a range of preplant-applied... L. Bastos, R.B. Ferguson

8. Machine Learning Approach to Study the Effect of Weather and Proposed Climate Change Scenarios on Variability in the Ohio Corn and Soybean Yield

Climate is one of the primary factors that affects agricultural production.  Climate change and extreme weather events have raised concerns about its effect on crop yields. Climate change patterns affect the crop yield in many ways including the length of the growing season, planting and harvest time windows, precipitation amount and frequency, and the growing degree days. It is important to analyze the effect of climate change on yield variability for a better understanding of the effect... R. Dhillon, G. Takoo