Proceedings

Find matching any: Reset
Hodge, K
Rhea, S.T
Hu, S
Campos, R.P
Verhoff, K
Van Langevelde, F
Cambouris, A
Wilson, D
Bruggeman, S
Pagani, A
Kiel, A
Kikkert, J.R
Vigneault, P
Add filter to result:
Authors
Tremblay, N
Vigneault, P
Bouroubi, M.Y
Dorais, M
Gianquinto, G.P
Tempesta, M
Li, L
Jiang, D
Campos, R.P
Lu, Z
Tian, L.F
Yu, W
Miao, Y
Hu, S
Shen, J
Wang, H
Vigneault, P
Tremblay, N
Bouroubi, M.Y
Belec, C
Fallon, E
Kyveryga, P.M
Fey, S
Connor, J
Kiel, A
Muth, D
Tremblay, N
Khun, K
Vigneault, P
Bouroubi, M.Y
Cavayas, F
Codjia, C
Ferreyra, R
Applegate, D.B
Berger, A.W
Berne, D.T
Craker, B.E
Daggett, D.G
Gowler, A
Bullock, R.J
Haringx, S.C
Hillyer, C
Howatt, T
Nef, B.K
Rhea, S.T
Russo, J.M
Nieman, S.T
Sanders, P
Wilson, J.A
Wilson, J.W
Tevis, J.W
Stelford, M.W
Shearouse, T.W
Schultz, E.D
Reddy, L
Puntel, L
Pagani, A
Archontoulis, S
Agili, H
Chokmani, K
Cambouris, A
Perron, I
Poulin, J
Bouroubi, Y
Bugnet, P
Nguyen-Xuan, T
Bélec, C
Longchamps, L
Vigneault, P
Gosselin, C
Hodge, K
Bainard, L
Smith, A
Akhter, F
Hughes, E.W
Pethybridge, S.J
Salvaggio, C
van Aardt, J
Kikkert, J.R
Khun, K
Vigneault, P
Fallon, E
Tremblay, N
Codjia, C
Cavayas, F
Thies, S
Clay, D.E
Bruggeman, S
Joshi, D
Clay, S
Miller, J
Leininger, A
Verhoff, K
Lovejoy, K
Thomas, A
Davis, G
Emmons, A
Fulton, J.P
Fulton, J.P
Wilson, D
Tietje, R
Hawkins, E
Mhlongo, N
de knegt, H
de Boer, W.F
Van Langevelde, F
Topics
Precision Horticulture
Proximal Sensing in Precision Agriculture
Applications of UAVs (unmanned aircraft vehicle systems) in precision agriculture
Profitability, Sustainability and Adoption
Unmanned Aerial Systems
Standards & Data Stewardship
Decision Support Systems
Applications of Unmanned Aerial Systems
Big Data, Data Mining and Deep Learning
Precision Agriculture and Global Food Security
Drone Spraying
On Farm Experimentation with Site-Specific Technologies
Farm Animals Health and Welfare Monitoring
Type
Poster
Oral
Year
2012
2014
2016
2018
2024
Home » Authors » Results

Authors

Filter results17 paper(s) found.

1. Remote Sensing of Nitrogen and Water Status on Boston Lettuce Transplants in a Greenhouse Environment

Remote sensing is the stand-off collection through the use of a variety of devices for gathering information on a given object or area. Applied as a warning tool in plant stock production, it is expected to help in the achievement of better, more uniform and more productive organic cropping systems. Remote sensing of vegetation targets can be achieved from the... N. Tremblay, P. Vigneault, M.Y. Bouroubi, M. Dorais, G.P. Gianquinto, M. Tempesta

2. Field-Based High-Throughput Phenotyping Approach For Soybean Plant Improvement

The continued development of new, high yielding cultivars needed to meet the world’s growing food demands will be aided by improving the technology to rapidly phenotype potential cultivars. High-throughput phenotyping (HTP) is essential to maximize the greatest value of genetics analysis and to better understand the plant biology and physiology in view of a “Feed the World in 2050” theme. Field-based high-throughput phenotyping platform... L. Li, D. Jiang, R.P. Campos, Z. Lu, L.F. Tian

3. Evaluating Leaf Fluorescence Sensor Dualex 4 For Estimating Rice Nitrogen Status In Northeast China

Real-time non-destructive diagnosis of crop nitrogen (N) status is crucially important for the success of in-season site-specific N management. Chlorophyll meter (CM) has been commonly used to non-destructively estimate crop leaf chlorophyll concentration, and indirectly estimate crop N status. Dualex 4 is a newly developed leaf fluorescence sensor that can estimate both leaf chlorophyll concentration and polyphenolics, especially flavonoids. When N is deficient, N stress can induce... W. Yu, Y. Miao, S. Hu, J. Shen, H. Wang

4. A Comparison Of Performance Between UAV And Satellite Imagery For N Status Assessment In Corn

A number of platforms are available for the sensing of crop conditions. They vary from proximal (tractor-mounted) to satellites orbiting the Earth. A lot of interest has recently emerged from the access to unmanned aerial vehicles (UAVs) or drones that are able to carry sensors payloads providing data at very high spatial resolution. This study aims at comparing the performance of a UAV and satellite imagery acquired over a corn nitrogen response trial set-up. The nitrogen (N) response... P. Vigneault, N. Tremblay, M.Y. Bouroubi, C. Bélec, E. Fallon

5. Within-field Profitability Assessment: Impact of Weather, Field Management and Soils

Profitability in crop production is largely driven by crop yield, production costs and commodity prices. The objective of this study was to quantify the often substantial yet somewhat illusive impact of weather, management, and soil spatial variability on within-field profitability in corn and soybean crop production using profitability indices for profit (net return) and return-on-investment (ROI) to produce estimates. We analyzed yield and cropping system data provided by 42 farmers within Central... P.M. Kyveryga, S. Fey, J. Connor, A. Kiel, D. Muth

6. Comparative Benefits of Drone Imagery for Nitrogen Status Determination in Corn

Remotely sensed vegetation data provide an effective means of measuring the spatial variability of nitrogen and therefore of managing applications by taking intrafield variations into account. Satellites, drones and sensors mounted on agricultural machinery are all technologies that can be used for this purpose. Although a drone (or unmanned aerial vehicle [UAV]) can produce very high-resolution images, the comparative advantages of this type of imagery have not been demonstrated. The goal of... N. Tremblay, K. Khun, P. Vigneault, M.Y. Bouroubi, F. Cavayas, C. Codjia

7. Toward Geopolitical-Context-Enabled Interoperability in Precision Agriculture: AgGateway's SPADE, PAIL, WAVE, CART and ADAPT

AgGateway is a nonprofit consortium of 240+ businesses working to promote, enable and expand eAgriculture. It provides a non-competitive collaborative environment, transparent funding and governance models, and anti-trust and intellectual property policies that guide and protect members’ contributions and implementations. AgGateway primarily focuses on implementing existing standards and collaborating with other organizations to extend them when necessary. In 2010 AgGateway identified... R. Ferreyra, D.B. Applegate, A.W. Berger, D.T. Berne, B.E. Craker, D.G. Daggett, A. Gowler, R.J. Bullock, S.C. Haringx, C. Hillyer, T. Howatt, B.K. Nef, S.T. Rhea, J.M. Russo, S.T. Nieman, P. Sanders, J.A. Wilson, J.W. Wilson, J.W. Tevis, M.W. Stelford, T.W. Shearouse, E.D. Schultz, L. Reddy

8. Prediction of Corn Economic Optimum Nitrogen Rate in Argentina

Static (i.e. texture and soil depth) and dynamic (i.e. soil water, temperature) factors play a role in determining field or subfield economically optimal N rates (EONR). We used 50 nitrogen (N) trials from Argentina at contrasting landscape positions and soil types, various soil-crop measurements from 2012 to 2017, and statistical techniques to address the following objectives: a) characterize corn yield and EONR variability across a multi-landscape-year study in central west Buenos Aires,... L. Puntel, A. Pagani, S. Archontoulis

9. Site-Specific Management Zones Delineation Using Drone-Based Hyperspectral Imagery

Conventional techniques (e.g., intensive soil sampling) for site-specific management zones (MZ) delineation are often laborious and time-consuming. Using drones equipped with hyperspectral system can overcome some of the disadvantages of these techniques. The present work aimed to develop a drone-based hyperspectral imagery method to characterize the spatial variability of soil physical properties in order to delineate site-specific MZ. Canonical correlation analysis (CCA) was used to extract... H. Agili, K. Chokmani, A. Cambouris, I. Perron, J. Poulin

10. Pest Detection on UAV Imagery Using a Deep Convolutional Neural Network

Presently, precision agriculture uses remote sensing for the mapping of crop biophysical parameters with vegetation indices in order to detect problematic areas, and then send a human specialist for a targeted field investigation. The same principle is applied for the use of UAVs in precision agriculture, but with finer spatial resolutions. Vegetation mapping with UAVs requires the mosaicking of several images, which results in significant geometric and radiometric problems. Furthermore, even... Y. Bouroubi, P. Bugnet, T. Nguyen-xuan, C. Bélec, L. Longchamps, P. Vigneault, C. Gosselin

11. Using an Unmanned Aerial Vehicle with Multispectral with RGB Sensors to Analyze Canola Yield in the Canadian Prairies

In 2017 canola was planted on 9 million hectares in Canada surpassing wheat as the most widely planted crop in Canada.  Saskatchewan is the dominant producer with nearly 5 million hectares planted in 2017.  This crop, seen both as one of the highest-yielding and most profitable, is also one of most expensive and input-intensive for producers on the Canadian Prairies.   In this study, the effect of natural and planted shelterbelts on canola yield was compared with canola yield... K. Hodge, L. Bainard, A. Smith, F. Akhter

12. Snap Bean Flowering Detection from UAS Imaging Spectroscopy

Sclerotinia sclerotiorum (white mold) is a fungus that infects the flowers of snap beans and causes a reduction in the number of pods, and subsequent yields, due to premature pod abscission. Snap bean fields typically are treated with prophylactic fungicide applications to control white mold, once 10% of the plants have at least one flower. The holistic goal of this research is to develop spatially-explicit white mold risk models, based on inputs from remote sensing systems aboard unmanned... E.W. Hughes, S.J. Pethybridge, C. Salvaggio, J. Van aardt, J.R. Kikkert

13. Estimating Corn Biomass from RGB Images Acquired with an Unmanned Aerial Vehicle

Above-ground biomass, along with chlorophyll content and leaf area index (LAI), is a key biophysical parameter for crop monitoring. Being able to estimate biomass variations within a field is critical to the deployment of precision farming approaches such as variable nitrogen applications. With unprecedented flexibility, Unmanned Aerial Vehicles (UAVs) allow image acquisition at very high spatial resolution and short revisit time. Accordingly, there has been an increasing interest in... K. Khun, P. Vigneault, E. Fallon, N. Tremblay, C. Codjia, F. Cavayas

14. Precision Fall Urea Fertilizer Applications: Timing Impact on Carbon Dioxide, Ammonia Volatilization and Nitrous Oxide Emissions

To minimize ammonia (NH3) volatilization and nitrous oxide (N2O) emissions from fall applied fertilizer, it is generally recommended to not apply the fertilizer until the soil temperature decreases below 10 C. However, this recommendation is not based on detailed measurements of NH3and N2O emissions. The objective of this study was to determine the influence of fertilizer application timing on nitrous oxide, carbon dioxide, and ammonia volatilization emissions.  Nitrogen fertilizer was... S. Thies, D.E. Clay, S. Bruggeman, D. Joshi, S. Clay, J. Miller

15. Deposition Characteristics of Different Style Spray Tips at Varying Speeds and Altitudes from an Unmanned Aerial System

The application of pesticides with a UAS has become a popular practice over the past few years within crop production. The ability to carry larger volumes of liquid i onboard, reduced costs, and simple operation has attributed to the increased popularity. Additionally, the increased number of fungicide applications in corn due to the tar spot disease has shown that the demand for aerial applications of all types has increased with UAS pesticide application technology providing the opportunity... A. Leininger, K. Verhoff, K. Lovejoy, A. Thomas, G. Davis, A. Emmons, J.P. Fulton

16. Creating Value from On-farm Research: Efields Data Workflow and Management Successes and Challenges

Farm operations today generate a large amount of data that can be difficult to properly manage. This challenge is further compounded when conducting on-farm research. The Ohio State University eFields program partners with farmers to conduct on-farm research and share results in a timely manner. Since 2017, the team has conducted and shared 987 trials across Ohio with the annual number of trials increasing from 45 to 292. This rapid increase has required development of a data workflow that streamlines... J.P. Fulton, D. Wilson, R. Tietje, E. Hawkins

17. Lameness Detection in Dairy Cattle Using GPS and Accelerometers Wearable Sensors

Lameness significantly impacts cow health and welfare on dairy farms, yet identifying lamecows remains challenging. Wearable sensors like GPS and accelerometers show promise for automated lameness detection, but their effectiveness outdoors is still unclear. Therefore, there are gaps in understanding their applicability and the necessary features for outdoor settings. Additionally, it is uncertain whether environmental factors, such as temperature and time of day, influence their the model performance,... N. Mhlongo, H. De knegt, W.F. De boer, F. Van langevelde